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Abstract
Decomposition of complex systems into smaller, independent modules is a fundamental approach for reducing
complexity. The computation of structural invariants, a common method for verification, is aided by this modular
reduction in complexity.

However, while T-invariants can be combined from the module’s local T-invariants and local P-invariants are
preserved, synchronization between modules introduces new P-invariants. Current algorithms do not consider
these modular structures of the P/T nets for the calculations of P-invariants.

The incidence matrix of modular Petri nets, in which interactions between modules are restricted to only
transitions, has a singly-bordered block diagonal (SBBD) structure. This structure may lead to speedups in
reducing the matrix to row echelon form, the main challenge in the computation of invariants. In this paper, we
examine the specific properties of modular nets that facilitate these speedups.

We present an algorithm for the reduction through Gaussian elimination. Through its analysis, we find that
module size, number of external transitions and synchronized firing groups, and number of linearly independent
internal transitions highly influence the runtime of our algorithm.

Our algorithm performs better than the naive Gaussian elimination for good modularized nets. The conditions
leading to speed-ups naturally serve as formalizations of coupling and cohesion.
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1. Introduction

Design of complex and interacting systems was and still is a challenge. Modeling a system with specific
perspectives is one way to address this. The divide-and-conquer principle has a long tradition in
informatics, following far older sciences.

Parts of such decomposable systems are related in a specific way to specify the relationship. Parnas
names such parts modules (see [1]). Nowadays the modules are also called components, services,
entities, objects etc.

Fettke and Reisig use the notion of modules as their basic modeling entities [2] for their so called
HERAKLIT approach. Petri nets can be used as a formal basis for the semantics of the modules. One
central motivation for Fettke and Reisig is that Petri nets provide means to prove properties for the
module models, even if they concentrate more on the understanding and modeling of systems in [2].
What is also very convincing of the HERAKLIT approach is the associative composition of modules
that allows to build nested models of systems on an abstract level.

In [3] the HERAKLIT approach is combined with the ideas of agent-oriented modeling to emphasize
the process perspective for entities that incorporate roles. Such roles are represented as agent templates.
Their orchestration and choreography is modeled with an extended version of UML sequence charts.

Here we pick up the central ideas of modules to add some formal aspects to the models that can be
created in the above contexts. One of the traditional concepts, invariants, are used to link modules.
Calculation of invariants for very large Petri net models is difficult due to the algorithmic complexity
resulting in long calculation times.
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Based on the ideas of nets-within-nets [4] and modeling aspects of invariants [5] in combination with
the decomposition of nets following the Mulan framework [6] we address the application of invariants
to simple modular Petri net models. These modular Petri nets (P/T-nets) are coupled via synchronous
channels to result in P/T-nets with synchronous channels [7]. [8] covered invariant calculations for
P/T-Nets with synchronous channels. Here we extend all of the above aspects by a discussion of coupling
and cohesion measures for calculating P-invariants for modular P/T Nets.

The following sections show the related work of the abovementioned topic Section 2 and the formal
background of the paper Section 3. Requirements for the paper are presented in Section 4. Then, our
algorithm for reducing a modular net’s incidence matrix to row echelon form is given and explained
in Section 5. In Section 6, an example run of the algorithm follows to give further illustration of its
behavior, while the formal analysis is done in Section 7. Based on the findings in this analysis, we
formally define notions of coupling and cohesion in Section 8 that naturally lead to formulating the
modularization of P/T nets as the problem of permuting matrices into bordered block diagonal form.
Then, we discuss our findings in Section 10 and conclude with Section 11.

2. Related Work

By dividing complex systems into different parts that exhibit significant internal behavior in comparison
to the external interactions between each other, their subsequent analysis can be facilitated. Such a
modular approach is realized in the context of Petri nets in the form of formal models as modular nets.
In [9], such a model based on P/T nets was introduced. A modular P/T net consists of non-modular
P/T nets serving as modules. Their interactions with each other are governed by fusion sets that allow
sharing of places and synchronization of transitions. The characteristics of these modular P/T nets
were then examined with respect to their P-invariants. A relation between local invariants and global
invariants is given, but no explicit way of computing them is specified. In particular, it isn’t further
examined how specific modular structures could affect runtimes of such computations.

In [10, 11], modular CP-nets extend the capabilities of modular P/T nets by using colored Petri
nets as modules. In this way, variables are allowed as edge weights through the use of synchronous
channels. In the specific context of P/T nets, synchronous channels were integrated in [7] to define
modular PTC-nets. In this way, variables as edge weights are possible while remaining close to the
formal models of P/T nets. The modular PTC-nets were, however, strongly constrained in the possible
synchronizations between modules.

In [8], the modular PTC-nets were expanded upon to give a more general model that isn’t so heavily
constrained called the PTC-system net. It also allows variables as edge weights and, together with the
formulation through multisets, further increases capabilities of aggregating similar interface transitions
into fewer external transitions. Both P-invariants and T-invariants were examined, but no way of
computing them is explicitly given. It is this model that will serve as the formal basis for this paper.
The properties of invariants in PTC-system nets were further examined in [12], where an algorithm for
computing all of a net’s P-invariants was given and analyzed, and which this paper will expand upon.

However, these papers only state in rough terms how the specifics of the modular structure actually
aid in subsequent analysis. Especially, formal definitions of such measures of modularity could be
of interest. The commonly used concepts of coupling and cohesion serve to describe the quality of
modular systems and could also do so for modular nets.

In [13, 14], it was examined how to replace shared places by use of synchronous channels to generate
more compact modular state spaces. It was found through experiments that weak coupling and strong
cohesion were most beneficial, but these measures weren’t expressed formally.

In [15], properties for potential measures of coupling and cohesion were formalized to enable precise
statements about modular systems in the field of software engineering. They aren’t specific measures
but instead a general framework of how a measure should behave to be considered a coupling or
cohesion measure.

Approaches to give specific measures of coupling and cohesion in accordance with this framework
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include definitions based on information-theoretic principles [16, 17] and pertaining to different types
of systems such as object-oriented systems [18] or knowledge-based systems [19]. Further formal
definitions were posited based on a metamodel approach in [20].

In the context of Petri nets, formal measures were given in [21]. Among other things, the number of
incoming arcs and the number of outgoing arcs were used as two separate bases to formulate coupling
measures. However, these were only stated for a specific type of Petri net, and no measure for cohesion
was given.

3. Preliminaries

3.1. Gaussian Elimination

Gaussian Elimination is an algorithm for solving systems of linear equations [22]. The algorithm
transforms a given matrix, by swapping rows, adding rows or multiplying a row with a non-zero
number. The resulting matrix is always in upper triangular form.

The algorithm eliminates all leading leftmost non-zero entries in each row but one, by adding
multiples of the topmost row to the other rows, so that the given entry is zero. The rows are always
sorted so that the number of leading zeros in each row is increasing. By iterating through these steps
until there are no more than one leading non-zero entries per column, the matrix will be in row echelon
form [22].

A matrix is in row echelon form when all rows containing only zeros are at the bottom and every
leading non-zero entry is on the right of the leading non-zero entry of the row above. This implies that
all entries under a leading coefficient are zeros [22].

Original matrix 𝐴 =

⎡⎣1 2 −1
2 5 −3
3 6 −2

⎤⎦

After Gaussian elimination (row echelon form):

⎡⎣1 2 −1
0 1 −1
0 0 1

⎤⎦
For a given 𝑛 × 𝑚 matrix 𝐴, the number of leading non-zero entries in its row echelon form is

referred to as the rank of 𝐴. It is denoted as rank(𝐴) and always lies between 0 and min(𝑛,𝑚). Notably,
rank(𝐴) = rank(𝐴T) and rank(𝐴) = 0 if and only if 𝐴 only consists of zeros [23]. For the example
above, from the row echelon form it is clear to see that rank(𝐴) = 3.

3.2. Bordered Block Diagonal Matrices

A matrix is in doubly bordered block diagonal form if it resembles this form:

𝐴𝐷𝐵 =

⎛⎜⎜⎜⎜⎝
𝐴11 𝐶1

𝐴22 𝐶2

... ...
𝐴𝑛𝑛 𝐶𝑛

𝑅1 𝑅2 ... 𝑅𝑛 𝐸

⎞⎟⎟⎟⎟⎠ (1)

The blocks 𝐴𝑙𝑙 are matrices with the dimensions 𝑛𝑙×𝑛𝑙. The border blocks 𝐶𝑙 and 𝑅𝑙 have a dimension
of 𝑛𝑙 × 𝑝 and 𝑝× 𝑛𝑙, respectively, where ideally 𝑝 should be significantly smaller than 𝑛𝑙 [24]. Each
column in the column border is called a coupling column, and each row in the row border is called a
coupling row.

A singly bordered block diagonal matrix is a special arrangement of entries in a matrix:
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Algorithm 1 Gaussian Elimination to row echelon form
1: Input: A matrix 𝐴 ∈ R𝑛×𝑚

2: Output: A matrix ̃︀𝐴 in row echelon form
3: procedure Gaussian Elimination(𝐴)
4: for 𝑐𝑜𝑙 ∈ [0,𝑚− 1] do
5: Identify the first non-zero entry in column 𝑐𝑜𝑙 at or below the current row
6: if entry found then
7: Swap the current row with the row containing the first non-zero entry
8: else
9: continue ◁ Move to the next column

10: end if

11: Normalize the row containing the first non-zero entry, so that the leading entry becomes 1
12: for each row below the current row do
13: Subtract a multiple of the row containing the first non-zero entry to eliminate the entry

in column 𝑐𝑜𝑙
14: end for
15: end for
16: Rearrange all-zero rows to the bottom
17: end procedure

𝐴𝑆𝐵 =

⎛⎜⎜⎝
𝐴11 𝐶1

𝐴22 𝐶2

... ...
𝐴𝑛𝑛 𝐶𝑛

⎞⎟⎟⎠ (2)

The blocks 𝐴𝑙𝑙 are matrices with the dimensions 𝑚𝑙 × 𝑛𝑙. The border blocks 𝐶𝑙 have a dimension of
𝑚𝑙 × 𝑝, where ideally 𝑝 should be significantly smaller than 𝑛𝑙 [24, 25].

3.3. P/T Nets with synchronous channels

Synchronous channels allow the linking of transitions which are part of the same net, or different
nets. A transition which is part of a synchronous channel can either be a Uplink or a Downlink. In
Renew synchronous channels are defined with inscriptions. These inscriptions are either :<Channel
Name>(<Parameters>) for Uplinks or <Net-reference>:<Channel Name>(<Parameters>) for Down-

links, as can be seen in Figure 1. Using the net-reference a synchronous channel can access another net
with the same channel. Using the parameters variables can be passed through the channel. A transition
can have multiple Downlinks, but only one Uplink [12].

Figure 1: Synchronous Channel Example, see [12]

3.4. Modular P/T nets

The basic idea behind the various different models for describing modular P/T nets [10, 7, 8] is to partition
the elements of a P/T net into a set of disjoint P/T nets serving as modules. These modules each have
internal behavior, but interactions between modules are governed by the overarching framework of the
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modular P/T net. In the case of limiting interactions between modules to just transitions, this framework
determines in which ways specific transitions of modules can be fired synchronously. Transitions that
only fire when synchronized are called external transitions and constitute the interface of the module.
Transitions that aren’t external are called internal. In such a model, the internal transitions of modules
behave as expected, while the synchronizations cause sets [10] or multisets [8] of external transitions
to fire together.

The formal model serving as the basis for this paper will be the Ptc-system net [8]. As such, it will
also determine the notation used. A Ptc-system net 𝒮𝒩 is a tuple 𝒮𝒩 = (𝑆,𝐾,𝑅, 𝑉 𝑎𝑟, 𝑓𝑅), where 𝑆
is a set of P/T-net modules, 𝐾 is a set of channels, 𝑅 is a set of synchronization rules, 𝑉 𝑎𝑟 is a set of
variables, and 𝑓𝑅 is a variable assignment function.

The P/T-net modules 𝑠 ∈ 𝑆 themselves are P/T nets with a designated set of external transitions 𝑇𝑒𝑠 ,
which are each assigned a channel from 𝐾 and potential assignments for variables 𝑓𝑠. Further, they
allow variables to be used as arc weights. The synchronization rules are multisets over 𝐾 and allow
multisets of external transitions to fire if their channels sum to any such synchronization rule. At the
same time, the variable assignment functions 𝑓𝑅 and 𝑓𝑠 ensure that all relevant variables are assigned a
valid value. A multiset of external transitions that is allowed to fire in this way is called a synchronized
firing group 𝑔, and the set of all firing groups is called 𝐺.

Figure 2: Ptc-system net example, based on [8], with synchronization rules {produce, store}𝑏 and

{retrieve, consume}𝑏

In figure 2, a simple example for a Ptc-system net is given in Renew. It consists of a producer
and a consumer that are connected by a shared storage. All three are each a module in the Ptc-
system net, whose synchronization rules are expressed by the transitions t2 and t3. The variable
assignments are performed implicitly by the synchronous channels in Renew. The synchronization rule
{produce, store}𝑏 allows the firing group {tp1, ts0}𝑏 to fire while assigning 𝑥 a value of 3. Similarly,
{retrieve, consume}𝑏 allows {ts1, tc1}𝑏 to fire while assigning 𝑥 a value of 2.

The change a synchronized firing group affects on specific places can then be expressed similarly to
the arc weight function, leading to ̃︁𝑊𝑠𝑦𝑛𝑐 : (𝑃 ×𝐺) ∪ (𝐺× 𝑃 ) → N0. ̃︁𝑊𝑠𝑦𝑛𝑐(𝑝, 𝑔) describes how the
marking of a place 𝑝 is decreased if a firing group 𝑔 fires, and ̃︁𝑊𝑠𝑦𝑛𝑐(𝑔, 𝑝) describes how it increases.

Together with the arc weight functions of all modules 𝑊𝑠, aggregated into a single function ̃︁𝑊 with
extended domain to include all places and transitions, the incidence matrix of a Ptc-system net can be
succinctly described. To better differentiate between internal and external components, the internal
incidence matrix 𝜆 and the synchronized incidence matrix 𝛿 are introduced in addition to the global
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incidence matrix ∆ [12].

Definition 1. The internal incidence matrix 𝜆 results from the effect of the internal transitions. Each

module has an internal incidence matrix, which is calculated independently from the other modules. The

entries of the internal incidence matrices aren’t necessarily integers, because the external transition can

include variables on their arc weights. These are only relevant if the whole net is considered.

𝜆𝒮𝒩 ,pt = ∆𝑡(𝑝) = ̃︁𝑊 (𝑡, 𝑝)−̃︁𝑊 (𝑝, 𝑡), for 𝑡 ∈ 𝑇 ∖ 𝑇𝑒 (3)

𝜆𝑠,pt = ∆𝑡(𝑝) = ̃︁𝑊𝑠(𝑡, 𝑝)−̃︁𝑊𝑠(𝑝, 𝑡), for 𝑡 ∈ 𝑇𝑠 ∖ 𝑇𝑒𝑠 , 𝑝 ∈ 𝑃𝑠 (4)

Definition 2. The synchronized incidence matrix 𝛿 considers the effects of synchronized transition sets. A

synchronized incidence matrix exists for each module, in which the effects of the synchronized transition

sets on the places of the modules are observed.

𝛿𝒮𝒩 ,pg = ∆𝑔(𝑝) = ̃︁𝑊sync(𝑔, 𝑝)−̃︁𝑊sync(𝑝, 𝑔) (5)

𝛿𝑠,pg = ∆𝑔(𝑝) = ̃︁𝑊sync(𝑔, 𝑝)−̃︁𝑊sync(𝑝, 𝑔), for 𝑝 ∈ 𝑃𝑠 (6)

Definition 3. The global incidence matrix ∆ results from the effects of the transition and synchronized

transition sets from the PTC-System Net.

∆𝒮𝒩 ,pt = ∆𝑡(𝑝) = ̃︁𝑊 (𝑡, 𝑝)−̃︁𝑊 (𝑝, 𝑡), for 𝑡 ∈ 𝑇 ∖ 𝑇𝑒 (7)

∆𝒮𝒩 ,pg = ∆𝑔(𝑝) = ̃︁𝑊sync(𝑔, 𝑝)−̃︁𝑊sync(𝑝, 𝑔) (8)

The global incidence matrix can be formed with the internal incidence matrix 𝜆 and the synchronized

incidence matrix 𝛿. The resulting matrix is a singly bordered block diagonal matrix as described above. The

rows and columns are sorted by the modules 𝑠𝑖.

∆ =
(︀
𝜆 𝛿

)︀
=

⎛⎜⎜⎜⎜⎜⎝
𝜆𝑠1 0 ... ... 0 𝛿𝑠1
0 𝜆𝑠2 0 ... 0 𝛿𝑠2
.
.
.

.
.
.

.

.

.

.

.

.

0 ... 0 𝜆𝑠𝑛−1 0 𝛿𝑠𝑛−1

0 ... ... 0 𝜆𝑠𝑛 𝛿𝑠𝑛

⎞⎟⎟⎟⎟⎟⎠ (9)

3.5. Formal Definitions of Coupling & Cohesion

As a foundation for discussing coupling and cohesion in modular systems we will use the formal
definitions given in [15]. They are based on a representation of modular systems consisting of a set of
elements and the relationships between these elements represented by a binary relation. Modules are
then each a subset of these elements, collectively forming a partition. Relationships between elements
are categorized as intra-module relationships 𝐼𝑅 connecting elements belonging to the same module
and inter-module relationships connecting elements belonging to different modules. The latter are
further divided into input and output relationships. However, for our purposes we will refer to these
external relationships collectively as 𝐸𝑅.

Intuitively, the coupling of a module describes how many relationships exist between it and other
modules. The coupling of a modular system describes how many relationships exist between all its
modules. Formally, the coupling of a module 𝑚 or modular system 𝑀𝑆 is a function coupling(𝑚) or
coupling(𝑀𝑆) characterized by the following properties:
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1. Non-negativity
Coupling is non-negative:

coupling(𝑚) ≥ 0, coupling(𝑀𝑆) ≥ 0 (10)

2. Null Value
The coupling is 0 if the set of inter-module relationships in a module (𝐸𝑅𝑚) or in a modular
system (𝐸𝑅) is empty:

𝐸𝑅𝑚 = ∅ ⇒ coupling(𝑚) = 0, 𝐸𝑅 = ∅ ⇒ coupling(𝑀𝑆) = 0 (11)

3. Monotonicity
Adding inter-module relationships does not decrease coupling. Let 𝑚′ be a module that results
from a module 𝑚 by adding inter-module relationships so that 𝐸𝑅𝑚 ⊆ 𝐸𝑅𝑚′ , and let 𝑀𝑆′ be a
modular system that results from a modular system 𝑀𝑆 containing 𝑚 by replacing 𝑚 with 𝑚′.
Then:

coupling(𝑚) ≤ coupling(𝑚′), coupling(𝑀𝑆) ≤ coupling(𝑀𝑆′) (12)

4. Merging of Modules
Merging two modules together does not increase coupling. Let 𝑚1,𝑚2 be two modules, let 𝑚′ be
the union of 𝑚1 and 𝑚2, and let 𝑀𝑆′ be a modular system that results from a modular system
𝑀𝑆 containing 𝑚1,𝑚2 by replacing both with 𝑚′. Then:

coupling(𝑚1) + coupling(𝑚2) ≥ coupling(𝑚′), coupling(𝑀𝑆) ≥ coupling(𝑀𝑆′) (13)

5. Disjoint Module Additivity
In the case of two unrelated modules being merged, the coupling remains unchanged. If there are
no relationships between 𝑚1 and 𝑚2, then:

coupling(𝑚1) + coupling(𝑚2) = coupling(𝑚′), coupling(𝑀𝑆) = coupling(𝑀𝑆′) (14)

Intuitively, the cohesion of a module describes how well the elements of the module are grouped
together. The cohesion of a modular system acts as a comprehensive measure for the cohesion of all its
modules. Formally, the cohesion of a module 𝑚 or modular system 𝑀𝑆 is a function cohesion(𝑚) or
cohesion(𝑀𝑆) characterized by the following properties:

1. Non-negativity and Normalization
Cohesion is non-negative and normalized:

cohesion(𝑚) ∈ [0, 1], cohesion(𝑀𝑆) ∈ [0, 1] (15)

2. Null Value
The cohesion is 0 if the set of intra-module relationships in a module (𝐼𝑅𝑚) or in a modular
system (𝐼𝑅) is empty:

𝐼𝑅𝑚 = ∅ ⇒ cohesion(𝑚) = 0, 𝐼𝑅 = ∅ ⇒ cohesion(𝑀𝑆) = 0 (16)

3. Monotonicity
Adding intra-module relationships does not decrease cohesion. Let 𝑚′ be a module that results
from a module 𝑚 by adding intra-module relationships so that 𝐼𝑅𝑚 ⊆ 𝐼𝑅𝑚′ , and let 𝑀𝑆′ be a
modular system that results from a modular system 𝑀𝑆 containing 𝑚 by replacing 𝑚 with 𝑚′.
Then:

cohesion(𝑚) ≤ cohesion(𝑚′), cohesion(𝑀𝑆) ≤ cohesion(𝑀𝑆′) (17)

7
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4. Cohesive Modules
Merging together unrelated modules does not increase cohesion. Let 𝑚1,𝑚2 be two modules
that have no relationships between them, i.e., 𝐸𝑅𝑚1 ∩ 𝐸𝑅𝑚2 = ∅, let 𝑚′ be the union of 𝑚1

and 𝑚2, and let 𝑀𝑆′ be a modular system that results from a modular system 𝑀𝑆 containing
𝑚1,𝑚2 by replacing both with 𝑚′. Then:

max(cohesion(𝑚1), cohesion(𝑚2)) ≥ cohesion(𝑚′), cohesion(𝑀𝑆) ≥ cohesion(𝑀𝑆′)
(18)

4. Problem Description

Given the incidence matrix ∆ of a P/T net, the net’s T-invariants are solutions of the homogenous
linear system ∆𝑥 = 0 and the P-invariants are solutions of ∆T𝑥 = 0. The computation of invariants
is based on solving a linear system 𝐴𝑥 = 0.

This is done through two steps. First, the matrix 𝐴 is reduced to row echelon form ̃︀𝐴. Then, the
reduced linear system ̃︀𝐴𝑥 = 0 is solved through backward substitution. Between these two steps, it is
the reduction to row echelon form that is more computationally expensive [26]. Therefore, our goal is
to exploit the inherent modular structure of modular P/T nets to improve this reduction over the direct
application of Gaussian elimination.

Further, for modular nets with synchronous channels, the net’s T-invariants can be combined from
local T-invariants through their coupling components [27]. Because of this, it isn’t necessary to reduce
∆ in its entirety. This is in contrast to P-invariants, where local invariants are preserved even when
considering the entire modular net. However, through the interactions between modules, further
P-invariants can emerge [8]. To compute these invariants, the net has to be considered in its entirety.
What is, therefore, required is a reduction of ∆T specifically.

5. Modular Gaussian Elimination

In this section we describe an algorithm for reducing an incidence matrix ∆T to row echelon form. We
will first give an overview of the entire algorithm. Then, by dividing the algorithm into three phases,
we will describe each part in more detail. Since we only consider the transposed incidence matrix, we
will refer to the transpose matrices without the superscript T from this point forward, keeping notation
simple. So, for example, instead of ∆T, 𝜆T, 𝛿T, we will just call them ∆, 𝜆, 𝛿.

Reduction of the incidence matrix ∆ can be divided into two parts. Firstly, the reduction of its block
diagonal part 𝜆, where care is taken to ensure properties that aid in the following part. And secondly,
reduction of the block border part 𝛿, using the already reduced 𝜆.

5.1. Overview

The modular Gaussian elimination, given in Algorithm 2, takes an incidence matrix ∆ consisting of an
internal incidence matrix 𝜆 and a synchronized incidence matrix 𝛿. As 𝜆 is a block diagonal matrix, ∆
is in SBBD form:

∆ =

(︂
𝜆
𝛿

)︂
=

⎛⎜⎜⎜⎜⎜⎜⎝
𝜆1 0 · · · 0

0 𝜆2
. . . ...

... . . . . . . 0
0 · · · 0 𝜆𝑘

𝛿1 𝛿2 · · · 𝛿𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ (19)

As the blocks in 𝜆 are independent of each other, the main challenge in reducing ∆ is introduced
by the interactions between modules contained in 𝛿. First, this independence is completely utilized
in Phase 1 to reduce just 𝜆. Then, it is used as much as possible in Phase 2 to eliminate entries in 𝛿.

8
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This is done by using rows from the just reduced 𝜆 to avoid interactions between modules. However,
in general, such an isolated approach doesn’t suffice so that some entries in 𝛿 remain. Finally, these
remaining entries are eliminated in Phase 3. This requires using rows from 𝛿 itself so that interactions
between modules are unavoidable. As a last step, simple row permutations are performed so that a
proper row echelon form is achieved.

Algorithm 2 Reduction of ∆ to row echelon form

1: Input: A matrix ∆ =

(︂
𝜆
𝛿

)︂
∈ Z|𝑇 |×|𝑃 | in SBBD form

2: Output: The matrix ̃︀∆ in row echelon form
3: procedure Modular Gaussian Elimination(𝐴)
4: // Phase 1: Reduction of block diagonal matrix 𝜆 = diag(𝜆1, 𝜆2, . . . , 𝜆𝑘)
5: for all 𝑖 ∈ [1, 𝑘] do
6: Transform 𝜆𝑖 to row echelon form ̃︀𝜆𝑖

7: Move leading entries to the main diagonal by swapping columns
8: end for

9: // Phase 2: Initial reduction of synchronization border
10: for all 𝑖 ∈ [1, 𝑘] do
11: for all 𝑗 ∈ [1, rank( ̃︀𝜆𝑖)] do
12: Use row 𝑗 of ̃︀𝜆𝑖 to eliminate all entries in column 𝑗 of 𝛿𝑖 forming 𝛿′

13: end for
14: end for
15: // Phase 3: Final reduction of synchronization border
16: Eliminate remaining entries in 𝛿′ transforming it to row echelon form ̃︀𝛿
17: Rearrange rows in

(︃̃︀𝜆̃︀𝛿
)︃

to get row echelon form ̃︀∆
18: end procedure

5.2. Phase 1: Reduction of block diagonal matrix

Due to the block diagonal structure of 𝜆, each of its blocks can be considered in isolation. We reduce each
individual block 𝜆𝑖 into row echelon form through Gaussian. Then, the resulting matrix is transformed
through column permutations to ensure that each leading entry lies along the main diagonal. We will
call the thusly transformed matrix ̃︀𝜆𝑖.

The same column permutations are also performed on 𝛿, keeping the columns between both parts
of ∆ consistent. Since these permutations are a simple rearrangement of the columns of 𝛿, we won’t
introduce a specific designator and will keep referring to it as 𝛿.

The permutations performed on each 𝜆𝑖 are illustrated by taking matrix 𝑅 in row echelon form as an
example. The leading entries in rows 3 and 4 do not lie on the main diagonal but are located in columns
5 and 7, respectively. To achieve the desired structure, columns 3 and 5 are swapped, as well as columns
4 and 7. The resulting matrix ̃︀𝑅 now has all its leading entries along its main diagonal.

𝑅 =

⎛⎜⎜⎜⎜⎝
1 5 2 1 0 5 4 0
0 3 2 3 2 1 0 2
0 0 0 0 1 4 3 1
0 0 0 0 0 0 2 4
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎠ −→ ̃︀𝑅 =

⎛⎜⎜⎜⎜⎝
1 5 0 4 2 5 1 0
0 3 2 0 2 1 3 2
0 0 1 3 0 4 0 1
0 0 0 2 0 0 0 4
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎠ (20)

Having reduced every block 𝜆𝑖 to ̃︀𝜆𝑖 in this way, we get the reduced ̃︀𝜆 as a block diagonal matrix

9
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with all individual reduced blocks along its diagonal:

̃︀𝜆 =

⎛⎜⎜⎜⎜⎝
̃︁𝜆1 0 · · · 0

0 ̃︁𝜆2
. . . ...

... . . . . . . 0

0 · · · 0 ̃︁𝜆𝑘

⎞⎟⎟⎟⎟⎠ (21)

Note that ̃︀𝜆 is only almost in row echelon form as it may contain rows with all entries equal to zero
not located at the bottom of the matrix. This is due to the zero rows of a diagonal block being located
higher than the entries of the following blocks. The following matrix illustrates this for the case 𝑘 = 2
with two 3× 2 submatrices: ⎛⎜⎜⎜⎜⎜⎜⎝

* * 0 0
0 * 0 0
0 0 0 0
0 0 * *
0 0 0 *
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (22)

These zero rows could be permuted to the bottom of the block diagonal matrix to achieve a proper
row echelon form. This form is, in a sense, equivalent to row echelon form with respect to simple row
permutations. Therefore, this form of reduction suffices to continue with the subsequent phase.

5.3. Phase 2: Initial reduction of synchronization border

After the reduction of 𝜆, the incidence matrix ∆ has been transformed to:

(︂̃︀𝜆
𝛿

)︂
=

⎛⎜⎜⎜⎜⎜⎜⎝

̃︁𝜆1 0 · · · 0

0 ̃︁𝜆2
. . . ...

... . . . . . . 0

0 · · · 0 ̃︁𝜆𝑘

𝛿1 𝛿2 · · · 𝛿𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ (23)

While the 𝜆 blocks were entirely independent of each other, the same does not apply to 𝛿, which
relates to the synchronization between modules. However, by using ̃︀𝜆𝑖 for eliminating entries in 𝛿𝑖, the
corresponding row additions only affect the columns of module 𝑖. In this way, independence between
modules can be further exploited.

Due to the construction of ̃︀𝜆𝑖, all its leading entries lie along its main diagonal and the rest of the
main diagonal is filled with zeros. Therefore, the number of these entries is equal to the rank of the
matrix rank( ̃︀𝜆𝑖). Each corresponding row allows elimination of all entries in 𝛿𝑖 located in the same
column as the leading entry. Through these eliminations, 𝛿𝑖 is transformed into 𝛿′𝑖 in which the first
rank( ̃︀𝜆𝑖) columns’ entries are all equal to zero.

(︂̃︀𝜆𝑖

𝛿𝑖

)︂
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

* * * * *
0 * * * *
0 0 * * *
0 0 0 0 0
0 0 0 0 0

* * * * *
* * * * *
* * * * *

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→

(︂̃︀𝜆𝑖

𝛿′𝑖

)︂
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

* * * * *
0 * * * *
0 0 * * *
0 0 0 0 0
0 0 0 0 0

0 0 0 * *
0 0 0 * *
0 0 0 * *

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(24)

10
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In the context of modular P/T nets, this process can be further simplified. The rows in 𝛿 are the effects
of the synchronized firing groups, which result from the combined effects of the participating external
transitions. If the entry for a specific column has been eliminated for each external transition, meaning
that it is then equal to 0, any way of combining such transitions will always yield an effect with that
specific entry also being equal to 0. Therefore, it suffices to reduce just these external transitions for
each module.

If the elimination in Phase 2 is done on the external transitions instead of the synchronized firing
groups, in which all variables already have a unique value assigned to them, the question arises how
to handle variables. One approach would be to just leave them as is and to perform the elimination
steps through symbolic computations. However, such computations are inherently more expensive
than numerical computations and, further, could make additional entries depend on the specific value
of the variable.

Indicating against the unconstrained use of variables is the fact that all external transitions of a module
can be replaced by a single transition if assigning negative values is permissible. This is illustrated in
Figure 3, where assignments of 𝑥 and 𝑦 with 1 and 3, 2 and 1, and 1 and 0 allow emulating each of the
three replaced transitions. It would then be unreasonable to expect that a problem of any size could be
reduced to just a constant size.

Figure 3: Three external transitions are replaced by a single external transition using variables

However, due to only partial reductions being performed in Phase 2, variables can be effectively
hidden from the numerical computations being performed. If a variable of a module 𝑖 is located in one
of the last |𝑃𝑖| − rank( ̃︀𝜆𝑖) columns, i.e., a column whose entries won’t be eliminated in Phase 2, then
the symbolic value of its entry at the end of the phase will be equal to the variable itself plus some
numerical value. As such, the variable can simply be treated as 0 during computations, and only in the
instantiation of the synchronized firing groups for Phase 3 will the variable be assigned its value. The
computed numerical value then simply serves as an offset in this assignment.

5.4. Phase 3: Final reduction of synchronization border

In the case that ̃︀𝜆𝑖 has rank lower than its number of columns, some entries in 𝛿𝑖 remain, as exemplified
in Equation (24). These entries require rows in 𝛿 itself to be used for elimination. However, such rows
are not contained to any specific module but instead include nonzero entries in columns belonging to
modules that participate in the synchronized firing group represented by that row.

Without presupposing anything about anything about the specific external transitions and participa-
tion of modules in synchronizations, all entries not yet eliminated could potentially be a nonzero entry.
As such, each block 𝛿′𝑖 consists of some initial zero columns followed by the remaining columns filled
with arbitrary entries. The following matrix exemplifies this structure for 𝛿′:

𝛿′ =
(︀
𝛿′1 𝛿′2 𝛿′3 · · · 𝛿′𝑘

)︀
=

⎛⎜⎜⎜⎜⎝
* * 0 0 * 0 0 0 0 * *
* * 0 0 * 0 0 0 0 * *
* * 0 0 * 0 0 · · · 0 0 * *
* * 0 0 * 0 0 0 0 * *
* * 0 0 * 0 0 0 0 * *

⎞⎟⎟⎟⎟⎠ (25)
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𝛿′ is then reduced to row echelon form by Gaussian elimination, transforming it into ̃︀𝛿 . Every row
of ̃︀𝛿 that was used to eliminate entries in the rows below it will contain entries that can’t be further
eliminated. When considering ∆ in its entirety, it is therefore not yet in row echelon form. However,
by either swapping these rows with zero rows of the ̃︀𝜆 , which columns its leading entry belongs to, or
by inserting it below ̃︀𝜆 if no such zero row exists, full row echelon form of ∆ is achieved.

6. Computation Example of the Algorithm

As an example to illustrate how the algorithm works, we will consider the modular net in Figure 4.
It consists of 4 modules that are synchronized by two synchronization rules, resulting in 4 possible
synchronized firing groups.

Figure 4: 4 modules synchronized by the synchronization rules {𝑟, 𝑡, 𝑢}𝑏 and {𝑞, 𝑠, 𝑢, 𝑢}𝑏

The net’s modular structure results in the following incidence matrix ∆:

Δ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 −1 0 0 0 0 0
−2 1 1 0 0 0 0 0

0 0 0 4 2 0 0 0
0 0 0 −2 −1 0 0 0

0 0 0 0 0 0 1 1
0 0 0 0 0 0 −1 1

0 −3 2 −2 −2 0 −3 −4
0 −3 2 0 0 1 −3 −4
−4 0 0 −2 0 0 −6 −8
−4 0 0 0 0 −1 −6 −8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(26)

The dashed lines indicate the individual modules, with vertical lines separating the places and horizontal
lines separating the internal transitions. The solid line divides ∆ into the internal incidence matrix 𝜆 in
the upper half and the synchronized incidence matrix 𝛿 in the lower half.

The modules are arranged in natural reading order. For example, the first block contains the internal
incidence matrix 𝜆1 of the upper left module. It consists of the effect of its internal transition t1 as the
first row and the effect of t2 as the second row. Notably, the third module doesn’t contain any internal
transitions so that its internal incidence matrix is empty.

The first and second rows in 𝛿 both result from the synchronization rule {𝑟, 𝑡, 𝑢}𝑏. Multiple external
transitions inscribed with the channel 𝑡 existing, one in the upper right and the other in the lower left
module, lead to a choice in synchronization. Consequently, two different synchronized firing groups

12
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are possible. In the first row, the transition from the upper right module is chosen, and in the second
row, the transition from the lower left. The third and fourth rows, resulting from {𝑞, 𝑠, 𝑢, 𝑢}𝑏, behave
similarly based on the choice regarding channel 𝑠.

In Phase 1 of the algorithm, each individual block 𝜆𝑖 is reduced:

𝜆1 =

(︂
2 1 −1
−2 1 1

)︂
, 𝜆2 =

(︂
4 2
−2 −1

)︂
, 𝜆4 =

(︂
1 1
−1 1

)︂
−→ ̃︁𝜆1 =

(︂
2 1 −1
0 2 0

)︂
,̃︁𝜆2 =

(︂
4 2
0 0

)︂
,̃︁𝜆4 =

(︂
1 1
0 2

)︂
(27)

Then, in Phase 2, each reduced ̃︀𝜆𝑖 is used to eliminate entries in the corresponding 𝛿𝑖. Instead of
doing this for every synchronized firing group, it suffices to do so for every external transition, as the
former are composed of the latter.

(︂̃︁𝜆1

𝛿1

)︂
=

⎛⎜⎜⎝
2 1 −1
0 2 0

0 −3 2
−4 0 0

⎞⎟⎟⎠,

(︂̃︁𝜆2

𝛿2

)︂
=

⎛⎜⎜⎝
4 2
0 0

−2 −2
−2 0

⎞⎟⎟⎠,

(︂̃︁𝜆3

𝛿3

)︂
=

(︃
1
−1

)︃
,

(︂̃︁𝜆4

𝛿4

)︂
=

⎛⎝ 1 1
0 2

−3 −4

⎞⎠ (28)

−→
(︂̃︁𝜆1

𝛿′1

)︂
=

⎛⎜⎜⎝
2 1 −1
0 2 0

0 0 2
0 0 −2

⎞⎟⎟⎠,

(︂̃︁𝜆2

𝛿′2

)︂
=

⎛⎜⎜⎝
4 2
0 0

0 −1
0 1

⎞⎟⎟⎠,

(︂̃︁𝜆3

𝛿′3

)︂
=

(︃
1
−1

)︃
,

(︂̃︁𝜆4

𝛿′4

)︂
=

⎛⎝1 1
0 2

0 0

⎞⎠ (29)

Combining these reduced external transitions according to the synchronization rules results in the
partially reduced 𝛿′. Finally, 𝛿′ is reduced to ̃︀𝛿 in Phase 3:

𝛿′ =

⎛⎜⎜⎝
0 0 2 0 −1 0 0 0
0 0 2 0 0 1 0 0
0 0 −2 0 1 0 0 0
0 0 −2 0 0 −1 0 0

⎞⎟⎟⎠ −→ ̃︀𝛿 =

⎛⎜⎜⎝
0 0 2 0 −1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎠ (30)

Together, ̃︀𝜆 and ̃︀𝛿 are then almost in row echelon form so that the rows of ̃︀𝛿 simply have to be
inserted in ̃︀𝜆 : ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 −1 0 0 0 0 0
0 2 0 0 0 0 0 0

0 0 0 4 2 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 2

0 0 2 0 −1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 −1 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 −1 0 0 0
0 0 0 4 2 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(31)

As can be seen, due to 𝑟𝑎𝑛𝑘(̃︁𝜆1) = 2 being smaller than |𝑃1| = 3, a row with a nonzero entry in the
third column remains in ̃︀𝛿 , requiring insertion. At the same time,̃︁𝜆1 having more columns than rows
means that there is space below it in regard to the row echelon form. This space, then, allows the row
from ̃︀𝛿 to be inserted as the third row.

With 𝑟𝑎𝑛𝑘(̃︁𝜆2) = 1 < |𝑃2| = 2, the same applies, resulting in the second row of ̃︀𝛿 being inserted
below̃︁𝜆2. In this case, a zero row has to be swapped to the bottom of the entire matrix in return.

While 𝑟𝑎𝑛𝑘(̃︁𝜆3) = 0 < |𝑃3| = 1 implies that there is a third row in ̃︀𝛿 to be expected, this row
happened to be eliminated in the process of reducing 𝛿′ to ̃︀𝛿 . This fact also means that an invariant
exists in the whole modular net. Specifically, backward substitution yields the following P-invariant:

(︀
−1 0 −2 2 −4 4 0 0

)︀T (32)

7. Analysis

In this section, we will shortly justify that Algorithm 2 works and terminates correctly. Then, we will
analyse the runtime of each of the algorithm’s phases before giving a combined overview.
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7.1. Correctness and Termination

The Algorithm 2 works mostly like normal Gaussian elimination by using elementary row operations. It
deviates by changing the order in which entries are eliminated and by performing column permutations
in Phase 1.

The change in order results from performing operations in the outlined phases instead of simply
going row by row. However, this order serves to describe the algorithm more clearly and to ensure
constraints on the row permutations performed. These constraints do not limit the correctness of the
elimination, as they do not prevent the choice of pivot elements if no other alternatives exist. Such a
choice is just postponed to Phase 3.

Using column permutation is unproblematic, as it does not interfere with the row permutations
necessary for selecting pivot elements. Further, they correspond to changing the order of variables in
the linear system. When subsequently solving the linear system, the column permutations simply have
to be performed in reverse order on the solution vectors to get the correct arrangements of variables.

Overall, therefore, the correctness and termination of Algorithm 2 follow directly from that of the
Gaussian elimination.

7.2. Runtime of Phase 1: Reduction of block diagonal matrix

When only considering the internal elements of the individual modules, it is to be expected that
computations involving the entire modular net can be reduced to addressing each module individually.
Just that is what we find for the reduction of the block diagonal matrix to row echelon form. Each block
𝜆𝑖 is reduced separately so that the runtime of reducing 𝜆 doesn’t depend on the modular net’s size as a
whole but on the individual sizes of its modules.

Since the algorithm doesn’t depend on the specific method used for reducing each 𝜆𝑖 to row echelon
form, we simply assume it to be an arbitrary runtime 𝑇 (|𝑃𝑖|, |𝑇𝑖|) depending on the corresponding
module’s number of places and transitions. In the simplest case, this would be Gaussian elimination
with 𝑇 (|𝑃𝑖|, |𝑇𝑖|) = 𝒪

(︀
max(|𝑃𝑖|, |𝑇𝑖|)min(|𝑃𝑖|, |𝑇𝑖|)2

)︀
[28]. But more efficient algorithms exist, such

as Strassen’s algorithm with 𝑇 (𝑛) = 𝒪
(︀
𝑛log2(7)

)︀
≈ 𝒪

(︀
𝑛2.8

)︀
for 𝑛× 𝑛 matrices [29, 30], methods for

significant differences in |𝑃𝑖| and |𝑇𝑖| [31, 32], or potential optimizations based on the specific sparse
structure of the module. This way, it follows for the combined runtime of all modules:

𝒪

(︃
𝑘∑︁

𝑖=1

𝑇 (|𝑃𝑖|, |𝑇𝑖|)

)︃
(33)

Even though the sum of maximum terms can be higher than the maximum of the entire net, i.e.,∑︀𝑘
𝑖=1max(|𝑃𝑖|, |𝑇𝑖|) ≥ max(|𝑃 |, |𝑇 |), in terms of time complexity, the more influential minimum

terms are lower, i.e.,
∑︀𝑘

𝑖=1min(|𝑃𝑖|, |𝑇𝑖|) ≤ min(|𝑃 |, |𝑇 |). It follows then that modules that deviate
strongly from being square matrices are beneficial for the block diagonal matrix reduction. In the
following, it is therefore justified to assume 𝑛𝑖 = |𝑃𝑖| = |𝑇𝑖| and let 𝑛 = 𝑛1+𝑛2+ · · ·+𝑛𝑘 . Expressing
the runtime as a polynomial 𝑛𝜔 with 𝜔 ≥ 2 leads to the following inequality:

𝑘∑︁
𝑖=1

𝑛𝜔
𝑖 =

⎛⎝(︃ 𝑘∑︁
𝑖=1

|𝑛𝑖|𝜔
)︃ 1

𝜔

⎞⎠𝜔

= (‖(𝑛1, 𝑛2, · · · , 𝑛𝑘)‖𝜔)𝜔 ≤ (‖(𝑛1, 𝑛2, · · · , 𝑛𝑘)‖1)𝜔 =

(︃
𝑘∑︁

𝑖=1

|𝑛𝑖|

)︃𝜔

= 𝑛𝜔

(34)

The inequality follows from the relations between different 𝑝-norms, where ‖𝑥‖𝑞 ≤ ‖𝑥‖𝑝 for all
1 ≤ 𝑝 ≤ 𝑞 < ∞ [33]. This confirms the intuitive notion that it is indeed more efficient to solve 𝑘
independent subproblems than to solve the entire problem at once. Moreover, the inequality is strict if
there is more than one non-empty module.
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However, in terms of asymptotic runtime, the size of the largest module dominates. This leads to the
first condition for good modularization, requiring modules to all be of roughly the same size 𝑛𝑠 so that
𝑛𝑠 ≈ 𝑛/𝑘. In that case, the overall runtime simplifies to:

𝒪

(︃
𝑘∑︁

𝑖=1

𝑛𝜔
𝑖

)︃
≈ 𝒪 (𝑘𝑛𝜔

𝑠 ) = 𝒪
(︁
𝑘(1−𝜔)𝑛𝜔

)︁
(35)

Consequently, if the number of modules 𝑘 grows with the overall size of the system, a better asymptotic
runtime is achieved. For naive Gaussian elimination, where 𝜔 = 3, this translates to an improvement
by a factor of 1

𝑘2
. The realistic best case is achieved if the modules are of constant size so that 𝑘 ∈ 𝒪 (𝑛).

Irrespective of the actual algorithm used as a subroutine, the block diagonal matrix would then be
reduced to row echelon form in time 𝒪 (𝑛).

Beyond these runtime improvements, it is notable that the reduction of the individual blocks is
fully parallelizable and that modules with the same incidence matrix only require the reduction to be
computed once instead of for each of those modules.

7.3. Runtime of Phase 2: Initial reduction of synchronization border

In total, the reduction of 𝛿 to 𝛿′ involves the elimination of all entries in the first rank( ̃︀𝜆𝑖) columns in
𝛿𝑖 for each 𝑖. And for each column, the number of entries to be eliminated is equal to the number of
rows in 𝛿𝑖, which is equal to |𝐺|. Each elimination of an entry in 𝛿𝑖 using the 𝑗-th row from ̃︀𝜆 involves
adding a multiple of a row with |𝑃𝑖| − 𝑗 entries. Consequently, the reduction in its entirety requires a
number of operations in the order of

𝒪

(︃
𝑘∑︁

𝑖=1

rank( ̃︀𝜆𝑖)|𝐺||𝑃𝑖|

)︃
(36)

However, because each elimination step only affects the entries in 𝛿𝑖, its rows contain duplicate
entries if external transitions participate in more than just one synchronization each. Therefore, instead
of |𝐺|, the effective number of rows becomes |𝑇𝑒| and the runtime is reduced to

𝒪

(︃
𝑘∑︁

𝑖=1

rank( ̃︀𝜆𝑖)|𝑇𝑒||𝑃𝑖|

)︃
(37)

In both cases, the runtime depends on the size of the modules by way of the number of their respective
places. Note that rank( ̃︀𝜆𝑖) also depends on this notion of size as it can only take on values from 1 to
|𝑃𝑖|. Therefore, the same considerations concerning module size apply here as for the block diagonal
matrix. For modules of roughly the same size (|𝑃𝑠| ≈ |𝑃 |/𝑘), the runtime simplifies to:

𝒪

(︃
𝑘∑︁

𝑖=1

rank( ̃︀𝜆𝑖)|𝑇𝑒||𝑃𝑖|

)︃
≈ 𝒪

(︃
|𝑇𝑒||𝑃𝑠|2

𝑘∑︁
𝑖=1

rank( ̃︀𝜆𝑖)

|𝑃𝑖|

)︃
= 𝒪

(︃
1

𝑘2
|𝑇𝑒||𝑃 |2

𝑘∑︁
𝑖=1

rank( ̃︀𝜆𝑖)

|𝑃𝑖|

)︃
(38)

Because rank( ̃︀𝜆𝑖) can only take on values from 1 to |𝑃𝑖|, the summands can be upwardly bounded
by 1, leading to the following simplification:

𝒪

(︃
1

𝑘2
|𝑇𝑒||𝑃 |2

𝑘∑︁
𝑖=1

1

)︃
= 𝒪

(︂
1

𝑘
|𝑇𝑒||𝑃 |2

)︂
(39)

It follows then that for modules of constant size (𝑘 ∈ 𝒪 (|𝑃 |)), the reduction of 𝛿 to 𝛿′ is performed in
time 𝒪 (|𝑇𝑒||𝑃 |). Just as for the block diagonal matrix, this reduction is fully parallelizable, and modules
that have the same external transitions in addition to having the same internal incidence matrix don’t
require separate computations.
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7.4. Runtime of Phase 3: Final reduction of synchronization border

Through the initial reduction, from the original |𝑃𝑖| columns in 𝛿′𝑖, rank( ̃︀𝜆𝑖) have had all their entries
eliminated. Excluding columns with only zeros, the effective number of columns 𝑐 is therefore:

𝑐 =

𝑘∑︁
𝑖=1

(|𝑃𝑖| − rank( ̃︀𝜆𝑖)) = |𝑃 | − rank( ̃︀𝜆𝑖) = |𝑃 | − rank(𝜆) (40)

Consequently, 𝛿′ is effectively a |𝐺| × 𝑐 matrix. As was the case for the blocks in 𝜆, the subsequent
reduction of 𝛿′ can be performed by any algorithm for reducing matrices to row echelon. In the case of
naive Gaussian elimination, this leads to the following runtime:

𝒪
(︀
max(𝑐, |𝐺|)min(𝑐, |𝐺|)2

)︀
(41)

This means that these computations, in contrast to the previous ones, cannot be considered as
independent computations for each module. The runtime of the entire algorithm is therefore dominated
by the reduction from 𝛿′ to ̃︀𝛿 . What is gained by the previous two reductions is therefore an effective
reduction in rows and columns. The overall |𝑇 ∖ 𝑇𝑒| + |𝐺| rows were reduced to just the |𝐺| rows
corresponding to the interactions between modules, and the |𝑃 | columns were reduced to just a fraction
depending on the rank of the internal incidence matrix.

7.5. Overall runtime

Both Phase 1 and Phase 2 make use of the modular structure in such a way that their runtimes are
significantly improved if the modular net is divided into modules of appropriate size. Additionally, Phase
2 is influenced by the size of the interfaces between modules, measured by |𝐺| or more specifically
by |𝑇𝑒|. On the other hand, Phase 3 doesn’t benefit in the same way so that its runtime grows
asymptotically the most with the overall size of the modular net. Besides the number of places, the
runtime also increases with the size of the interfaces between modules |𝐺|. To some degree these costly
elimination steps, which involve the coupling components between modules, can be alleviated by work
done in Phase 2, exploiting the independence between modules. The extent of this improvement results
from the rank of the internal incidence matrix rank(𝜆).

These measures directly influence the overall runtime, and as such, they serve as indicators for how
the modularity of a given modular net aids in its analysis. In this sense, they determine whether a
modular net has good or bad modularity.

8. Coupling & Cohesion in Modular P/T Nets

The runtime analysis in Section 7 yielded formal expressions for assessing the modularity of a modular
P/T net. We aim to put these indicators into the proper context by classifying what kind of measures
they are. Specifically, we will express them as measures for coupling and cohesion.

However, we will first reconsider the underlying framework for describing the modular system. In
[15], the elements of a modular system are connected by a binary relation. In the context of P/T nets, it
is natural to let both places and transitions be elements in this sense. These elements are related to
each other if they are connected by the flow relation 𝐹 .

While such an approach can most definitely be taken [21], we find that in the context of modularization
through synchronous channels, it is more appropriate to have just the places as elements and the
transitions serve as relationships between these elements. Instead of the modular system being described
by a directed graph, it is then a hypergraph with places as vertices and transitions as hyperedges.
In this way, the modularization through synchronous channels corresponds to a separation of the
elements, with just the relationships between these elements serving as connections between modules.
The categorization of relationships into intra-module 𝐼𝑅 and inter-module 𝐸𝑅 follows naturally.
Transitions that are only connected to places of a single module are intra-module relationships, and all
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other transitions are inter-module relationships. With this basis, we can now formally define coupling
and cohesion.

Both the runtime of Phase 2, as given in Equation (36), and Phase 3, given in Equation (41), depend
on the number of synchronized firing groups |𝐺|. On this basis, we formulate the first definition of
coupling.

Definition 4. The coupling of a P/T net module 𝑠 is equal to the number of synchronized firing groups in

which the module participates:

cou(𝑠) = |{𝑔 ∈ 𝐺 | ∃𝑡 ∈ 𝑇𝑒𝑠 : 𝑡 ∈ 𝑔}| (42)

The coupling of a Ptc-system net 𝒮𝒩 is equal to the number of its synchronized firing groups:

cou(𝒮𝒩 ) = |𝐺| (43)

Each synchronized firing group of a Ptc-system net corresponds to a transition in its equivalent P/T
net connecting places belonging to multiple modules [8]. Therefore, the firing groups directly relate
to the inter-module relationships 𝐸𝑅. Consequently, it follows that cou satisfies the properties for a
coupling measure as outlined in Section 3.5.

As performing the reduction in Phase 2 leads to the runtime given in Equation (37), it depends on
the number of external transitions |𝑇𝑒| instead of |𝐺|. Therefore, another measure of coupling based on
the Ptc-system net’s external transitions arises naturally.

Definition 5. The coupling of a P/T net module 𝑠 is equal to the number of its external transitions, and

the coupling of a Ptc-system net 𝒮𝒩 is equal to the number of its external transitions:

coue(𝑠) = |𝑇𝑒𝑠 |, coue(𝒮𝒩 ) = |𝑇𝑒| (44)

The external transitions directly relate to the synchronized firing groups and, therefore, to the
inter-module relationships 𝐸𝑅. Again, it follows that coue does indeed satisfy the required properties.

Finally, the extent to which entries in 𝛿′ can be eliminated in Phase 2 instead of Phase 3 captures an
important aspect of modularity in Ptc-system nets. Indeed, the expression of the remaining columns
given in Equation (40) leads to the following measure of cohesion based on the rank of the internal
incidence matrix.

Definition 6. The cohesion of a P/T net module 𝑠 is equal to the number of internal transitions, whose

effect vectors are linearly independent, divided by the number of its places:

coh(𝑠) =
𝑟𝑎𝑛𝑘(𝜆𝑠)

|𝑃𝑠|
(45)

The cohesion of a Ptc-system net 𝒮𝒩 is equal to the number of internal transitions, whose effect vectors

are linearly independent, divided by the number of all places:

coh(𝒮𝒩 ) =
𝑟𝑎𝑛𝑘(𝜆)

|𝑃 |
(46)

In this case, the relation between the rank of the internal incidence matrix and what would be
expected of a cohesion measure isn’t as direct as for the coupling measures. Therefore, we will show
that the expected properties as outlined in Section 3.5 are indeed satisfied.

1. Non-negativity and Normalization
As the rank of a matrix is non-negative and bounded by the minimum between the number of
rows and the number of columns, coh is non-negative and normalized:

coh(𝑚) ∈ [0, 1], coh(𝑀𝑆) ∈ [0, 1] (47)
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2. Null Value
There being no intra-module relationships in a module means that the module doesn’t contain
any internal transitions. In that case the rank of the internal incidence matrix is equal to 0 for
each module and for the entire modular net. Therefore, it follows:

𝐼𝑅𝑚 = ∅ ⇒ coh(𝑚) = 0, 𝐼𝑅 = ∅ ⇒ coh(𝑀𝑆) = 0 (48)

3. Monotonicity
Intramodule relationships can only be added by adding further internal transitions. If the effect of
such transitions is a linear combination of already existing transitions, the rank stays the same. If
it isn’t a linear combination, the rank increases. Consequently, for a module 𝑚′ that results from
a module 𝑚 by adding intra-module relationships so that 𝐼𝑅𝑚 ⊆ 𝐼𝑅𝑚′ and the corresponding
modular systems 𝑀𝑆′ (containing 𝑚′) and 𝑀𝑆 (containing 𝑚), it follows that:

coh(𝑚) ≤ coh(𝑚′), coh(𝑀𝑆) ≤ coh(𝑀𝑆′) (49)

4. Cohesive Modules
After merging two unrelated modules, 𝑚1 and𝑚2, into the combined𝑚′, their combined incidence
matrix is a block diagonal matrix with the individual incidence matrices as blocks. In this form,
it can be directly seen that the rows/columns corresponding to 𝑚1 are necessarily linearly
independent of the rows/columns corresponding to 𝑚2. Consequently, the rank of the combined
internal incidence matrix is equal to the sum of the ranks of the individual internal incidence
matrices:

rank(𝜆𝑚′) = rank(𝜆𝑚1) + rank(𝜆𝑚2) (50)

For the cohesion follows then:

coh(𝑚′) =
rank(𝜆𝑚1) + rank(𝜆𝑚2)

|𝑃𝑚1 |+ |𝑃𝑚2 |
≤ max

(︂
rank(𝜆𝑚1)

|𝑃𝑚1 |
,
rank(𝜆𝑚2)

|𝑃𝑚2 |

)︂
= max (coh(𝑚1), coh(𝑚2))

(51)

Considering the modular system as a whole, both the rank of the internal incidence matrix as
well as the number of places stay the same. Therefore, the modular system 𝑀𝑆 containing 𝑚1

and 𝑚2 has the same cohesion as the modular system 𝑀𝑆′ in which 𝑚1 and 𝑚2 are replaced by
𝑚′:

coh(𝑀𝑆) = coh(𝑀𝑆′) (52)

In particular, the desired inequality of coh(𝑀𝑆) ≥ coh(𝑀𝑆′) holds.

Interestingly, this cohesion measure inversely relates to the number of internal P-invariants. By the
rank-nullity theorem [23], the dimension of the solution space of a homogenous linear system with
matrix 𝐴 is equal to the difference between the dimension of the domain and the rank of 𝐴. In terms
of internal P-invariants, this is the difference between the number of places |𝑃 | and the rank of the
internal incidence matrix rank𝜆. It follows then that the cohesion coh is higher if there are fewer
internal P-invariants.

9. Transforming Bordered Block Diagonal Matrices into Modular Nets

In Section 8, measures of coupling and cohesion were defined based on properties of matrices that
allow more efficient computation of solutions to homogenous linear systems as outlined in Section 7. It
follows, then, that this parallel of good modularity between SBBD matrices and modular nets lends
itself to considering them as the same kind of optimization problem.
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Just as the inherent structure of modular P/T nets translates directly to the structure of the transposed
incidence matrix, forming an SBBD matrix [8], the reverse is true as well. If the transposed incidence
matrix of a non-modular P/T net is arranged so that it is in SBBD form, then the columns of each block
along the diagonal constitute a set of places. Each of these sets is non-empty and disjoint from all other
blocks, and all sets together encompass all places. Therefore, they together form a partition of the net’s
places. This is illustrated by the following example, in which each set of places corresponding to a block
along the diagonal constitutes a part in the partition:

ΔT =

⎛⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4
1 −1 0 0
−2 1 0 0
0 0 1 1
0 0 −1 1
3 −1 −1 −2

⎞⎟⎟⎟⎟⎠ −→ 𝒫 = {{𝑝1, 𝑝2}, {𝑝3, 𝑝4}} (53)

Such a partition is sufficient for deducing a modular structure for the initially unmodularized net
[34]. It follows then that every procedure for converting an arbitrary matrix to SBBD form directly
translates to the automatic modularization of P/T nets.

A matrix structure similar to the SBBD form is the doubly-bordered block diagonal (DBBD) structure,
which also allows a border along the rightmost block column of the matrix. In the context of modular
P/T nets, this additional border would, in the most direct way, translate to inter-module interactions
between places in addition to the interactions between transitions. Therefore, the BDDB structure could
be interpreted as a modular net allowing both synchronous channels and shared places.

But the BDDB structure is also relevant in modular P/T nets that use only synchronous channels.
Specifically, it is the special case of symmetric matrices in DBBD form that is of interest. When
considering the symmetric preTpre + postTpost in DBBD form, its blocks along the diagonal
translate to internal transitions, while its borders translate to synchronized firing groups. Therefore,
permuting matrices into BDDB form is also analogous to modularization of P/T nets. This is illustrated
by the following example:

preTpre+ postTpost =

⎛⎜⎜⎜⎜⎜⎝

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5
𝑡1 4 2 0 0 2
𝑡2 2 2 0 0 1

𝑡3 0 0 1 5 3
𝑡4 0 0 5 2 2

𝑡5 2 1 3 2 1

⎞⎟⎟⎟⎟⎟⎠ −→
𝑋1,2 = ∙𝑡1 ∪ 𝑡∙1 ∪ ∙𝑡2 ∪ 𝑡∙2

𝑋3,4 = ∙𝑡3 ∪ 𝑡∙3 ∪ ∙𝑡4 ∪ 𝑡∙4

𝒫 = {𝑋1,2, 𝑋3,4, 𝑃 ∖ (𝑋1,2 ∪𝑋3,4)}
(54)

The transitions corresponding to the blocks in the diagonal would then be internal transitions. In
this case, 𝑡1 and 𝑡2 would be internal transitions of the module given by the set of places 𝑋1,2. The
same applies to 𝑡3, 𝑡4 and the module given by 𝑋3,4. The remaining places 𝑃 ∖ (𝑋1,2 ∪𝑋3,4) are only
connected to external transitions, which would be 𝑡5. The rank of the blocks in preTpre+postTpost
then relates back to the rank of the blocks in ∆T [35, 36].

Permuting matrices into SBBD or DBBD form is a well-researched topic [25, 37, 38, 39, 24]. The
common goal of these transformations of minimizing the border size while keeping the size of the
diagonal blocks balanced [38] also optimizes the modular structure of the corresponding net. The
underlying problem, formulated as the partitioning of hypergraphs, was already examined in the
context of P/T net modularization in [34]. However, the extensive literature could inform more specific
approaches to this problem, enabling more efficient modularization of P/T nets.

10. Discussion

The analysis of the modular Gaussian elimination naturally leads to notions of coupling and cohesion.
They allow coupling and cohesion in modular P/T nets to be formally defined. Further, by being based
on properties that directly influence the runtime of computing P-invariants, loose coupling and high
cohesion have been formally demonstrated to be desirable properties of modular P/T nets. Therefore,
we believe it is justified to use these measures to judge the quality of modularity. They could be used
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to inform decisions in designing modular systems or serve in determining the quality of outputs of
automatic modularization procedures.

It is also conceivable to use them in modularization procedures directly. For example, a probabilistic
algorithm could output many different possible ways of splitting a net into modules. It would then be
required to determine which of these potential modularizations is in some sense the best, which could
be done through our coupling and cohesion measures.

Another interesting aspect of the reduction in Phase 1 is that having multiple modules that only
partially exhibit the same internal behavior is already beneficial. This would justify using the modular-
ization based on replication proposed in [34] to also find partial replications.

One aspect that wasn’t further examined in this paper is that the structure of the synchronized
incidence matrix 𝛿 could be further utilized. In practice, not every module will be participating in every
synchronized firing group, so that many entries in 𝛿 could be zeros. However, instead of specifically
addressing this through modifications in the modular Gaussian elimination, it might be more prudent
to instead arrange the matrix in a recursive bordered block diagonal form [40, 37]. To describe the
corresponding modular net, a recursive definition would be appropriate, in which not only P/T nets but
also Ptc-system nets themselves would act as potential modules.

Lastly, it is worth mentioning that the use of the modular Gaussian elimination isn’t solely confined
to the computation of P-invariants. For example, just the step of reducing an incidence matrix to row
echelon form is enough to identify redundant information, reducing memory resources required for
state space construction [41].

11. Conclusion

An algorithm for performing Gaussian elimination in a modular manner has been presented and
analyzed. It aims to exploit the independence between modules resulting from the structure of modular
nets as much as possible. Its analysis focuses on how the specifics of this structure influence the
algorithm’s runtime.

The parts of the algorithm that benefit from the independence (Phase 1 and Phase 2) achieve
asymptotic improvements if the number of modules depends on the net’s overall number of places and
transitions as opposed to having a fixed number of modules regardless of the net’s overall size. This is
in particular the case if modules are of roughly the same constant size.

The size of the interface between modules influences the algorithm’s runtime of parts, in which the
terms corresponding to interactions between modules are considered (Phase 2 and Phase 3). The
specific ways of measuring this interface size, either through the external transitions in the modules or
the resulting possible synchronization, naturally serve as formal measures of coupling in modular P/T
nets.

The extent to which the computation concerning interactions between modules can be performed in
a manner that keeps modules independent is determined by the rank of the internal incidence matrix.
This rank, then, constitutes a formal measure of cohesion in modular P/T nets.

These measures of coupling and cohesion are thus based on characteristics of modular nets that are
demonstrably beneficial in the verification of system properties. Due to parallels in the good modularity
in this sense for both matrices and modular nets, it naturally arises that procedures for transforming
matrices into modular structures and the modularization of P/T nets aim to optimize the same goal.
Specifically, procedures for permuting matrices into either SBBD or DBBD form can be directly used to
transform a P/T net into a modular P/T net.

Further investigations, as discussed in the previous section, are quite promising. The concept of
modules is highly relevant to the design of system models and analysis. The role of the concept of nets-
within-nets is central for the design of complex interacting systems. Therefore, the topic of coupling
and cohesion will be one of our research interests.
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