CEUR-WS.org/Vol-3998/paper02.pdf

C

CEUR

Workshop
Proceedings

Modelling and Analysis of Self-Adaptive Systems using
Petri Nets: A Robot Kitchen Case Study

Finn Wellershaus?!, Michael Kohler-BuSmeier! and Jan Sudeikat?

"Hamburg University of Applied Sciences, Berliner Tor 7, D-20099 Hamburg, Germany

Abstract

Current cyber-physical systems (CPS) consist of connected sub-systems. Recently, flexibility and adaptivity gain
more and more attention in application areas, e.g. in the smart factory context. Multi-Agent Systems (MAS)
are used to model CPS sub-systems and their interaction. Recent research focuses on the self-organization
of these CPS-MAS. In MAS the concept of an organization (and consequently that of self-organization) is a
research topic on its own. Within our research, we address the modeling and the analysis of these self-organizing
MAS-Organizations. As part of this paper, we demonstrate the usefulness of formal modeling techniques (here:
high-level Petri Nets) to obtain qualitative and quantitative insights.

Here, a robot kitchen is used as a metaphor for a flexible production scenario: We have recipes as production
jobs, cooking robots with tools as interacting CPS, a conveyor belt as a transportation system for the dishes under
preparation and so on. The scenario provides several sources of adaptivity: the robot cooks may decide to change
the priority of jobs due to changing external signals (prices); the kitchen may run out of stock; a specialized
robot may become a bottleneck and other robots change their tools to support it. Our model is implemented
in RENEW, an interactive Petri net simulator that supports nets-within-nets, which is a formalism defined to
support self-modification in a direct manner. The graphical model deepens the understanding of the application
domain (the real world) among the project partners; the formal model allows for qualitative analysis, for example
the absence of deadlocks, as well as quantitative aspects like finishing time and throughput.

Keywords
Self-Adaptation, MAPE-loop, Cyber Physical Systems, Multi-Agent Systems, Petri Nets

1. Introduction

Current cyber-physical systems (CPS) [1] consist of connected sub-systems. Recently, flexibility and
adaptivity [2] gain more and more attention in application areas, for example in the smart factory
context [3]. Multi-Agent Systems (MAS) [4] are used to model CPS sub-systems and their interaction.
Recent research focuses on the self-organization of these CPS-MAS, usually supported by a MAPE-loop
pattern [5]. In MAS the concept of an organization (and, consequently, that of self-organization) is
a research topic on its own [6]. In our research we address the modeling [7] and the analysis [8] of
these self-organizing MAS-Organizations. In this paper we demonstrate the usefulness of the proposed
Petri net model to obtain qualitative and quantitative insights. It a probabilistic selection mechanism to
execute transitions as part of the simulator.

Multi-robot systems and cyber-physical system applications consist of a multitude of separate objects.
Dynamic environments challenge static systems and require dynamic changes during runtime. This
can be done externally, or within the system itself. These self-adaptive systems provide a more organic
and direct approach to dealing with systems in heterogeneous and dynamic environments.

Here, a robot kitchen is used as a metaphor for a flexible production scenario: We have recipes
as production jobs, cooking robots with tools as interacting CPS, a conveyor belt as a transportation
system for the dishes under preparation and so on. Robots act as simple actors within the system

PNSE’25, International Workshop on Petri Nets and Software Engineering, 2025

& janne.wellershaus@haw-hamburg.de (F. Wellershaus); michael koehler-bussmeier@haw-hamburg.de

(M. Kohler-Bu3meier); jan.sudeikat@haw-hamburg.de (J. Sudeikat)

& hitps://www.haw-hamburg.de/michael-koehler-bussmeier (M. Khler-Bufimeier);
https://www.haw-hamburg.de/jan-sudeikat (J. Sudeikat)

@ 0009-0006-8729-038X (F. Wellershaus); 0000-0002-3074-4145 (M. Kéhler-Buimeier); 0009-0007-7871-9006 (J. Sudeikat)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

24


mailto:janne.wellershaus@haw-hamburg.de
mailto:michael.koehler-bussmeier@haw-hamburg.de
mailto:jan.sudeikat@haw-hamburg.de
https://www.haw-hamburg.de/michael-koehler-bussmeier
https://www.haw-hamburg.de/jan-sudeikat
https://orcid.org/0009-0006-8729-038X
https://orcid.org/0000-0002-3074-4145
https://orcid.org/0009-0007-7871-9006
https://creativecommons.org/licenses/by/4.0

Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

and interact with their environment by creating dishes and passing intermediate products to other
specialized robots.

This scenario is rather static and completely depends on the initial configuration. Here, we consider
extensions to make it more dynamic and adaptive. The scenario provides several sources of adaptivity:
the robot cooks may decide to change the priority of jobs due to changing external signals (prices); the
kitchen may run out of stock; a specialized robot may become a bottleneck and other robots change
their tools to support it. The robot kitchen case study can be used as environment to answer more
general problems of flexible production scenarios. In this paper this is shown by integrating a MAPE
loop to enable self-adaptivity. This shows how the model could be used to us with general insights
about costs and benefits of adaptation for flexible production systems in general.

The primary goal is to make a Petri net based modeling system that can be extended to answer
more general problems from flexible production scenarios. To achieve this, a generic robot-kitchen
model is developed. This includes the necessary infrastructure to simulate that type of environment.
By implementing a MAPE [5] loop, which is an established approach for self-adaptive systems, the
applicability of this model to observe challenges and successes for production scenarios is shown. One
expected outcome of this adaptivity is that it should improve the utilization of the available resources
(robots) and improve delivery times. To achieve this, the basic model is extended and a simple MAPE
loop is implemented and evaluated to what extent the adaptivity has a tangible effect on the system’s
performance. The loop monitors the utilization of each capability. If one exceeds predefined limits, it
triggers a reconfiguration, which causes robots to change their tools to support another robot with a
high demand capability.

Petri nets provide a modeling approach for distributed systems. Especially colored nets as well as
nets-within-nets enable simulating complex systems. Our model is implemented in RENEW [9], an
interactive Petri net simulator that supports nets-within-nets [10], which is a formalism defined to
support self-modification in a direct manner. The graphical model deepens the understanding of the
application domain (the real world) among the project partners; the formal model allows for qualitative
analysis (like the absence of deadlocks) and for quantitative aspects like finishing time or throughput.

This paper is structured as follows: The Section 2 describes the structure of the basic model as well
as some initial design decisions. In Section 3 the conceptional overview is given, and the extensions
required for the MAPE loop, as well as the implemented components of the loop are described. Section 4
talks about the simulation, its results as well as some observations made during integrating the new
components. The last Section 5 summarizes the findings and highlights some possible further areas of
interest and possible extension points.

2. Simulation Scenario and Environment

The basic scenario is a group of robots that are used as kitchen robots to create food based on the
recipes provided. The idea of using a kitchen as a scenario for multi-agent interaction is inspired by
the bakery example in [11]. The robots are organized in a circle around a conveyor belt over which
plates with the intermediate food are passed around and worked on.

2.1. The Net Model

Our robot kitchen is modelled using the simulator RENEW [9] in the version 4.1!. There are multiple
independent nets that are connected via channels or passed as “nets within nets” [10]. The model
makes use of Coloured Petri Nets (CPN) [12] as well as the timed extensions. The high-level features of
RENEW allow to model a complex and large system more easily [13]. Using the timed net formalism, it

'"RENEW is freely available from http://renew.de/. The sources of the model are available at https://github.com/finnWellers/
publication-cps-petri-nets. Our Petri net model of this paper is based on a model initally develeopped by Helen Haase and
Finn Wellershaus.

25


http://renew.de/
https://github.com/finnWellers/publication-cps-petri-nets
https://github.com/finnWellers/publication-cps-petri-nets

Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

is possible to simulate the (temporal) performance and behaviour of a system, which is of interest for
the model of a physical robot kitchen.

The base-simulation consists of n = 6 dedicated robot stations. One is only used for delivering the
finished meals and another one is responsible for assembling dishes from different previously cooked
steps. The others are interchangeable, but configured to provide different services. Plates with the
orders, the intermediate prepared food and the recipe IDs are passed around using a conveyor belt. The
position of all orders of a specific recipe are stored within a single recipe net instance. This was done to
make potential global planning and analysis easier. Part of the conceptual idea is that not the actual
recipes are passed around, just an information which recipe is used. All the stations and belt positions
are explicitly modelled for easier readability (a simplified variant of the Petri net is given in Fig. 1). In
the following, the important aspects of the model are described.

Counter

jobs
insert order at i (=instancej_\0f recipes) deliver order at i
Y

N

N

Robot Station #i-1 S controler, Robot Station #i+
AT T T T T T T N ~ <~ mscheduler T T T N
‘ o
O

|
N

NN §
out _ ~ I

|

[

|

|

|

[

|

|

|

R /
~ __in o ' . Robot Station #i or
- N Ve i N 0 -
- P LI SEN -

|
|

|

|

‘ A P

I incoming plates / ,bypass station N outgoing plates
|

|

|

|

I

=[dish,jobRecipe] Il =[dish,jobRecipe]

at robot i

leave
robot station

enter
robot statio|

o

refill ingredients - waist dispose
change tool
. J

Figure 1: A Robot Station within the Kitchen

Robot Stations The robot stations describe the part that integrates the robot nets within the kitchen
net, Figure 7. Based on the information from the scheduler, a synchronisation takes place at the robot
station to take the correct plates with food and recipes. Furthermore, the robot station takes care of
providing the needed ingredients for the robot to work and reserves the robot for the needed time to
finish a step in the recipe. This time depends on the step and, as technical information, is provided
by the robot. This enables a more complex time calculation. After this, the station calls the scheduler
to send the created food to its next processing step and passes it to the belt. The last robot station is
only responsible for delivering the created meals. In case of the assembly robot, the robot station also
contains the logic for dish assembly.

Assembly The assembly is not like the other generic robot steps. Instead, it is used to combine a set
of intermediate dishes to a whole dish. For this, it collects all the required partial dishes as lists. The
first part of the actual assembly loop is the logic to determine whether all the dishes are present. For
this a separate net is used to calculate the length of a list. This is used to determine whether the right
amount of required dishes is available. The number is retrieved from the recipe. Once everything is
available and a lock is acquired, the robot net can be called to assemble the dish. One challenge here is
that the recipe requires the ingredients in a specific order. In other stations this is solved via the flexible
arc in RENEW. With these arcs, it is possible to annotate the arc with a list of tokens and the arc is

26



Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

responsible to pick the tokens, if available, from the connected place and provide a list of them to the
connected transition. This makes the interaction between tokens and lists of tokens much easier within
the net. An order-lock prevents mixing the intermediate products for a dish assembly.

The robot net describes some hardware and physical behaviour of the actual robots. It differentiates
between tools and capabilities. While tools describe which physical tools, like knives, a cooking station
or peeler a robot has access to, the capabilities are inferred from those and describe, which actions
a robot can actually perform. The tools are mostly internal information, while the capabilities are
more relevant for outside components like the scheduler. It can track, which tool is selected and which
capabilities it provides, as well as the time required to perform each capability.

Scheduler The schedule exists within the kitchen net and is responsible for two tasks. First, it
generates all the required plates for intermediate dishes based on the requested recipe. Because of this,
it is used for initial assigning of new orders, as well as for scheduling new steps. Second, it assigns each
plate to a fitting robot station. This way, parallel steps within the recipe can actually be processed in
parallel. For this mapping, a list of available capabilities and their respective robots is used, which is
stored within the kitchen.

Recipe The recipes are separate nets and contain all the required steps to create a specific dish. They
are created once in the beginning of the simulation and kept as nets within the kitchen net. Each
step within a recipe can use an arbitrary combination of basic ingredients and other intermediate
dishes while requiring a specific capability. These are used by the robot station to perform the step.
Furthermore, each step contains information, which capability is required to perform the step. This
information is used by the scheduler to assign the appropriate robots. To enable easy parallel execution,
multiple entry points to a recipe are provided whenever it contains steps that do not depend on each
other as can be seen in Figure A. These entry points are used by the scheduler to create enough plates
for each intermediate dish. The first recipe is for fried tofu with cooked beans and mashed potatoes and
the second is for filled baked peppers. The respective capability usage and total duration spent for each
capability can be seen in Table 1. The duration is not specified in the recipe, but in the robot, since it is
dependent on the hardware how long it takes to finish the steps. For cooking, frying and baking it is
assumed the robot is able to recognize when a dish is cooked. The model could also be extended to
combine robot specific durations with time information from the recipe.

Table 1
Frequency and Duration of the Capabilities in the Recipes.

Fried Tofu Filled pepper
‘ Total Total
Capability || Duration || Freq. \ Duration || Freq. | Duration
combine 2 1 2 1 2
assemble 2 1 2 1 2
cook 15 2 30 2 30
fry 10 1 0] o -
bake 20 0 - 1 20
mash 6 1 6 0 -
cut 5 3 15 3 15
peel 4 1 4 0 -

The base model has several configurable options. Important are the durations for the capabilities,
as described in Table 1. There is a quite a big difference between some of the durations, for example
between the combine and the bake steps. This affects the behavior of the kitchen and the robots
workload and enable changes for runtime adaption by influencing the demand for different tools over
the course of time. Furthermore, new recipe nets could be added.

27



Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

2.2. Adaption Options

There are different adaption options, like changing the scheduler to change the assignment of plates to
robots or the general policies. On a more permanent level, the conveyor belt itself can be changed to a
more fitting pattern and new kitchen stations can be added. As a step between these two approaches,
one can also enable to robots to change between active tool sets. This last approach is the one applied
within this paper. To enable this, several actions in the different MAPE-loop steps need to get added.

Monitor Within the monitoring step, the workload of robots is monitored and once configurable
thresholds are surpassed, analyse steps are triggered.

1. IF currentCapabilities < requiredCapabilities THEN analysisRequired()
2. IF unfinishedOperations > threshold THEN analysisRequired()

Analyse In the analysis step, the results from the monitoring are evaluated and if applicable planning
actions for a reconfiguration are triggered.

1. IF robotUsage[capability] > upperThreshold[capability]
THEN planRequired()

2. IF robotUsage[capability] < upperThreshold[capability]
THEN discardMonitorEvent ()

Plan Within the planning step, candidates for reconfiguration are identified and assigned. There
are two cases covered: Firstly, if there is a robot that is underutilized and secondly, if there is no
underutilized robot.

1. findUnterutilizedRobot (robot) ;planReconfigure(robot,tool);
executeRequired(robot, tool)

2. oneOfMultipleRobots(robot,capability) ;planReconfigure(robot,newTool);
executeRequired(robot,newTool)

Execute The execute step is responsible for ensuring the robots finish their old operations and are
blocked during the process of reconfiguration. This is necessary to prevent it getting tasks it potentially
can't fulfill anymore after switching tools.

1.removeromCapabilityRegister(robot); block(robot);
performReconfiguration(robot, newTool); free(robot);
addToCapabilityRegister(robot,newTool)

3. Integrating MAPE

Since focusing on all high-level self-adaption goals is out of scope of this paper, there will be a focus
on a few specific ones. A basic form of self-awareness is necessary for decision-making. Additionally,
global parameters control the system’s goals. The major level aspects focused on in this paper are
self-optimization and self-healing. Both are integrated using the lens of robot utilization. The system
should discover when single robots are overworked and if possible react and improve the situation.
In case no robot can provide a needed capability, the system should react and if possible reconfigure
another robot. These aspects should not only work once, but continuously during the models runtime.
The assumption is that by optimizing for utilization and enabling reconfiguration to that end, the system
performs better and due to the monitoring and reconfiguration can deal with problems the robots have.

28



Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

3.1. Conceptual Overview

Conceptually, the realizations of the different stages are separated into “tasks” that can be computed.
There are different tasks to monitor, analyse, plan and execute actions. These tasks can communicate
with each other using places to trigger the next step, if required. In addition, there are minor monitoring
tasks, which are used to monitor and manage the places used for communication between the major
tasks. The system is continuously monitored on a general level to discover potential issues. If one is
discovered, the analysis tasks are scheduled to validate or discard the discovered issue. Based on the
result of the analysis, available robots can decide to take action, which happens within the plan task
and the actual reconfiguration is triggered within the execution task. The planned approach can be
contextualized within a classification for adaptivity [14], since changing the behaviour and capabilities
of robots based on the system state is planned, a basic form of compositional adaption takes place. Since
the base model is not folded and has shared places for all robots, a complete reconfiguration of the
robots positions can not take place.

The monitoring keeps track of the combined rate of unfinished jobs for each of the robots and based
on a global threshold triggers further analysis. In the analysis process, a more detailed analysis of
the situation takes place. Instead of only looking at the combined rate of unfinished jobs, it evaluates
the rate of unfinished jobs per capability to be able to make capability based decisions and discover
struggling capabilities. In the basic version, global and fixed thresholds are used for the different
capabilities. However, these could alternatively be adapted dynamically. For the plans, robots should
initially validate their ability to support a needed capability. The major deciding factor is either if
a robot’s own utilization is below a pre-configured minimum utilization, or it is not the only robot
supporting its original capabilities. Within the execution phase, this plan is applied.

This model does not include a function to rate itself yet. This might be of particular interest for
dynamical optimisation and improvement of the currently static parameters.

3.2. Extensions Required for Runtime Adaption

To realize these specific goals required for MAPE, a few extensions within the model were added:

General The first addition to the general kitchen model was to enable changing the list of robots
and their capabilities at runtime. In addition, counters were added to keep track of how many robots
are available for each capability and tool. Another counter was introduced to keep track of robot level
scheduled and finished executions. At the end of the delivery robot, a new check is added to provide
information whether all meals are delivered, which means the simulation is done. While in the default
model a number of orders are pushed directly into this system, this was changed. The goal is to simulate
a continuous list of orders arriving during the runtime of the system, contrary to all orders entering
within one time step. For this, several new order transitions were introduced, that are supposed to feed
new orders to the system in configured time intervals.

Robot The robots are organized within the main net as part of robot stations, see Figure 7. Within
these stations, there are robot nets that encapsulate behavior and capabilities. To enable reconfiguration
of robots at runtime, the old net had to be extended to cover the specifics for a MAPE loop. The former
structure is used to provide information whether a given reconfiguration is possible. The currently
selected tool is stored in a new place that also has to be initialized. The duration of using capabilities
was extracted to separate transitions and can be retrieved using channels. Part of the new transition that
uses capabilities is a mapping for tools and transitions. This is used to match required capabilities to
the currently active tool, as can be seen in Figure A. Two counters were introduced to keep track of the
absolute use of capabilities, differentiating between scheduled and finished executions, and their ratio.
This information is required by the MAPE loop for decision-making. A simple blocking mechanism
is included to block it from being targeted by the scheduler. To enable runtime reconfiguration, a
new transition responsible for switching tools was introduced. It is available via a channel for other

29



Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

nets to call. Time passes when switching. The exact moment is split into the time to remove the old
tool and equip the new tool. This information can also be queried from outside the net for external
decision-making. After switching tools, the robot is automatically unblocked to directly be available for

scheduling.

Scheduler The scheduler was extended to react if there exist no robots with a required capability to
enable the monitoring of this aspect. Since it is not possible to know if a transition did not fire, counters
are used to monitor the current number of robots for a given capability. When the counter reaches zero,
it means there is no robot with the corresponding tool. In case this is discovered, the scheduler notifies
one of the monitoring tasks and the scheduled job waits until it can be scheduled.

For the MAPE loop, the nets were organized based on their position in the loop. All nets are colored
nets that model all the robots within a single net. In a physical system, the checks would most likely
happen as part of the robot stations. For readability, networks were organized separately, using virtual
places. Acceptable lower and upper limits for unfinished jobs can now be configured. There are counters
and limits for all the tasks part of the loop, to prevent excessive accumulation of potentially outdated
scheduled actions. The limits can be configured via parameters. The whole MAPE loop starts after an
initial waiting period and can be toggled off as part of the initialization.

3.3. The MAPE Loop

There is one major monitor task, as can be seen in the second net in Figure 2.

Monitor: Missing robots Monitor: Unfinished operations

this:read Count erDiffid, dify;
this:isSimulaticnDenefisDonel;
guardilisCanel;
guardienabledy;

Required Capabilities Counter

Unfinished Operations
heck Frequency
guard{id != &}

thisrreadCeunterDiffi2,stuffy;

. ERENCY T g
this:delay2y Unfinished Operations
guard{analysisCounter < 300}

required capabhilities
11, capabi|ity, 1000]

... quard{rapatilityl.equals(capability2):

Plan uired _ .. 50
(@duration ‘SE/AUration:  Anz ¥5I5 - aAnalysis Required
C = required Counter

Figure 2: Two of the monitor actions. The first checks for missing robots and the other monitors the absolute
utilization.

Periodically, the difference between scheduled and finished executions for each robot are checked.
Once a configurable global threshold is surpassed, an analysis job is scheduled. It checks if some of the
tasks can be discarded because they don't fit the analysis requirements. This task only runs while there
are still unfinished meals. When selecting the threshold, it is important to select a value that is at least
equal to the lowest configured upper limit for unfinished jobs, otherwise those will get ignored. This
only works on robot-level statistics and does not yet check the more detailed, capability based statistics.
The parameters passed on are the ID of the potentially problematic robot and the monitored difference.

Furthermore, there are multiple minor monitoring tasks:

+ Missing robots: Triggers every time the scheduler discovers a capability that is required, but
not served by any of the robots. While it would be possible to enforce that at least one robot
is available for each capability, this has two problems. On the one hand, it severely limits the
possible actions a system with a limited number of robots can take. If there are five tools and
five robots, each robot would need to always keep that tool and would not be able to switch. On
the other hand, it is not needed. When a robot has no tasks anymore, because the capability is
not needed anymore, it makes sense to be able to switch to another capability that is still in high
demand. With the used solution, missing robots are tolerated, as long as they are not required.

30



Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

« Check “Execute Required” place: Monitors the place between plan and execute where the recon-
figurations are scheduled. The first task checks if a requested reconfiguration actually already
took place. The second task removes executions for blocked robots. A blocked robot is already in
the process of either reconfiguration or working through its jobs with disabled scheduling to get
below the limit.

« Remove duplicates: Monitors the scheduling places for the execution and planning of the recon-
figuration to remove duplicate reconfigurations.

There are two analysis tasks. The first checks if a reported difference between the number of
scheduled and finished jobs of a robot is not only above the general limit, but also its capability specific
limitations. This can be seen in Figure 3. Differentiating between capabilities makes sense, since some

lanalysis: limit invalid Analysis: limit valid

thisisSimulationDone(isDone);

Upper
guard(isDone); c p:'l't
robotreadDiffCounter{capability, diff); . .apa ity
guard(diff < limit); Upper robotreadDiffCounter(capahility, diff); Limit (per 100t}
robotreadCounter(capability, num, *scheduler;  Capability guard(diff = limit); N ) @)
guard(num = 0); Limit (per 100t} guard(actionCounter<200);  [capabiliby-Tmit]
.Z!] T, ToETHI e Fa BTy, TT] é _. o] analysisCeunter
check robots check robots _
Botd, capability, diff] 4

[rebetld, absCif]@frequency
w1

Analysis discarded Counter
Analysis Cleanup
frequency

Analysis required

Figure 3: The analyse actions implemented. The first discards monitoring events in case the tool specific
thresholds aren‘t actually broken. The second one triggers a planning action in case the events actually require
an action.

capabilities need more time than others, which results in different expected values. If this is found to be
true, a plan task is scheduled. The new parameters are the ID of the problematic robot, the problematic
capability and its difference. The other task is responsible for cleaning up false positives. After a
configurable delay, it checks if the capability limits are actually below their respective thresholds, as
can be seen in Figure 3. This can happen if a robot has a tool that provides multiple capabilities and has
a small amount of unfinished jobs for each capability, which in sum are larger than the general limit,
but in detail are fine.

For the planning stage, there are also two major tasks. The nets can be seen in Figure 4. Robots can
check if they are valid candidates for a reconfiguration. This entails a check whether the robot has the
required tools available and is not already in the reconfiguration process the other validity requirement
depends on the task: Based on the first task, robots are only valid if their own current workload is
below a configurable limit. The second task is specialized for scenarios where a switch is required, but
all available robots are already fully occupied. If multiple robots share one capability, one of those is
selected. This is based on the assumption that it is better to serve different capabilities than to serve
some fast and others not at all. If a robot is considered as a valid candidate for reconfiguration, it is
passed to the execution task. To relieve the other problematic robot, it is blocked from scheduling and
reconfiguration until its rate of unfinished jobs is again below the limit.

The execution happens within a single task. The implementation in RENEW can be seen in Figure 5.
To prevent different reconfigurations from infringing on each other, a lock is used which limits the
parallel executions. In the beginning, the robot scheduled for reconfiguration is removed from the list
of available robots for scheduling and is blocked. This prevents it from receiving new jobs. Once it has
finished its previously assigned jobs, it performs the reconfiguration, unblocks and is registered with
its new capabilities. There is a synchronization between monitoring, planning and execution: Once a
robot performs a reconfiguration and is blocked, it is exempt from planning or monitoring, since it is in
a state of transition. Similarly, a robot that is currently in the process of planning or being monitored,

31



Finn Wellershaus et al. CEUR Workshop Proceedings

24-36

overloaded robot.

Figure 4: The two plan actions implemented. The first plan acts in case there is an underutilized robot. The

second plan checks for multiple robots sharing the same capabilities and chooses one of them to reinforce the

is not able to reconfigure at the same time. Once the reconfiguration took place, the robot is again

Plan: robot below limit exists

Lower
Capability

Plan Required

IprablamRiabat, newCap i

problemRgbe
Robot: Irabat, rbatld] atig

Eu B

T

wtl

Irabatld, activaTaal,

rr i pahili
guardilisElockedy
newlaalactieCapabiliy

robet:getActiveTeolactiveTool) LOE InewiCapabilities

robot:capabilityForT coliactiveT ool, active Capabilityl:

robeticapabilityFerT colinewT cel, newCapabilityl:
pability equals(rapahilit

guard{lactiveT ool equalsnewTocll);

robeot readDiffCounte active Capability, loralDifly

guard{lecalDiff < mink

quard{x < 2003

|mbotld, actieThal, newlan Lk Capailicy]
mekTillEmptyproblemRebet, newCapability)

|rabatld, agpvaTaal

initial commit a‘:'xnan'i:L
quarie =i newloal,
quard{orebotTd == robatld);

guardpedl; |rabatlfl,
Execute Required

akCapabjiitd
current execute

- current
St Execute Require .
current execute q Execute Required execute
Plan: multiple Robots Lower

Plan Required Capability

Plan Cou
Limit (pe
Iprable mRabat,

newCapafiliy i PN

Irabat, rabatld]
guard{robotldl= problemRobot);
quard{robetld 1= B}

guard{robetld != 5
robettisBlecked{isBlerkedy
guard{lisElocked) .
robot:getActiveToolartive T ool DI
rebet:capabilityForT eckactiveT col,
activeCapability);
robot:capabil ityFerT colinewT col,
newCapabilityl;
guardfactiveCapability. equalsicapabilityl);
guard{lactiveT ool equals{newT ocl});

newTaalaKiCapabilit]
ant execute

| aactfeTaal, =
this:numRobets{activeTeol, nRebets); al: 2, 188 aneyizal current
quard{nRobots = 1% execute
quardix < 2003 akCapsbilty]
this:blotkTillEmpty{preblemRebet,
newCapability};

Execute Required

Execute Required EXxecute Required

available to perform the other steps of the loop and the lock is released.

Figure 5: The MAPE execute step. The robots gets removed via a channel from the registry of available robots,

Execute

Execute Require
[robotld, activeToel, npwT ool eldCapability]

thisremovieRohot (robotld, oldCapahility);
I robot:hlock);

opat, robotld]
[rebot, robetId, a{iuetbgl, newT ool]

Robots
)
Io ked robot
[rebot, fobotld, i
Exefute lock artiveTod), newTeol] Iritt, robotly]

Irobotld—actineTonl, R ewT ool]
robot:switchTool(newTool);

re-THE |Dg
thisisetRobotTool{robotId, newTool);
current Execute

blocked to not receive any new jobs or be subject to other adaptions and finally reconfigured.

32



Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

4. Evaluation

When determining the available tools for the robots, there are a few limitations within the original
simulation environment. In the simulation there are only six robots. One is basic and only used for
delivery. Another one is specialized for assembly. While that wouldn’t prevent it from switching tools,
no other robot can adequately perform the assembly and that way the assembly needs to wait for
everything to be finished, it requires the scheduler. While it might be possible to finish partial assembles
in theory, it is not possible in the current model. Because of this, there are actually only four robots
available for reconfiguration. Since the main kitchen loop network with the different stations and
positions is explicitly modelled, it is not that easy to just add multiple new robots. With five required
tools and, depending on the required configuration, four or five robots, there is not much room for
reconfiguration. Because of this, the four free robots are configured to have all possible tools available,
to maximize the options for reconfiguration. Each robot has a different tool selected at the beginning of
the simulation to have full initial coverage of all tools. Since the assembly could not be shared between
robots, the corresponding capability was excluded from the reconfiguration.

Table 2
Values for desired system state limits.

capability | lower limit | upper limit

combine 5 8 Table 3

assemble - - Average results after 5 simulations.

cook 2 13 First Meal finished || Last Meal Finished
fry 2 10 Default | MAPE Default | MAPE
bake 2 10 Steps 412 330 1800 1350
mash 4 18

cut 4 18

peel 4 20

One observation during the development of the different possible MAPE tasks was that new tasks
could introduce new challenges and problems within the system. As an example, switching tools can
help to reduce the load, but at the same time it can leave capabilities not covered. This in turn requires
dedicated monitoring and handling, not only within the loop, but also in other components like the
scheduler that need to be able to handle those system states.

For the simulation, 40 orders were served. This proved to already provide sufficient orders to make
adaption beneficial. The values used for the system utilization limits, which can trigger reconfiguration,
are described in Table 2. These can be configured based on the requirements. Since there is no
reconfiguration for the assembly capability, there is no need for a limit.

During the simulation it can be observed that as soon as the loop starts, the robots 1 or 3 reconfigure
once their jobs are finished and switch to the cooking station to support robot 4. Once the next batches
of orders arrive, the robots switch back again to provide the temporarily not covered capabilities peel
and mash. Switches happen mostly between cooking and peeling or mashing and cutting and peeling
or mashing, which is not surprising when considering the total time needed on those activities based
on the selected recipes.

An interesting behaviour that could be observed was that robot 1 switches to the cooking station,
finishes a few jobs and directly switches again to the knife to help cutting. This rather rapid rate of
reconfiguration might not always be desirable. To limit it, one could add a form of cool-down until
a robot is again available for reconfiguration, instead of directly returning it to the pool of available
robots.

While the robots can focus on their work, it is currently not possible to switch to robots that stopped
working, if not other robots are under their workload limit or share capabilities due to a lack of a
matching planning algorithm. In that case the un-supported jobs have to wait until enough other jobs
have finished, which comes at the expense of the total duration. Since only a basic scheduler is used, no
rescheduling is possible at the moment. Because of this, a completely broken robot would result in a

33



Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

loss of recipes, which makes it impossible for dishes to complete. The use of the MAPE loop resulted in
a speed-up of the creation of the dishes, as can be seen in Table 3. However, this comes at the cost of
computation time. Due to the additional computations required by the MAPE processes, the simulation
time to evaluate almost doubles when using the MAPE loop.

5. Conclusion

In this paper a simple MAPE loop for a Petri net based kitchen simulation was developed and modelled.
The kitchen serves as a metaphor for flexible production systems in general. When comparing the
simulation results without a loop with those obtained when enabling it, it was found that enabling the
system to adapt resulted in faster delivery of the meals, at the cost of higher computational requirements.
Due to the monitoring of the system, a unavailable robot can be discovered and replaced by another
robot taking its place.

However, it was found that only adding a MAPE loop without significantly extending the scheduler to
take care of rescheduling of jobs and a mechanism to memorize jobs is not enough to achieve complete
independence of failing robots. Furthermore, it was found that even simple self-adaptive processes can
have possibly unintended effects on the system and pose a challenge to its overall design. To fully make
use of self-adaptive systems and their benefits, the whole system needs to be adapted to those ends.
This highlights the need for a systematic approach to introducing MAPE loops, with multiple iterations
to enable the system to properly deal with the desired level of self-adaptability.

The used model currently only supports a basic configuration and leaves room for improvement on
that end, especially in regard to prioritized selection of reconfiguration candidates, considering setup
times and enabling more significant changes during runtime. Extending the model with more complex
scheduling capabilities could also be of interest. On a more abstract level, it would be interesting to have
a closer look at the process of adding MAPE loops to systems and which methodological approaches it
would require or benefit from. It was already shown that introducing self-adaptability can introduce
new system states and require changes in the system to properly handle those. A systematic approach
to dealing with those challenges could be beneficial.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

[1] E.R. Griffor, C. Greer, D. A. Wollman, M. J. Burns, Framework for cyber-physical systems: volume
1, overview, National Institute of Standards and Technology (2017). doi:10.6028/nist.sp.
1500-201.

[2] B. H. C. Cheng, others, Software engineering for self-adaptive systems: A research roadmap, in:
B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), Software Engineering for
Self-Adaptive Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 1-26.

[3] P.Leitao, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, A. W. Colombo, Smart agents in industrial
cyber-physical systems, Proceedings of the IEEE 104 (2016) 1086—1101.

[4] P.Leitao, S. Karnouskos, Industrial Agents: Emerging Applications of Software Agents in Industry,
1st ed., Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 2015.

[5] D. Weyns, An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering
Perspective, John Wiley & Sons Ltd, 2020.

[6] V. Dignum, J. Padget, Multiagent organizations, in: G. Weiss (Ed.), Multiagent Systems, 2nd ed.,
Intelligent Robotics; Autonomous Agents Series, MIT Press, 2013, pp. 51-98.

[7] J. Sudeikat, M. Kéhler-BuSimeier, On combining domain modeling and organizational modeling
for developing adaptive cyber-physical systems, in: ICAART’22, 2022.

34


http://dx.doi.org/10.6028/nist.sp.1500-201
http://dx.doi.org/10.6028/nist.sp.1500-201

Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

(8]

[10]

M. Kéhler-Bufimeier, J. Sudeikat, Balance vs. contingency: Adaption measures for organizational
multi-agent systems, in: K. Jander, L. Braubach, C. Badica (Eds.), 15th International Symposium on
Intelligent Distributed Computing (IDC’22), volume 1089 of Studies in Computational Intelligence,
Springer-Verlag, 2023, pp. 224-233.

O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher, M. Kohler, D. Moldt, H. Rolke, R. Valk, An
extensible editor and simulation engine for Petri nets: Renew, in: J. Cortadella, W. Reisig (Eds.),
International Conference on Application and Theory of Petri Nets 2004, volume 3099 of Lecture
Notes in Computer Science, Springer-Verlag, 2004, pp. 484 — 493.

R. Valk, Object Petri nets: Using the nets-within-nets paradigm, in: J. Desel, W. Reisig, G. Rozenberg
(Eds.), Advanced Course on Petri Nets 2003, volume 3098 of Lecture Notes in Computer Science,
Springer-Verlag, 2003, pp. 819-8438.

O. Boissier, R. H. Bordini, J. Hiibner, A. Ricci, Multi-Agent Oriented Programming Programming
Multi-Agent Systems Using JaCaMo, The MIT Press, 2020.

K. Jensen, Coloured Petri nets: basic concepts, analysis methods and practical use, vol. 2, Springer-
Verlag, Berlin, Heidelberg, 1995.

V. Gehlot, From Petri Nets to Colored Petri Nets: A tutorial introduction to nets based formalism
for modeling and simulation, in: 2019 Winter Simulation Conference (WSC), 2019, pp. 1519-1533.
doi:10.1109/WSC40007.2019.9004691.

K. Geihs, Selbst-adaptive Software, Informatik-Spektrum 31 (2008) 133-145. URL: https://doi.org/
10.1007/s00287-007-0198-9. doi:10.1007 /s00287-007-0198-9.

35


http://dx.doi.org/10.1109/WSC40007.2019.9004691
https://doi.org/10.1007/s00287-007-0198-9
https://doi.org/10.1007/s00287-007-0198-9
http://dx.doi.org/10.1007/s00287-007-0198-9

Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

A. Petri Nets

recipe:doSte p{orderld, entryld, capability,
{ingredients, preparenFoot, sutputs);
rabat:g et Capabilityltapability, durationy

capability, ‘one’)

ingrediems

lowdarld, enteld, rcipeld. e

his:schedule3, (1, ordeld,
start schedule ntry]n, retipelt, outputs]y
s

cipeld.autpu

lorderld, ented,
his:senedules, (1, orde/ld,

el utaut] Checkall finished

recipes entrylt, recipeld, outpdts]y {sSimulationDonegisDonel;
recipe:doSte plorderld, entryld, cApabil ity - start Schedule isDone = orders == finished;
(ingredients, greparedFeat], ot station 3 Number of Number finished
robot:getCapabilitylcapatility/durationy
Crders Check Done Meals

thistinereastCapabilityCounte fistationld,
capability, ‘done)

[—
" "

scheduleDonegs, [ererid-e
retipeld, robotld, prepared|

Schedule Done
scheduleDonets, orderld, entryld,
FECRHE, £efaild. preparedFood]

rabaty, preparedFagd@l
guardrabotls |

abotld, prepared

Jarderld, frd,
cipald, prappiedFacd]

lowderld, entrd. recield

iz, eciveld,
del  Place 3 .

rabatld.prapa

robot station[z  gustirebeti 1= 2)
[ F

rabatfetCapatility(capatiity, durationy
bhis ificreaseCapabilityCounterstationld,
.o

ake plate
capability, ‘done’y;  loi

uard(fetotld =

ceppedFact

Schedule Done

o, ecipeld,
scheduleDone2, [orde Td, entrylgpas
retipeld, robotlt, preparedFocd]

larde i 2ntrfd. mpeld,

— e e e gt e Start Schedule
ot this:shedules, [1, orderld,

ingredients, preparedFood), outputs}; storage i

Tobot: get Capabilityitapability,duraticn):

this:increaseCapablityCounter|stationld,

Eapability, *done:
. s%ra

entryld, recipeld, outputs])

“rice”;"potato”; "salt’; “water’; "Repper”; "beans"; “tofu

move| move
() re?es 0 E:Larﬂ(mbwﬂﬂ =0

iquard{robotld 1= 13

take
LT T
rabat, pf paredfaacl hatld peled

[orderig, entryld,
recipeld, robotld, preparedFood)}

ipeld,

cipes ot g
P S s et Y]
2, gt prhedoad)

iy, recipald,
paredRand] @t

this:schedule(2, [1, orderld,

DUryId, recipeld, outputsly lanterld, emtnld,recipeld

batd, praparedrog

assembling

lardgyid, ntrld,
10 dFaad]

sthedule DoneT,[ arderld, entryld,

lardend]entrid,
retipeld, robotld, preparedFood]} 1 dFoad]

robot 3

redipe:getCapabllitworderld,

guard{robotld |= 6} ‘guard{robotld |= 5} entnld ble');

logeT
racipeld, pr faredFaad]

1 Irecipeld racipe]

W Skt lowdaild, entyld, recpeld, prapared Factl]

a1 .
Schedule Done fetatald, mbugtan recipes

Istftiandd, mbat]
{stheduleDonedt, orderd, entryld, |‘—"=€"ﬁ“*a
recipe:qetCapabilitylrde 1d, entryl:

eCipeld, robotld, preparedFecd])
‘ass

robot station 6

farde e ntyid,
racipeld, rabatd, praparadfasd]

lardend, entyld, recips), prapaiedFaad]

lorderd, entyld, recipeld,
i, prepRdRaad] retipe:doSte plorterld, entryld, cagability

ingredients, preparedFaod), outputs}
et durgt

recipe doSteplorderd, entryld,
“geliver’, food, outputsl;

% this:increaseCapabilityCounter

<stationld, tapability, *dene

{Number finished Meals

thistincreaseCapabilityCounterstationId, Jawderld,entyld,recipeld, repared fhod]

capability, ‘dene’y

lardend, entedd, redipeld, autputs}iduraian

lardz i, e nendd, fecipeld, autpus]
his:schedulefs, (1, orderld,

Start Schedule entryld, recipeld, outputs])

Figure 6: Overview of the kitchen net with robot stations and conveyor belt with places. Monitoring endpoints,
initialization and the details of assembly and the scheduler are omitted, but can be found in the repository.

36



Finn Wellershaus et al. CEUR Workshop Proceedings 24-36

recipe:dostep{orderld, entryld, capability,
[ingredients, preparedFocd], cutputs);
robotgetCapabilit capakbility, duration);
thisincreaseCapabilityCounter{ stationId,

capability, " lgg ingredients

storage

[orderld, entryId

I’EI:ipS this:schedule{d, [1, orderId,

entrydd, recipeld, cutputs]);
robot station 3 Start Schedule

Eripeld, cutputs]

Figure 7: Overview of a robot station within the kitchen net.

37



Finn Wellershaus et al. CEUR Workshop Proceedings

24-36

Initializaticn
entry paint

ini{orderId)  entry point

output={"peeled potatoes';
lardar

lardend
:doSteplorderld, entryld,"cut”,
[{.{"peeled potatoes}], output)

output={"cut potatoes"};

larderldzntryld]

cut potatoes cooked beans

larderld zntrld]

doStepiorderld, entryld, "cook”, cookQ

[{"salt", "water'}, {"cut potatoes], output);
output={"cooked potatoes,

lawderd

lardard,|

lawdarld,
:doStep{orderld, entryld, "masn’,
[ {"conked potatoes], output);

output={"mashed pntﬂtnes"};lum ad

larda
finished meal

larda|

deliver

lardefid 2]
rentryNumker{3] _
entry point
Recipe
entry point 1 entry point 2 entry point3
larde ddjentryld] Jarderldantryld] lardarld Entryld]
doStepiorderld, entryld, "peel eelf) sdoSteplorderld, entryld, "cut, :doSteplorderld, entryld, "cut",
H'potate"s 0], outputl; P cut) [{"beans 4], outputy; aut} Ftafu}, 41, output];

Jarderldantryld]

output={"cut tafu'y;

do5tepiorderId, entryld,"combine”,
[{"salt", "seasoning '} {"cut tofu'}], outputy
output = {"seasoned tofu'};

rdostep{orderld, entryld,"cook",

[{"salt", "water'}, {"cut beans',
output);

output={"cooked beans"};

ntryld]

ntryld]
:doSteplorderld, entryld, “fry",
[ {"seasoned tofu'}]. output);

output={"fried tofu'};
ntryld]

Entrydd2]

assemblﬂb
2411

[ {"tofu with beans and potatoes")]. output)

assembleforderld, [{;. {"mashed potatoes”,
“cooked beans", “fried tofu'}], output);
.11 output = {"tofu with beans and potatoes

14, 1]

doStep{orderld, entryld, "deliver",

output={"finished wveganrecipe1'};

Required Tools

entry peint 1
:getCapabilibf{orderld, entryld, "peel)
ardeld, entryld;

:getCapability{orderld, entryld, "cut”
jarderd, e ntryld]

getCapability{orderld, entryld, "cook”
ardarld, e ntryld)

:getCapabilitbf{orderld, entryld, "rash')

peeled potatoes

cut potatoes
cooked potatoes

mashed potatoes
:getCapability{orderld, entryld, "assemble')

finished meal Q ardad, antryd] l:l

:getCapability{orderld, entryld, "deliver")

entry point20 jarderld, 2ntryld) l:l

:getCapabilityjorderld, entryld, "cut'
larderd, entryld]

:getCapabilityiorderld, entryld, "cook"
larderd. e ntryld]

getCapability{orderld, entryld, "assemble")
lardand, entryld]

:getCapabilityjorderld, entryld, "cut'

cut tofu( ) jarderld, entrdd

:getCapability{orderld, entryld, "combine’

seasoned tofu Q jarderld, e ntryld) l:l

:getCapabilityiorderld, entryld, "fry"

cut beans,

cooked beans

entry point3

fried tofu
:getCapability{orderld, entryld, "assemble')

Figure 8: A Recipe net, containing multiple entry points for parallel execution and channels to

retrieve

the required capabilities for each execution step.

38



Finn Wellershaus et al. CEUR Workshop Proceedings

24-36

Robot
has peeler peeler n peel
[ peeler . peeler wcanSwit ch("peel” peeler = 0;
wcanswitch{ peeler, peeler =0); .
khife nife knife can cut
knife

ccanSwitch("knife", knife = 0);
has masher mﬁler
ashEs frarshes
wcanSwitch("masher”, masher = 0);

has hand free hand
" hand = 0;

can mash
[ JcanSwitch("mash",masher > 0f;

cah assemble
(canSwitch("assemble” hand = 0);

can combine
(canSwitchl'combine” hand = 0);

han

canSwitchl™

can cook

cooking statiol . .
tion 9 trsltatio wcanswitch("cook" cstation = 0);

has cstation
csta

can%witch("cstation”, cstation = 0); Ty
icanSwitch("fry” cstation = 0);

n bake
[canSwitch("bake" cstation = 0);

D:canSwitch{"cut",knife >0 thls:getRemoyalTlme[oIdToDI, rem.ovr._JTlme);
thiszgetEquipTime(newTool, equipTime);
duration = removeTime + equipTime;

get capability|

St o renlo T
[ 1 newTool@duratic

switchTool(AEATool);
thisunblock(;

Active Tool

get wgetActiveTool(tool);

ol

Active Tool

tgal
:get Capability(capability, time);
his:capabilityForTool(tool, capability);
thisigetExecutionTime(capability, time];

block

|
unblo

wnblock); is bldcked hlock)

blegked

risBlocked(blocked)

Execution and tool switch times
Duration use tool for Duration remove tool "knife"
"combine® Duration equip tool "knife"

‘getExecutionTime("combine”, 2) igetRemovalTime("knife", 2 wgetEquipTime("knife”, 2)

Duratien use tool for Duration remove tool "peeler" i
"as bla" Duration equip tool "peeler"

igetExecutionTime("assemble”, 21 getRemovalTime("peeler”, 2)

Duration use tool for Duration ramove tool "hand" . .
"eook" Duration equip tool "hand"

wgetEquipTime("peeler”, 2

igetExecutionTime("cook”, 15) igetRemovalTimel"hand", &) wgetEquipTime"hand”, 0)

Duration use tool forpyration remove tool “cstation” . .
gyt Duration equip tool "cstation”

wgetExecutionTime("fry", 10)

Duration use tool for .
Duration remove tool "
an

getRemovalTime("cstation”, 1) wgetEquipTime("cstation”, 1)

maﬂ“uer%tinn equip tool "masher"

igetExecutionTime("bake", 20) getRemovalTime("masher”, 2] wgetEquipTime("masher", 2)
Duration use tool for "mash”

igetExecutionTime("mash”, &)

Duration use tool for "cut"

igetExecutionTime("cut”, 5)

Duration use tool for "pee|”

igetExecutionTime("peel”, 4]

Duration use tool for "deliver"

igetExecutionTime("deliver”, 0)

Tool <-> Capability Mappings
knife can cut |:|:capabilityForTooI["knife","cut")

peeler can peel [ |capabilityForTool"pesler, "peal”)
hand can combine [ JcapabilityForTool("hand", "combine")
hand can assemble Dcapabi\ityForTooI["hand","assemble")
cstation can cook Dtapabi\ityFDrTqu["cstatmn","mnk")
cstation can cook [ fcapabilityForTool("cstation”, "fry”)
cstation can bake [ JcapabilityForTool("cstation”, "bake”)
masher can mash DcapabilityForToo\[“masher", "mash")

hand can deliver [ J:capabilityForTool("hand", "deliver)

Figure 9: Overview of the robot net. The part responsible for monitoring and initialization are omitted and can

be found in the repository.

39



	1 Introduction
	2 Simulation Scenario and Environment
	2.1 The Net Model
	2.2 Adaption Options

	3 Integrating MAPE
	3.1 Conceptual Overview
	3.2 Extensions Required for Runtime Adaption
	3.3 The MAPE Loop

	4 Evaluation
	5 Conclusion
	A Petri Nets

