
Resilient Distributed P/T Net Simulators
⋆

Laif-Oke Clasen
1
, Patrick Leonhardt

1
and Leven Wichelmann

1

1University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Department of Informatics,
http://www.paose.de

Abstract

A distributed simulation of P/T nets requires partitioning the overall model into modules that run on multiple

simulators. Failures in distributed systems can compromise consistency, resulting in incorrect outcomes. Ensur-

ing resilience in such simulations is essential for maintaining correctness, especially in long-running executions.

This research develops a concept for resilient simulators in distributed P/T net simulations. A prototyping

approach grounded in constructivist principles enables the detection and recovery of failures in P/T net simula-

tions. The evaluation follows a summative ex-post methodology, applying a criteria-based assessment to validate

effectiveness.

Experimental validation demonstrates the feasibility of the proposed concept of resilience mechanisms for

distributed P/T net simulations. The system maintains simulation consistency despite failures by integrating

state-saving and recovery techniques. The results confirm improved fault tolerance and reliability in distributed

P/T net simulations.

The introduced concept for resilient P/T net simulations enhances the robustness of distributed simulations.

Preventing inconsistencies ensures accurate analysis and reliable execution over extended periods. The findings

contribute to the development of fault-tolerant simulation frameworks, supporting more reliable distributed

computing environments.

Keywords

Resilience, Failure Detection, Failure Recovery, Distributed Simulation, P/T Nets, P/T Nets with Synchronous

Channels, Event Streaming, Container, Container Orchestration

1. Introduction

The distribution of complex simulation models across several independent computing nodes is becoming

increasingly important in software engineering, particularly system simulation. [1, 2, 3] The ability to

simulate models in a distributed manner offers significant advantages in terms of model simulation

scalability; however, it also risks inconsistencies and data loss due to errors in individual components.

Against this background, research into resilient mechanisms in distributed simulation environments is

becoming increasingly important, as it directly addresses the reliability and accuracy of such simulation

results. [4, 5, 6]

The present work lies at the intersection of distributed systems and the simulation of Petri nets,

particularly in the context of resilience, i.e., the ability to recover system states after faults occur.

Particularly in application areas such as process automation, workflow management, or complex, long-

running simulations of critical systems, simulations must continue to run resiliently and consistently

despite errors. Despite considerable progress in the distribution and scaling of P/T net simulations,

there are still significant research gaps regarding suitable strategies for fault detection, state safety, and

systematic recovery from faults. The development of resilient simulators is not only a technical challenge

but also opens up new methodological perspectives for the reliability of distributed simulations. The

state safety and recovery mechanisms developed and validated in this work are expected to enhance

fault tolerance and provide a comprehensive understanding of the causes and effects of inconsistencies

in distributed Petri net simulations.

Therefore, the central research question of this work is: How can distributed simulators of P/T

nets be designed to guarantee consistent simulation results even in the event of system failures? This

research question is based on the hypothesis that implementing structured statefulness procedures and

PNSE’25, International Workshop on Petri Nets and Software Engineering, 2025
⋆

Supported by participants of our teaching project classes and student theses.

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

60

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://www.paose.de
https://creativecommons.org/licenses/by/4.0/deed.en


Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

liveness-based monitoring strategies can significantly increase the resilience of distributed simulations

of P/T nets, allowing simulators to continue operating consistently despite failures.

This contribution adopts a constructivist approach to addressing the research question, developing

a prototype simulator grounded in resilient design principles. [7, 8, 9] As a starting point, we use

the distributed P/T net simulation [10] in the Petri net editor, simulator and verifier Renew
1

[11]. In

doing so, concepts for the state assurance procedure and recovery after failures are developed, and

their effectiveness is experimentally tested. This evaluation involves a criteria-based assessment to

objectively prove the effectiveness and robustness of the developed concepts.

Within the Foundations (Section 2), the topics of Renew (Section 2.1), Distributed P/T Nets (Sec-

tion 2.2), Failures (Section 2.3), Resilience (Section 2.4), and Kubernetes (Section 2.5) are systematically

introduced. Subsequently, the Problem Description (Section 3) and the design of the Distributed System

(Section 4) are presented. The ensuing section details the prototypes developed during this work,

specifically Detecting Failures of Simulators (Section 5) and Recovering Failures of Simulators – DPT-

NResiliency (Section 6). The overall system is then evaluated using a classical case study in computer

science, the Producer-Storage-Consumer scenario (Section 7). A critical discussion (Section 8) of the

advantages, disadvantages, and limitations of the proposed concept follows. Finally, the article concludes

with an overview of Related Work (Section 9) and the Conclusion (Section 10).

2. Foundations

This section introduces the relevant concepts and technologies that are the focus of this paper. Firstly, we

present Renew as a Java-based multi-formalism editor and simulator for especially reference nets (2.1)

and further introduce our set-up for distributed P/T nets (2.2). Then, we proceed to different possible

failure types, including classification, detection, and recovery (2.3). We finish with a definition of

resilience (2.4) and an overview of the relevant terms and concepts within the Kubernetes environment

(2.5).

2.1. Renew

Renew [11] is an open-source software tool for modeling, analyzing, and simulating various types

of Petri nets, with a particular focus on distributed P/T nets (Section 2.2). It was developed by the

Algorithms, Randomization, and Theory (ART) research group, formerly Theoretical Foundations of

Computer Science (TGI), at the University of Hamburg.

Renew is implemented in Java 17 [12] and built using Gradle 8.4 [13], ensuring robustness and

platform independence. Its software architecture is based on a modular plugin system, as described by

Duvigneau [14]. Its modularity and maintainability have recently been enhanced by adopting the Java

Platform Module System (JPMS) [15, 16].

For each supported Petri net variant, Renew provides a dedicated formalism plugin, the most

prominent being the reference net formalism according to Kummer [17]. Another plugin relevant to

this contribution is the cloud-native plugin [18], which can expose HTTP endpoints for Renew via Java

Spring [19]. Through these HTTP endpoints, Renew simulations can be initiated and controlled.

2.2. Distributed P/T Nets

The distributed P/T nets used in this contribution are the same as in [10]. In this context, they build

on the formal definition of [20] and extend it with the informal extension of distributed synchronous

channels. If we are considering simulation time, multiple instances of these distributed P/T nets are

executed within a single simulator; however, there are also multiple simulators in place.

The informal extension of distributed synchronous channels ensures that P/T nets can communicate

with each other by implementing rendezvous synchronization. Transitions are labeled with signatures

1Reference Net Workshop can be downloaded directly from its official website: http://renew.de.

61

http://renew.de


Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

so that they can synchronize if they have the corresponding signature. These labeled transitions with

matching signatures can only fire together.

The signature of a synchronous channel, which is used here, consists of type, identifier, and parameter.

There are two different types: the downlink and uplink, which can be denoted as 𝐷𝐷 and 𝐷𝑈 ,

respectively. [10] Downlinks are the active or calling part and uplinks are the passive or called part.

The identifier usually describes the name of the channel or a relation. Whereas the parameters are used

to exchange information between the synchronizing transitions.

Each of the distributed P/T nets can be considered as an individual module, whereby the consideration

of a module based on [21] is applied. Modules on this basis have a left and a right interface. In the

context of distributed P/T nets, the left and right interfaces only contain distributed synchronous

channels.

The overall system architecture for the distributed P/T nets [10] comprises multiple simulators, an

event-based communication medium (Kafka), and a synchronization service. The distributed P/T nets

are statically allocated to the available simulators.

The communication between P/T nets across simulator boundaries is facilitated through distributed

synchronous channels. The event-based communication medium Apache Kafka is employed for this

purpose. Apache Kafka is an open-source, distributed event-streaming platform designed to deliver

scalability and high performance [22, 23]. It is extensively utilized in distributed systems for real-time

data processing and transmission. Event streaming refers to the continuous processing of data as

discrete, immutable events, each annotated with a timestamp and sequence number. Such events can be

persistently stored and subsequently reused, enabling efficient analysis and processing. Kafka provides

persistence, high throughput, real-time processing capabilities, and support for diverse architectures

and programming languages [24, p. 6f]. The decoupling of producers and consumers promotes the

development of loosely coupled system architectures, establishing Kafka as a scalable and robust solution

for modern distributed systems, particularly when deployed with high-availability configurations.

An illustrative example is provided by Clasen et al. [10], who describes a classic IT scenario - the

producer-consumer storage model, which is visualized in Figure 1. In this example, the producer,

consumer, and storage components are distributed across different simulators. The producers and

consumers act as active components, whereas the storage operates as a reactive component, featuring

only distributed uplinks and lacking downlinks.

(a) Producer and Consumer Net

(b) Storage Net

Figure 1: Components of the producer storage consumer example [10]

62



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

2.3. Failures

In every computer system, it is unavoidable that, at some point, some failure can occur. [25] This applies

specifically to distributed simulation systems. These errors may have different causes and origins.

Internal or in-process errors occur within an application and can be classified into different types.

Logical errors [26] occur when incorrect instructions are present in the application’s source code,

resulting in issues such as erroneous calculations or infinite loops. These represent implementation

faults caused by flawed algorithms or incorrect control flows.

Closely related are semantic errors, which are often used synonymously. Semantic errors [26] affect

the interpretation of data or interactions: although the code functions correctly on a technical level, the

meaning of the results or processes deviates from the specification.

In addition to the mentioned types of errors that result in faulty program behavior, runtime errors may

also occur despite a "correct" program implementation. For example, excessive nested calls of a recursive

function typically lead to a stack overflow, where the call stack of a program exceeds the allocated

memory space. If a program continuously consumes memory without releasing it correctly, this leads

to a memory leak. Both stack overflows and memory leaks fall into the category of memory-related

errors. [27]

Problems in the parallel execution of (sub-)processes can cause synchronization errors, such as

deadlocks or race conditions. A deadlock occurs when a cyclic waiting situation arises between the

involved processes, with each waiting for the release of a system resource that is exclusively held by

another. A race condition, on the other hand, describes an unintended fault where multiple operations

influence the final result due to their timing behavior. [28]

We can group logical and semantic errors, as well as synchronization and memory errors, into a

broader category of software errors to fit into the categorization of Schroeder et al. [29]. They also

mention other types of errors that are not directly software-related, which we look at next.

When disruptions occur during data transmission or exchange between distributed components, they

are referred to as network or communication errors. These can result from issues such as packet loss or

connection failures, leading to inconsistencies in the state of distributed systems. Such inconsistencies

can adversely affect the synchronization and correctness of the simulation.

System and hardware errors originate from physical defects or failures in the components of the

distributed system, such as the CPU or memory. These errors are often difficult to predict and can cause

abrupt system crashes or faulty data processing.

In addition to internal errors, there are also external error types that depend on external factors.

Undesired user inputs or environmental influences can impair the correctness of the simulation or even

disrupt the intended functionality of the entire system.

In the context of our contribution, a relevant structure of error types emerges, as shown in Figure 2.

We distinguish between internal and external errors that may affect our distributed simulation. Among

internal errors, we further differentiate between software-based errors (such as logical, semantic,

synchronization-specific, and memory-related errors) and infrastructure-based errors, which depend

on the system architecture. The latter includes communication and hardware errors.

To ensure the robustness and reliability of a distributed simulation, the early detection of occurring

failures is essential. These errors can occur in both deterministic and non-deterministic ways, which

complicates their identification and reproducibility. Typical deterministic errors include logical flaws or

faulty algorithms, whereas synchronization errors, such as deadlocks and race conditions, are considered

non-deterministic.

The first method for detecting failures is through static analysis. Although they primarily serve

compile-time checking, formal analysis techniques can detect potential runtime errors before execution.

Static analysis tools such as SonarGraph [30] or FindBugs [31] can flag unused variables, incorrect

assignments, or potential null references. Many modern IDEs already include basic static analysis tools

with various features as standard.

On the other hand, there are dynamic methods to detect failures at runtime. This involves monitoring

the system during execution. Techniques such as assertion checking, instrumentation, or the use

63



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

Figure 2: Classification of Failure Types

of debugging tools like Valgrind [32], the GNU Debugger [33], or AddressSanitizer [34] enable the

detection of memory errors, invalid memory accesses, or synchronization issues. Particularly in

productive, complex, and automated systems or simulations, continuous and comprehensive monitoring

plays a crucial role. It is the foundation and, therefore, essential for ensuring the availability, reliability,

and performance of a system.

Monitoring technologies such as Prometheus [35] offer suitable solutions by collecting a wide range

of metrics and visualizing them. In most cases, an alert manager is included for triggering alerts in

the event of anomalies. The open-source monitoring framework Kieker is also worth mentioning as a

valuable tool for the runtime monitoring of software-based systems. It incorporates the aforementioned

capabilities and is particularly useful for analyzing performance, architectural behavior, and failures in

distributed applications.[36]

Since we cannot entirely prevent failures, we must at least design our systems to tolerate or recover

from them when they occur. It is worth noting that, in some situations, it can be better to tolerate small

failures by not addressing them if an automated recovery system might do more harm than good [25].

In general, we can categorize fault tolerance methods into two main groups: reactive and proactive

methods. Static analysis methods act as a proactive method. Proactive methods take action preemptively

to try and limit failures as much as possible, while reactive methods rely on failure detection and start

acting when a failure has occurred. [37] For this reason, to make a system truly failure-tolerant, one

needs to implement at least one reactive method.

Since proactive methods cannot entirely prevent failures, we do not elaborate on them further in this

paper. More information can be found, e.g., in [38].

An obvious reactive method is checkpointing, sometimes also referred to as checkpoint-restart. [39]

Here, each system component regularly stores its state on some form of persistent, highly available

storage. If a component fails (e.g., due to a crash), it can be restarted by a failure detection system and

automatically load the latest checkpoint to continue execution from that point.

Another reactive method, which can also be considered a hybrid method, is replication. Here,

individual components can be replicated, potentially even on different physical machines, resulting in

multiple instances of each component. If one instance fails, a replica can take its place to ensure smooth

execution, and the original instance gets restarted to serve as another replica. [40]

2.4. Resilience

According to Laprie et al. [41], the term resilient has been used mainly as a synonym of fault-tolerant for

many years in the field of computer science. A resilient, fault-tolerant, or robust system should be able

to deliver its service, even in some circumstances that are not part of its typical mode of operation. We

use the term "some" here since we have already learned in section 2.3 that it is impossible to completely

prevent failures, including those that are not tolerable by any software system (like a simultaneous

hardware failure in all machines).

For this paper, we use the definition from Pradhan et al. [42], which defines a resilient system as

64



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

a system that "includes efficient techniques for [...] ensuring its correct operation [...], even in the

presence of faults and failures [...].". Additionally, it requires the resilient mechanism of a system to be

autonomous, as human interaction is slow and introduces an additional opportunity for errors.

2.5. Kubernetes

Kubernetes [43] is an open-source software for container orchestration developed by Google. It is

commonly used to manage, harden and scale each individual component of deployed applications. It

allows for easy creation of clusters made of multiple physical computers (nodes).

On each node, a service called kubelet acts as the "primary node agent" for Kubernetes, manages

everything that Kubernetes runs on that node. If some application crashes on a specific node for

example, the set of kubelets of all nodes would be responsible for restarting it.

Additionally, various resource types allow applications to scale automatically according to demand,

making it suitable for all kinds of applications and workloads.

Containerisation can be defined as the act of bundling a software application and all necessary

dependencies and system libraries into a single container. [44] There are various technologies for

containerising applications like Docker [45] or Podman [46]. Under the hood, they all implement the

specifications of the Open Container Initiative [47] (OCI), making them mostly interchangeable at

runtime.

A key property of containers is that they are stateless by default. That means every time a container

is started, it has no recollection of past instances of itself or other state.

A Pod is the smallest deployable entity in Kubernetes and consists of one or more containers [48].

Just like containers, Pods are not persistent by default; if a Pod dies and is restarted, a new replica of

the Pod is created, without any memory of previous instances of the Pod.

Container lifecycle hooks are part of the OCI runtime specification [49] and widely used when

working with containers. They are used to intercept specific events in the container lifecycle, for

example the container starting or stopping.

Kubernetes offers a few hooks (more commonly called probes) related to Pod lifecycles, most impor-

tantly liveness probes. As the name suggests, liveness probes allow Kubernetes to check that our Pods

are still active and have not failed or crashed [50]. If a liveness probe fails too often, Kubernetes will

treat the corresponding Pod as failed, and automatically restart it. This makes them an important tool

when developing any kind of failure-resistant application.

In Kubernetes, one usually does not directly create Pods themselves. Instead, there are a number of

resources types that create and manage a set of Pods, each having unique use cases, advantages and

disadvantages.

A StatefulSet owns a set of Pods and maintains a unique identity for each one, as well as an ordering

over all its Pods. The Pod identity it provides includes a network address, (if configured) a dedicated

storage mount, a name and and index label. If any Pod that belongs to a StatefulSet fails, for example

by crashing or because the associated Liveness Probe fails, a new Pod will be created with the same

identity of the failed Pod.

Some applications do require Pods to have some form of persistent storage, or memory, even between

restarts. For this purpose, Kubernetes implements the concept of Persistent Volumes (PVs) and Persistent

Volume Claims (PVCs).

A PV is a resource in a cluster that provides a piece of storage. Their lifecycle is independent from

Pods. If a Pod needs some persistent storage, it can request some via a PVC. In this case, the Pod

can only start when a fitting PV binds to its PVC. The volume will then mount in the corresponding

container(s) filesystem.

PVs can either be created manually by cluster administrators, or by a StorageClass that is configured

to automatically provision PVs when a PVC requests storage from it.

Ceph is a mature distributed file system that is developed for performance, scalability and reliability

[51]. Rook [52] is a cloud native Kubernetes deployment of Ceph [53] that allows developers to focus

on configuring Kubernetes resources, while silently managing the Ceph file system on all nodes in the

65



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

background. It does so by providing StorageClasses for various purporses that automatically provision

PVs as needed.

The Cloud Native Computing Foundation [54], an offshoot of the Linux Foundation [55], lists Rook as

one of only two graduated technologies in the context of Cloud Native Storage. [56] Graduated projects

are "[...] considered stable, widely adopted, and production ready, attracting thousands of constributors".

This makes Rook a great choice for managing storage in a Kubernetes cluster.

3. Problem Description

All simulators collaboratively execute a single simulation. To this end, each simulator is capable of

concurrently executing multiple distributed P/T nets. The global state of the simulation comprises the

complete set of distributed P/T nets along with their respective markings. The local state of a simulator

is defined as the subset of distributed P/T nets it executes, including the corresponding markings. Thus,

each simulator is responsible for a partition of the overall system and manages the associated segment

of the simulation state.

In the context of complex systems or processes, simulations often run for extended periods of time.

Prolonged runtimes increase the probability of individual component failures. In the worst-case scenario,

such failures can result in inconsistencies that necessitate a complete restart of the simulation. Since

failures may stem from a variety of causes—most notably hardware faults—they cannot be entirely

precluded.

It is, therefore, imperative to develop robust mechanisms for detecting and mitigating failures

in distributed simulations. Failures are detected through continuous monitoring of the simulators’

operational status. Once a failure is identified, the affected simulator is reinitiated on a functional

computing node.

To ensure correct recovery, appropriate techniques must be employed to reconstruct the simulator’s

state, as each simulator retains a distinct portion of the global state. This is achieved by periodically

persisting the simulator’s state under predefined conditions to highly available and durable storage.

In the event of a failure, the simulator can resume execution from the most recent consistent state,

ensuring continuity of the simulation.

The concept introduced in this work is validated in the context of distributed simulation of P/T nets.

Given the distributed nature of the simulation, the overall system is inherently decentralized. The

first objective of this work is the conceptual design and technical realization of the distributed system

(Section 4).

A subsequent objective involves developing mechanisms for fault detection in simulators (Section 5).

Since simulators may be inaccessible in the event of failure, direct fault detection within the simulators

is infeasible. Consequently, fault detection must be implemented as part of the surrounding distributed

system infrastructure.

Recovery techniques must be tailored to the specific architectural design of the simulators, which

are themselves responsible for ensuring their resilience (Section 6). Simulators must be capable of

persistently storing their state at semantically meaningful intervals and resuming execution from that

state following a failure.

Finally, the proposed concept is evaluated within a representative scenario (Section 7), followed by a

critical discussion of its advantages, limitations, and potential drawbacks (Section 8).

4. Distributed System

The distributed system comprises simulation components, a highly available and distributed memory

architecture, and the overarching distributed environment. A core requirement of this environment

is the ability to detect failures in the participating simulation components and initiate appropriate

recovery measures, such as restarting a failed simulator instance on an alternative computational node.

66



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

The simulation components operate within the context of distributed simulations of P/T nets. This

setup necessitates the presence of the simulation components themselves and a reliable communication

medium through which simulators can interact and coordinate during distributed execution.

Given the distributed nature of the simulation of these P/T nets, the system requires at least two

simulators operating concurrently. By the proposed recovery mechanism, a highly distributed and

persistent memory system is essential for maintaining the simulator states. As long as a simulator’s

state is preserved within this memory, it remains accessible even after a failure, enabling effective

recovery and continuation of the simulation process.

physical
machine

simulator n

P/T net with distributed
synchronous channel(s)

distributed environment

physical
machine

simulator 1

P/T net with distributed
synchronous channel(s)

physical
machine

communication medium

...

synchronisation service distributed
storage

distributed storage

communication medium

distributed storage

communication medium

Figure 3: System for resilient distributed P/T net simulations

The container orchestration platform Kubernetes [43] (Section 2.5) is employed to implement the

distributed environment. This choice necessitates that all system components be encapsulated as

containers. At the same time, Kubernetes’ built-in fault detection mechanisms, such as liveness probes,

can be leveraged to monitor and maintain system integrity.

The distributed architecture (Section 2.5) further necessitates a storage system that is not only

distributed and persistent but also highly available to maintain the simulators’ states reliably. To this

end, the open-source software Rook [52] is utilized as a cloud-native storage orchestrator within the

Kubernetes environment. Rook builds upon the mature and widely adopted storage solution Ceph [57],

which is extensively used in production environments.

While there is no predefined upper limit on the total number of nodes, a minimum number of nodes is

essential for the distributed storage system to function correctly. Specifically, a minimum of three nodes

is required to ensure high availability and consistency. Operating with only two nodes introduces the

risk of a split-brain scenario, whereas a single-node configuration constitutes a single point of failure.

The simulation components are developed in the context of distributed P/T nets (Section 2.2). The

simulators must incorporate effective failure recovery mechanisms to support fault tolerance, necessitat-

ing a design emphasizing extensibility. The simulator Renew (Section 2.1) is particularly well suited for

this purpose, as it not only facilitates the distributed execution of P/T nets but also features a modular

plugin architecture that supports straightforward extension.

Moreover, Renew requires a dedicated synchronization service to coordinate the distributed simula-

tion of P/T nets (Section 2.2). This service is responsible for determining which distributed synchronous

67



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

transitions may fire together. For this coordination, the synchronization service employs Renew’s

unification algorithm.

Finally, an event-driven communication infrastructure (Section 2.2) is essential for inter-simulator

messaging. Kafka is employed as a communication medium by integrating within the Renew simu-

lation framework to meet this requirement. In addition, Kafka itself is provided as a highly available

communication medium in order to create resilience for the communication medium as well.

5. Detecting Failures of Simulators

Reliable detection of simulator failures is a fundamental prerequisite for ensuring the overall resilience

and correctness of the simulation framework. This prototype outlines the systematic approach adopted

to address this challenge, beginning with a detailed analysis of the requirements (Section 5.1) that such a

failure detection mechanism must satisfy. Based on these requirements, we then provide a specification

(Section 5.2) of the detection logic, followed by a discussion of the design (Section 5.3) that guided the

development of the solution. The corresponding implementation (Section 5.4) is subsequently described.

Finally, the effectiveness of the proposed approach is assessed through a comprehensive evaluation

(Section 5.5).

5.1. Requirements

To achieve a simulation of a distributed P/T net that is as error-free and correct as possible, it is all the

more important to efficiently detect as many types of occurring errors during the simulation as possible.

This enables their subsequent elimination using appropriate recovery mechanisms in the following

prototype (Section 6), thereby ensuring the resilience of the simulators.

For this purpose, various error detection methods described in Section 2.3 are employed, with dynamic

runtime analysis, as well as monitoring and logging, playing a key role in identifying potential runtime

errors within and between individual simulators. The focus of this prototype is the requirement that it

should be possible to detect failures within a simulator.

5.2. Specification

Besides possible logical and semantic errors—which we already try to detect and resolve within our

quality assurance process—the most critical errors to identify are fail-stop errors. These are the kinds of

errors that can halt the entire simulation and potentially compromise its results.

A mechanism is therefore required that can identify the fail-stop. For this purpose, the liveliness, i.e.,

the availability, of the simulator is to be checked at regular short intervals.

Particular attention is given to infrastructure-related faults. Thus, if communication errors occur

during the simulation—i.e., errors in data transmission between the distributed components caused by,

for example, connection losses or packet loss—they must be detected and reported. Similarly, if system

or hardware faults arise due to processor or memory failures or malfunctions, these errors must also

be identified for recovery. Furthermore, all external errors, including those due to Force Majeure or

specific user inputs, are also known but not relevant to our context of distributed simulations.

5.3. Design

In order to detect errors in a simulator, we need an infrastructure that can check the availability of the

simulators and, if necessary, start new simulators on other nodes. For this purpose, a container-based

infrastructure is built that can recognize failing nodes and control a container’s lifecycle.

In addition, a corresponding HTTP endpoint is required in Renew to check the availability of the

simulator. The CloudNative plugin is used to provide this endpoint.

68



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

5.4. Implementation

We implement our containers with Docker [45] and the container orchestration system using Kuber-

netes [43] (Section 2.5). For this reason, we can utilize Kubernetes liveness probes to detect the liveness

of our simulators.

5.5. Evaluation

With this implementation, we can detect failures of physical machines, as Kubernetes detects node

failures and reschedules Pods on healthy nodes. Additionally, we can detect failures of the simulator

Pods directly if they disturb the availability of the HTTP endpoint of the CloudNative plugin.

This means we can detect fail-stop errors using this method, including crashes, node failures, network

errors, and other similar issues. However, Silent errors, like deadlocks in the internal Renew-internal

simulation thread pool, would remain undetected.

6. Recovering Failures of Simulators - DPTNResiliency

This section presents the DPTNResiliency prototype, which addresses the challenge of recovering from

simulator failures within distributed simulation environments. We begin by outlining the requirements

(Section 6.1) that guide the development of a resilient recovery mechanism. Based on these requirements,

we then provide a specification (Section 6.2) of the failure recovery behavior. This is followed by a

detailed description of the design (Section 6.3) that shape the structure and coordination logic of

DPTNResiliency. Subsequently, we describe the concrete implementation (Section 6.4) of the proposed

mechanism within our simulation framework. Finally, the section concludes with a thorough evaluation

(Section 6.5) of this prototype.

6.1. Requirements

Our overarching objective is to develop a fully resilient DPTN simulation. However, the present

contribution explicitly addresses the resilience of the simulators themselves.

In this context, it is imperative that fail-stop failures affecting individual simulators do not compromise

the overall functionality or correctness of the distributed system. To this end, resilience must be ensured

through a reactive failure recovery mechanism, as proactive strategies alone are insufficient to eliminate

the occurrence of fail-stop failures.

The prototype developed in this work is designed to facilitate reactive recovery from such simula-

tor failures. Specifically, when a simulator process crashes or experiences a fail-stop event, it must

be automatically restarted without impairing the operational integrity of the distributed simulation.

While a minimal delay associated with the recovery process is unavoidable, it remains functionally

inconsequential to the system as a whole.

6.2. Specification

In accordance with the requirements outlined in Section 6.1, a reactive recovery mechanism is necessary

to mitigate the effects of fail-stop events. Given that the distributed P/T nets simulated within the

Renew framework are serializable, we adopt a checkpoint-based recovery strategy. This approach

entails periodically saving and, if required, reloading the simulation state within Renew.

Each checkpoint must encapsulate the complete state of the simulation, including both the internal

markings of all distributed P/T Net (DPTN) instances and the communication state with the synchro-

nization service. This includes metadata on distributed transitions—such as whether a firing request

has been issued—and a consistent record of which communication events have been processed up to

the checkpoint.

To ensure the durability of checkpoints beyond the occurrence of a fail-stop event, these must be

stored in a fault-tolerant, highly available storage system. This storage must not reside within a single

69



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

container or be bound to a single physical node. Reliance on a single container is inherently fragile,

as container failure leads to complete data loss. Similarly, tying checkpoint persistence to a single

node is inadequate since a node-level failure would result in the irrevocable loss of all checkpoint data.

Consequently, a resilient, distributed storage solution is imperative—one that can withstand partial

system failures without compromising checkpoint integrity.

Our distributed simulation system can be viewed as a distributed database system that executes

distributed transactions, in the sense that each simulator processes events coming in from the event

broker. We can design our system in a way similar to how database systems manage transactions [58],

making sure to uphold the ACID properties that serve as foundational guarantees [59, 60]. The dis-

tributed nature of our system also means we are subject to the constraints of the CAP theorem [61].

By implementing ACID, we make sure to guarantee Consistency and Partition Tolerance at the cost of

Availability, since it’s never possible to guarantee all three properties at once. Sacrificing availability

means we may get stuck in a recovery loop for a while, in order to make sure the other properties are

upheld.

Upon initialization, a simulator will check if it finds an existing checkpoint, in which case it must

assume a previous failure and recover from that checkpoint. Using the list of events from the event

broker as a log, it can recover from the failure by replaying uncommited events on top of the latest

checkpoint. In order for this to work, we must only commit events (i.e., mark them as processed) once a

checkpoint has been created that includes the implications of the events.

6.3. Design

To facilitate resilient simulations, we developed a dedicated Renew plugin named DPTNResiliency.

This plugin relies on other essential Renew components—specifically, the Simulator and GUI plu-

gins—to enable functionalities such as saving and loading simulation states. It is employed by the

DPTNFormalism plugin, introduced in [10], to execute distributed P/T net simulations.

The DPTNResiliency plugin introduces the console command startResilientSimulation,

which initiates the simulation of a specified distributed P/T net. If a checkpoint is available, the

simulation automatically resumes from the most recent one. This command serves as the entry point

for determining the current simulation state when launching a simulator instance.

Furthermore, the event-streaming mechanism within the DPTNFormalism plugin has been extended

to notify the DPTNResiliency plugin after the successful processing of each event. This notification

mechanism is essential for persisting and tracking the accurate communication state throughout the

simulation. Additionally, the DPTNResiliency plugin manages Kafka commits to make sure events are

only marked as read once a checkpoint for them has been created.

The responsibility for checkpoint creation lies with the DPTNResiliency plugin, which utilizes the

current marking and communication status. To ensure fault tolerance, especially in the event of a

simulator crash, each checkpoint is initially written to a temporary location. Only upon successful

creation is it copied to its final destination. Subsequently, the corresponding event is marked as

consumed, ensuring that it cannot be processed again.

Checkpoints generated by the DPTNResiliency plugin must be stored in a resilient, highly available

storage system. This storage operation is triggered after each Kafka event has been successfully

processed. For this purpose, the distributed storage system Ceph [57] has been selected. Ceph ensures

high availability and fault tolerance by requiring a minimum of three participating nodes, thereby

eliminating single points of failure and mitigating split-brain scenarios.

The creation of checkpoints can also be regarded as a transaction in a (multi-)database system, making

it effectively a sub-transaction in the context of the triggering of a distributed synchronous channel.

As its write operations conform to ACID principles, Ceph ensures the correctness and durability of

stored simulation checkpoints. Additionally, being a distributed system itself, Ceph also underlies the

constraints of the CAP theorem. Being designed to prioritize Consistency and Partition Tolerance, in the

event of network partitioning, it may temporarily compromise the availability of specific components

to uphold global consistency guarantees, matching the specification of our system.

70



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

6.4. Implementation

The DPTNResiliency plugin is implemented as an additional modular Renew plugin. The simulators, as

well as the synchronization service, run in Docker containers within Kubernetes (Section 2.5), deployed

via StatefulSets that include liveness probes. Kafka (Section 2.2), our event broker, is deployed with

high availability on Kubernetes. Attached to each Renew container is a Persistent Volume provided by

Rook, the Kubernetes Deployment of Ceph, on which the checkpoints are stored.

6.5. Evaluation

Our recovery mechanism is backed by the Kafka event history that acts as a highly available and

distributed log. Additionally, our checkpoints are stored on a highly available distributed storage system

as well. After processing an event, a simulator creates a checkpoint, using an atomic copy operation

when putting it into the right place to prevent checkpoint corruption. Only after the checkpoint is

created, the simulator commits its Kafka offset, marking the event as consumed in the log and making

sure it’s not consumed again. Furthermore, any simulator that fails is automatically restarted, which

triggers the recovery mechanism that upholds the simulations integrity.

If a failure occurs before a checkpoint for an event is written, the simulator restores from the previous

checkpoint and executes the event again, thus recovering successfully. If a failure occurs after a

checkpoint is written, but before the Kafka commit has been completed, the simulator restores from

the new checkpoint but is unable to execute the event again. This will lead to a global event timeout

and the event will be attempted again, in which case it will now succeed, thus completing the recovery.

Failures during the recovery process also fall into one of these two categories.

When drawing a parallel to database transactions, it becomes evident that our solution adheres to the

ACID properties. If we view the processing of each Kafka event as a single transaction, it becomes clear

that our methods guarantee atomicity and durability, in a similar way to how databases implement

transaction logic. This is because we either process a single event fully or not at all (in which case

we later recover and do process it), and we make the changes durable by writing them to our storage

medium. The non-resilient Distributed P/T Net implementation already ensures consistency and

isolation and remains unaffected by our enhancements.

Altogether, these guarantees fulfill all functional requirements for our prototype, thereby confirming

the resilience of the simulators. Nonetheless, one limitation persists: unresolved race conditions

exist within the simulation thread pool of Renew. Although a delay mechanism has been introduced

to temporarily mitigate this issue—and occurrences are exceedingly rare—it nonetheless imposes a

slowdown on the distributed simulation.

7. Producer-Storage-Consumer Scenario

To validate the functionality of our prototypes, as outlined in the preceding sections, we experimented

within our Kubernetes cluster to substantiate this claim. The structure of the experiment is presented

as follows: Section 7.1 details the experimental setup, Section 7.2 describes the execution process, and

Section 7.3 discusses our observations.

The experimental scenario is based on a classical problem in computer science: the Producer-

Consumer–Storage example. In this context, we employ a modeling approach based on distributed

P/T nets (Section 2.2), featuring distributed up- and downlinks in place of standard synchronous

communication channels, as depicted in Figure 1.

The scenario comprises three components: a producer, a consumer, and a storage unit. The producer

operates within a cyclic process in which a message is first generated and subsequently transmitted to the

storage via a distributed downlink. Conversely, the consumer follows a cyclic process in which messages

are actively retrieved from storage—again via a distributed downlink—and subsequently consumed. This

configuration implies the presence of two active entities: the producer and the consumer. In contrast,

the storage component, which exclusively features distributed uplinks, remains entirely passive.

71



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

7.1. Setup

As the foundation for this experiment, we employ the distributed system described previously in Sec-

tion 4, comprising three physical machines. Within our Kubernetes cluster, we deploy a highly available

Kafka cluster to serve as the communication medium. Furthermore, we deploy four components—each

a Renew instance—using Kubernetes StatefulSets: the synchronization service, Producer, Storage, and

Consumer. Each of these components consists of exactly one Container in a Kubernetes Pod with a

replica size of one. All StatefulSets are configured with liveness probes that target endpoints exposed

by the CloudNative Renew plugin. Moreover, each component is provisioned with 5 GiB of highly

available persistent storage via Rook/Ceph.

Prior to initiating the experiment, we ensure that all system components are returned to their default

state. To this end, we delete the four StatefulSets, if present, and erase the data stored in their associated

volumes. Additionally, we remove all Kafka topics and consumer offsets to prevent residual data from

affecting communication in the upcoming simulation. This reset procedure is critical, as remnants of

prior experiments could otherwise influence the outcomes.

1

2 ScriptCommand: Try to load file startscript_storage.txt
3 Opening gui...
4 Passing args to gui...
5 Initialising CheckpointStorageServiceImpl with no previous checkpoint
6 Starting Simulation...
7 ...
8 Simulation initialized.
9 INFO: Consumed event UpdateUplink from topic receiveMessage.

10 INFO: Consumed event UpdateDownlink from topic sendMessage.
11 INFO: Consumed event RequestFiring from topic sendMessage.
12 INFO: Record ConfirmUplink sent successfully on topic sendMessage.
13 INFO: Consumed event ConfirmUplink from topic sendMessage.
14 INFO: Consumed event ConfirmDownlink from topic sendMessage.
15 INFO: Consumed event ConfirmFiring from topic sendMessage.
16 INFO: Fired Confirm Transition of channel: sendMessage in Storage.
17 INFO: Record UpdateDownlink sent succcessfully on topic receiveMessage.
18 INFO: Consumed event UpdateDownlink from topic sendMessage.
19 INFO: Consumed event UpdateDownlink from topic receiveMessage.
20 INFO: Consumed event UpdateDownlink from topic sendMessage.
21 INFO: Consumed event RequestFiring from topic sendMessage.
22 INFO: Record ConfirmUplink sent successfully from topic sendMessage.
23 INFO: Consumed event ConfirmDownlink from topic sendMessage.
24 INFO: Consumed event RequestFiring from topic receiveMessage.
25 INFO: Record ConfirmDownlink sent successfully on topic receiveMessage.
26 INFO: Fired Request Transition of channel: receiveMessage in Storage.
27 INFO: Record UpdateDownlink sent successfully on topic receiveMessage.
28 INFO: Consumed event ConfirmUplink from topic receiveMessage.
29 INFO: Consumed event ConfirmUplink from topic sendMessage.
30 INFO: Consumed event UpdateDownlink from topic sendMessage.
31 INFO: Consumed event ConfirmFiring from topic sendMessage.
32 ...
33

Figure 4: The logs of the Storage Pod after the simulation is started

7.2. Execution

Once the setup has been completed, the experiment can be initiated. The simulation commences with

the deployment of the four system components. To verify correct execution, the logs of each Pod are

inspected to ensure that the simulation is actively running.

72



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

Following confirmation of execution, a brief waiting period is introduced. This period is sufficiently

long to allow the simulation to make measurable progress, yet not so extensive that it reaches completion

during this interval.

Subsequently, a fail-stop fault is emulated by deliberately terminating one of the simulator Pods.

Upon automatic restart, the process resumes, and the simulation continues until it reaches completion.

7.3. Observations

1

2 k8user@artpc17:~$ kubectl get pods -n dptn
3 NAME READY STATUS RESTARTS AGE
4 consumer-statefulset-0 1/1 Running 0 60s
5 producer-statefulset-0 1/1 Running 0 60s
6 storage-statefulset-0 1/1 Running 0 60s
7 syncservice-statefulset-0 1/1 Running 0 60s
8 k8user@artpc17:~$ kubectl delete pod storage-statefulset-0 -n dptn
9 pod "storage-statefulset-0" deleted

10 k8user@artpc17:~$ kubectl get pods -n dptn
11 NAME READY STATUS RESTARTS AGE
12 consumer-statefulset-0 1/1 Running 0 115s
13 producer-statefulset-0 1/1 Running 0 115s
14 storage-statefulset-0 1/1 Running 0 21s
15 syncservice-statefulset-0 1/1 Running 0 115s
16

Figure 5: Deleting the Storage Pod

1

2 ScriptCommand: Try to load file startscript_storage.txt
3 Opening gui...
4 Passung args to gui...
5 Initialising CheckpointStorageServiceImpl with checkpoint Storage-232.rst
6 Starting Simulation...
7 ...
8 Simulation initialised.
9 INFO: Record RegisterDownlink sent successfully on topic RegisterTopic.

10 INFO: Subscribed to topic: receiveMessage.
11 INFO: Subscribed to topic: sendMessage.
12 INFO: Consumed event ConfirmDownlink from topic receiveMessage.
13 INFO: Consumed event ConfirmFiring from topic receiveMessage.
14 INFO: Fired Confirm Transition of channel: receiveMessage Storage.
15 INFO: Consumed event UpdateDownlink from topic receiveMessage.
16 INFO: Consumed event UpdateUplink from topic receiveMessage.
17 INFO: Consumed event UpdateDownlink from topic receiveMessage.
18 INFO: Consumed event RequestFiring from topic receiveMessage.
19 INFO: Record ConfirmDownlink sent successfully on topic receiveMessage.
20 INFO: Fired Request Transition of channel: receiveMessage in Storage.
21 INFO: Record UpdateDownlink sent successfully on topic receiveMessage.
22 ...
23

Figure 6: The logs of the Storage Pod after the restart

Upon initiating the simulation, the logs of all simulator instances consistently indicate that the

simulation is actively running. As illustrated in Figure 4, Kafka events are successfully transmitted and

received, confirming the correct operation of the simulation. In this context, the UpdateUplink and

UpdateDownlink events represent communication with the synchronization service regarding updates

73



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

to the up- and downlinks of the registered distributed synchronous channels. The RequestFiring

event is employed to coordinate a distributed firing across all relevant simulators. Upon successful

execution, the ConfirmUplink, ConfirmDownlink, and ConfirmFiring events confirm the resulting

state changes. Detailed specifications of these event types are provided by Clasen et al. [10].

Following the deletion of a simulator Pod, Kubernetes automatically initiates a replacement Pod to

restore the simulation topology. As depicted in Figure 5, one simulator Pod exhibits a delayed startup

relative to the others, corresponding to the previously deleted instance.

Subsequently, once the newly instantiated Pod begins to receive Kafka events, Figure 6 demonstrates

that it resumes participation in distributed transitions, including up- and downlink operations. Moreover,

an examination of the logs from the remaining simulator Pods verifies that interaction with the restarted

Pod is functioning as expected.

This experiment can be replicated with either the Consumer or the Producer Pod, yielding analogous

results. These observations collectively substantiate the resilience of our simulator architecture.

8. Discussion

A key advantage of the proposed concept lies in the inherent resilience of the simulators. This resilience

ensures that the failure of individual simulators during runtime does not compromise the integrity or

continuity of the overall simulation process.

Furthermore, the system enables the execution of resilient distributed simulations over extended

durations—potentially spanning several weeks or even months. This capability markedly enhances the

system’s usability, as it alleviates user concerns regarding potential simulator failures during long-term

simulations.

A notable drawback of the proposed system concerns the complexity of the underlying execution

infrastructure. Deployment necessitates the orchestration of multiple physical nodes within container-

ized environments such as Kubernetes. These infrastructural requirements impose substantial demands

on the system’s architectural and operational design.

Another disadvantage, albeit with a very low probability of occurrence, is the potential for deadlocks

arising from the interaction between the DPTNResiliency plugin and the internal Renew simulation

thread pool. Specifically, to utilize Renew’s existing functionality for saving simulation states, the

simulation must be paused. However, there is no guarantee that all queued events will be processed

before the pause takes effect. Given the highly asynchronous architecture of Renew, a rapid succession

of pause and resume operations—especially in conjunction with checkpoint creation—can, under rare

circumstances, cause the internal thread pool to enter a deadlock state. If such a deadlock occurs, it halts

the simulator and remains undetectable. This issue is currently the subject of ongoing investigation.

One limitation of the current system design is the non-resilient nature of the synchronization service.

Ensuring system stability under failure conditions necessitates the development and integration of

supplementary recovery mechanisms for this component.

The checkpointing-based recovery strategy, while critical for fault tolerance, introduces additional

computational overhead. This overhead negatively impacts the performance of individual simulators

and the overall simulation, resulting in increased execution times. In particular, delays may occur in

the processing of events transmitted via Kafka, further contributing to reduced simulation efficiency.

A further limitation stems from the current checkpointing policy, which creates a checkpoint for

every Kafka event consumed. This leads to the generation of a substantial number of checkpoints

during the simulation. Future work will focus on optimizing checkpoint frequency to minimize this

overhead while maintaining resilience.

9. Related Work

Research conducted by Moldt et al.[62] and Röwekamp et al.[63, 64, 65, 66, 67, 18, 68] focuses on

distributed Reference Net simulations, with a particular emphasis on platform management. Their

74



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

work incorporates Mulan agent concepts [69] and employs Spring Boot to enable initial experimental

implementations. While these contributions establish essential foundations, they do not fully exploit the

potential of distributed systems, thereby limiting their applicability to complex, real-world application

scenarios.

In contrast, the studies presented in [70, 71, 72, 73] address the distributed simulation of timed Petri

nets, employing various strategies to ensure accurate simulation of time-dependent behaviors. This

work differentiates itself from these approaches by focusing on a P/T net class that does not incorporate

a notion of time.

A related yet distinct approach is proposed in [6], which addresses resilient simulation by replicating

entire simulators to tolerate failures. The primary distinction from the concept presented in this paper

lies in the recovery mechanism: rather than replication, checkpointing is employed as the means of

fault tolerance.

This contribution builds on the article by Clasen et al. [10] and extends the simulators developed

there by the property of resilience through a checkpoint-based recovery technique of the simulators.

Whereas Clasen et al. [74] does not focus on resilience but on scalability. The idea there is that the

number of simulators can be adapted dynamically.

10. Conclusion

The following conclusion begins with a concise summary (Section 10.1) of the main findings and

contributions of this work. It then outlines potential directions for future research and development

(Section 10.2).

10.1. Summary

After introducing the foundational concepts—Renew, distributed P/T nets, failure semantics, resilience

strategies, and Kubernetes (Section 2)—this work delineates the central research problem (Section 3): the

design of a resilient simulation framework for P/T nets within a Kubernetes-based cloud environment.

The distributed system described in Section 4 comprises a communication medium, highly available

storage, and simulation components for distributed P/T nets.

Subsequently, we present the developed prototypes. In Section 5, Detecting Failures of Simula-

tors, we examine strategies for reliably identifying faults within simulation components. Building

upon these insights, Section 6, Recovering Failures of Simulators, introduces the novel Renew plugin

DPTNResiliency, which facilitates the automated recovery of failed simulation instances based on

checkpointing.

To evaluate the proposed system, we employ the well-established Producer-Storage-Consumer

scenario (Section 7). During simulation, a simulator instance is intentionally terminated. Recovery is

demonstrated as a new instance seamlessly resumes execution using state checkpoints generated by its

predecessor. Finally, Section 8 offers a critical assessment of the approach’s strengths, limitations, and

potential trade-offs, followed by a contextualization within the scope of related research (Section 9).

10.2. Future Work

The immediate next steps involve systematically resolving existing workarounds and eliminating current

race conditions. This effort is expected to reduce the overhead associated with the current approach

significantly. Furthermore, we intend to eliminate the need for checkpoint creation on every consumed

event, thereby further enhancing performance.

Concurrently, a more advanced and fully automated testing infrastructure is required—one that can

realistically emulate a broad range of failure scenarios, including those studied in the field of chaos

engineering. Such a framework is essential to bolster the reliability and credibility of the proposed

solution.

75



Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

The synchronization service must also be extended to ensure fault tolerance not only at the individual

simulator level but across the entire simulation system. Using the aforementioned improved testing

infrastructure, the proposed concept should be rigorously validated against real-world models to

substantiate its empirical robustness.

Additional refinements are conceivable concerning the health metrics reported by Renew. Increasing

the granularity and precision of these metrics could facilitate more nuanced operational responses and

may enable the early detection of system-level anomalies such as deadlocks.

A further avenue for research pertains to the scalability of the simulation framework. To date, a

fixed number of simulators has been employed, resulting in uneven load distribution during simula-

tions. Exploring dynamic scaling strategies could mitigate this inefficiency and unlock new levels of

performance.

Declaration on Generative AI

During the preparation of this work, the authors used . . .

• . . . Bing Translate in order to: Translate Text.

• . . .DeepL in order to: Translate Text.

• . . .ChatGPT in order to: Rephrasing.

• . . .Grammarly in order to: Grammar and spelling check, Repharsing.

After using these tool(s)/service(s), the authors reviewed and edited the content as needed and take full

responsibility for the publication’s content.

References

[1] R. Fujimoto, Parallel and distributed simulation, in: Proceedings of the 2015 Winter Simulation

Conference, Huntington Beach, CA, USA, December 6-9, 2015, IEEE/ACM, 2015, pp. 45–59. URL:

https://doi.org/10.1109/WSC.2015.7408152. doi:10.1109/WSC.2015.7408152.

[2] R. M. Fujimoto, Research challenges in parallel and distributed simulation, ACM Transactions on

Modeling and Computer Simulation (TOMACS) 26 (2016) 1–29.

[3] R. M. Fujimoto, Development of the parallel and distributed simulation field, Simul. 100 (2024) 1197–

1223. URL: https://doi.org/10.1177/00375497241261407. doi:10.1177/00375497241261407.

[4] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of dependable

and secure computing, IEEE transactions on dependable and secure computing 1 (2004) 11–33.

[5] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, D. B. Johnson, A survey of rollback-recovery protocols in

message-passing systems, ACM Computing Surveys (CSUR) 34 (2002) 375–408.

[6] G. D’Angelo, S. Ferretti, M. Marzolla, Fault tolerant adaptive parallel and distributed simulation

through functional replication, Simulation Modelling Practice and Theory 93 (2019) 192–207.

[7] R. Budde, K. Kautz, K. Kuhlenkamp, H. Züllighoven, What is prototyping?, Information Technology

& People 6 (1990) 89–95.

[8] G. Pomberger, W. Pree, A. Stritzinger, Methoden und Werkzeuge für das Prototyping und ihre

Integration, Inform., Forsch. Entwickl. 7 (1992) 49–61.

[9] T. Wilde, T. Hess, Forschungsmethoden der Wirtschaftsinformatik, Wirtschaftsinformatik 4 (2007)

280–287.

[10] L. Clasen, S. Bartelt, Y. Stahl, D. Moldt, Distributed P/T Net Simulation Prototypes Based on Event

Streaming, in: M. Köhler-Bußmeier, D. Moldt, H. Rölke (Eds.), Proceedings of the International

Workshop on Petri Nets and Software Engineering 2024 co-located with the 45th International

Conference on Application and Theory of Petri Nets and Concurrency (PETRI NETS 2024), June

24 - 25, 2024, Geneva, Switzerland, volume 3730 of CEUR Workshop Proceedings, CEUR-WS.org,

2024, pp. 192–216. URL: https://ceur-ws.org/Vol-3730.

76

https://doi.org/10.1109/WSC.2015.7408152
http://dx.doi.org/10.1109/WSC.2015.7408152
https://doi.org/10.1177/00375497241261407
http://dx.doi.org/10.1177/00375497241261407
https://ceur-ws.org/Vol-3730


Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

[11] O. Kummer, F. Wienberg, M. Duvigneau, L. Cabac, M. Haustermann, D. Mosteller, Renew – the

Reference Net Workshop, 2023. URL: http://www.renew.de/, release 4.1.

[12] Oracle, Java Documentation, 2025. URL: https://docs.oracle.com/en/java/, accessed: 2025-04-25.

[13] Gradle, Gradle Documentation, 2025. URL: https://docs.gradle.org/, accessed: 2025-04-25.

[14] M. Duvigneau, Konzeptionelle Modellierung von Plugin-Systemen mit Petrinetzen, volume 4

of Agent Technology – Theory and Applications, Logos Verlag, Berlin, 2010. URL: http://www.

logos-verlag.de/cgi-bin/engbuchmid?isbn=2561&lng=eng&id=.

[15] L. Clasen, D. Moldt, M. Hansson, S. Willrodt, L. Voß, Enhancement of Renew to Version 4.0

using JPMS, in: M. Köhler-Bußmeier, D. Moldt, H. Rölke (Eds.), Proceedings of the International

Workshop on Petri Nets and Software Engineering 2022 co-located with the 43rd International

Conference on Application and Theory of Petri Nets and Concurrency (PETRI NETS 2022), Bergen,

Norway, June 20th, 2022, volume 3170 of CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp.

165–176. URL: https://ceur-ws.org/Vol-3170.

[16] D. Moldt, J. Johnsen, R. Streckenbach, L. Clasen, M. Haustermann, A. Heinze, M. Hansson, M. Feld-

mann, K. Ihlenfeldt, RENEW: Modularized Architecture and New Features, in: L. Gomes, R. Lorenz

(Eds.), Application and Theory of Petri Nets and Concurrency - 44th International Conference,

PETRI NETS 2023, Lisbon, Portugal, June 25-30, 2023, Proceedings, volume 13929 of Lecture Notes
in Computer Science, Springer Nature Switzerland AG, Cham, Switzerland, 2023, pp. 217–228. URL:

https://doi.org/10.1007/978-3-031-33620-1_12.

[17] O. Kummer, Referenznetze, Logos Verlag, Berlin, 2002. URL: http://www.logos-verlag.de/cgi-bin/

engbuchmid?isbn=0035&lng=eng&id=.

[18] J. H. Röwekamp, M. Taube, P. Mohr, D. Moldt, Cloud Native Simulation of Reference Nets, in:

M. Köhler-Bußmeier, E. Kindler, H. Rölke (Eds.), Proceedings of the International Workshop on

Petri Nets and Software Engineering 2021 co-located with the 42nd International Conference on

Application and Theory of Petri Nets and Concurrency (PETRI NETS 2021), Paris, France, June

25th, 2021 (due to COVID-19: virtual conference), volume 2907 of CEUR Workshop Proceedings,
CEUR-WS.org, 2021, pp. 85–104. URL: http://ceur-ws.org/Vol-2907.

[19] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, T. Risberg, A. Arendsen, D. Davison,

D. Kopylenko, M. Pollack, T. Templier, E. Vervaet, P. Tung, B. Hale, A. Colyer, J. Lewis, C. Leau,

M. Fisher, S. Brannen, R. Laddad, A. Poutsma, C. Beams, T. Abedrabbo, A. Clement, D. Syer,

O. Gierke, R. Stoyanchev, P. Webb, R. Winch, B. Clozel, S. Nicoll, S. Deleuze, J. Bryant, M. Paluch,

Spring Framework Reference Documentation, https://docs.spring.io/spring-framework/reference/

index.html, 2025. Version 6.2.6, abgerufen am 25. April 2025.

[20] L. Voß, S. Willrodt, D. Moldt, M. Haustermann, Between Expressiveness and Verifiability: P/T-nets

with Synchronous Channels and Modular Structure, in: M. Köhler-Bußmeier, D. Moldt, H. Rölke

(Eds.), Proceedings of the International Workshop on Petri Nets and Software Engineering 2022

co-located with the 43rd International Conference on Application and Theory of Petri Nets and

Concurrency (PETRI NETS 2022), Bergen, Norway, June 20th, 2022, volume 3170 of CEUR Workshop
Proceedings, CEUR-WS.org, 2022, pp. 40–59. URL: https://ceur-ws.org/Vol-3170.

[21] P. Fettke, W. Reisig, Once and for all: how to compose modules – The composition calculus, 2024.

URL: https://arxiv.org/abs/2408.15031. arXiv:2408.15031.

[22] J. Kreps, N. Narkhede, J. Rao, et al., Kafka: A distributed messaging system for log processing, in:

NetDB 2011: 6th Workshop on Networking meets Databases, volume 11, Athens, Greece, 2011, pp.

1–7.

[23] A. S. Foundation, Apache Kafka Documentation, 2025. URL: https://kafka.apache.org/

documentation/, accessed: 2025-01-21.

[24] N. Garg, Apache Kafka, Packt Publishing Birmingham, UK, 2013.

[25] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan, P. Bodík, M. Musu-

vathi, Z. Zhang, L. Zhou, Failure Recovery: When the Cure Is Worse Than the Disease, in:

HotOS, USENIX, 2013, pp. 1–6. URL: https://www.microsoft.com/en-us/research/publication/

failure-recovery-when-the-cure-is-worse-than-the-disease/.

[26] Calvanese, Diego, Types of program errors, 2006. URL: https://www.inf.unibz.it/~calvanese/

77

http://www.renew.de/
https://docs.oracle.com/en/java/
https://docs.gradle.org/
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2561& lng=eng&id=
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2561& lng=eng&id=
https://ceur-ws.org/Vol-3170
https://doi.org/10.1007/978-3-031-33620-1_12
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=0035& lng=eng&id=
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=0035& lng=eng&id=
http://ceur-ws.org/Vol-2907
https://docs.spring.io/spring-framework/reference/index.html
https://docs.spring.io/spring-framework/reference/index.html
https://ceur-ws.org/Vol-3170
https://arxiv.org/abs/2408.15031
http://arxiv.org/abs/2408.15031
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://www.microsoft.com/en-us/research/publication/ failure-recovery-when-the-cure-is-worse-than-the-disease/
https://www.microsoft.com/en-us/research/publication/ failure-recovery-when-the-cure-is-worse-than-the-disease/
https://www.inf.unibz.it/~calvanese/teaching/06-07-ip/ lecture-notes/uni10/node2.html
https://www.inf.unibz.it/~calvanese/teaching/06-07-ip/ lecture-notes/uni10/node2.html


Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

teaching/06-07-ip/lecture-notes/uni10/node2.html.

[27] M. Ghanavati, D. Costa, A. Andrzejak, J. Seboek, Memory and resource leak defects in java

projects: an empirical study, in: Proceedings of the 40th International Conference on Software

Engineering: Companion Proceeedings, ICSE ’18, Association for Computing Machinery, New

York, NY, USA, 2018, p. 410–411. URL: https://doi.org/10.1145/3183440.3195032. doi:10.1145/
3183440.3195032.

[28] D. Giebas, R. Wojszczyk, Deadlocks Detection in Multithreaded Applications Based on Source

Code Analysis, Applied Sciences 10 (2020). URL: https://www.mdpi.com/2076-3417/10/2/532.

doi:10.3390/app10020532.

[29] B. Schroeder, G. A. Gibson, A Large-Scale Study of Failures in High-Performance Computing

Systems, IEEE Transactions on Dependable and Secure Computing 7 (2010) 337–350. doi:10.
1109/TDSC.2009.4.

[30] hello2morrow GmbH, SonarGraph – Static Analysis and Architecture Validation Tool, https:

//www.hello2morrow.com/, 2024. Accessed on June 1, 2025.

[31] B. Pugh, D. Hovemeyer, FindBugs – Static Bug Detector for Java, https://findbugs.sourceforge.net/,

2015. Accessed on June 1, 2025.

[32] J. Seward, V. Developers, Valgrind – Debugging and Profiling Tools, https://valgrind.org/, 2024.

Accessed on June 1, 2025.

[33] F. S. Foundation, GDB: The GNU Project Debugger, https://sourceware.org/gdb/, 2024. Accessed

on June 1, 2025.

[34] G. LLC, AddressSanitizer – A Fast Memory Error Detector, https://github.com/google/sanitizers/

wiki/AddressSanitizer, 2024. Accessed on June 1, 2025.

[35] P. Authors, Prometheus – Monitoring System & Time Series Database, https://prometheus.io/,

2024. Accessed on June 1, 2025.

[36] W. Hasselbring, A. van Hoorn, Kieker: A monitoring framework for software engineering

research, Software Impacts 5 (2020) 100019. URL: https://www.sciencedirect.com/science/article/

pii/S2665963820300063. doi:https://doi.org/10.1016/j.simpa.2020.100019.

[37] A. Ledmi, H. Bendjenna, S. M. Hemam, Fault Tolerance in Distributed Systems: A Survey, in: 2018

3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), 2018, pp. 1–5.

doi:10.1109/PAIS.2018.8598484.

[38] A. Kumar, D. Malhotra, Study of Various Proactive Fault Tolerance Techniques in Cloud Computing,

International Journal of Computer Sciences and Engineering 06 (2018) 81–87. doi:10.26438/
ijcse/v6si3.8187.

[39] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, J. Dongarra, Post-failure recovery of MPI

communication capability: Design and rationale, The International Journal of High Perfor-

mance Computing Applications 27 (2013) 244–254. URL: https://doi.org/10.1177/1094342013488238.

doi:10.1177/1094342013488238.

[40] A. Dagur, R. Yadav, R. Ranvijay, Fault Tolerance in Real Time Distributed System, International

Journal on Computer Science and Engineering 3 (2011).

[41] J.-C. Laprie, et al., From dependability to resilience, in: 38th IEEE/IFIP Int. Conf. On dependable

systems and networks, 2008, pp. G8–G9. URL: https://2008.dsn.org/fastabs/dsn08fastabs_laprie.pdf.

[42] S. Pradhan, A. Dubey, T. Levendovszky, P. S. Kumar, W. A. Emfinger, D. Balasubramanian, W. Otte,

G. Karsai, Achieving resilience in distributed software systems via self-reconfiguration, Journal of

Systems and Software 122 (2016) 344–363. URL: https://www.sciencedirect.com/science/article/pii/

S0164121216300590. doi:https://doi.org/10.1016/j.jss.2016.05.038.

[43] The Kubernetes Authors, Kubernetes, 2025. URL: https://kubernetes.io/docs.

[44] A. M. Potdar, N. D G, S. Kengond, M. M. Mulla, Performance Evaluation of Docker Container

and Virtual Machine, Procedia Computer Science 171 (2020) 1419–1428. URL: https://www.

sciencedirect.com/science/article/pii/S1877050920311315. doi:https://doi.org/10.1016/j.
procs.2020.04.152, third International Conference on Computing and Network Communica-

tions (CoCoNet’19).

[45] D. Inc., Docker – Empowering App Development for Developers, https://www.docker.com/, 2024.

78

https://www.inf.unibz.it/~calvanese/teaching/06-07-ip/ lecture-notes/uni10/node2.html
https://www.inf.unibz.it/~calvanese/teaching/06-07-ip/ lecture-notes/uni10/node2.html
https://doi.org/10.1145/3183440.3195032
http://dx.doi.org/10.1145/3183440.3195032
http://dx.doi.org/10.1145/3183440.3195032
https://www.mdpi.com/2076-3417/10/2/532
http://dx.doi.org/10.3390/app10020532
http://dx.doi.org/10.1109/TDSC.2009.4
http://dx.doi.org/10.1109/TDSC.2009.4
https://www.hello2morrow.com/
https://www.hello2morrow.com/
https://findbugs.sourceforge.net/
https://valgrind.org/
https://sourceware.org/gdb/
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://prometheus.io/
https://www.sciencedirect.com/science/article/pii/ S2665963820300063
https://www.sciencedirect.com/science/article/pii/ S2665963820300063
http://dx.doi.org/https://doi.org/10.1016/j.simpa.2020.100019
http://dx.doi.org/10.1109/PAIS.2018.8598484
http://dx.doi.org/10.26438/ijcse/v6si3.8187
http://dx.doi.org/10.26438/ijcse/v6si3.8187
https://doi.org/10.1177/1094342013488238
http://dx.doi.org/10.1177/1094342013488238
https://2008.dsn.org/fastabs/dsn08fastabs_laprie.pdf
https://www.sciencedirect.com/science/article/pii/ S0164121216300590
https://www.sciencedirect.com/science/article/pii/ S0164121216300590
http://dx.doi.org/https://doi.org/10.1016/j.jss.2016.05.038
https://kubernetes.io/docs
https://www.sciencedirect.com/science/article/pii/ S1877050920311315
https://www.sciencedirect.com/science/article/pii/ S1877050920311315
http://dx.doi.org/https://doi.org/10.1016/j.procs.2020.04.152
http://dx.doi.org/https://doi.org/10.1016/j.procs.2020.04.152
https://www.docker.com/


Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

Accessed on June 1, 2025.

[46] I. Red Hat, Podman – A Daemonless Container Engine for Developers, https://docs.podman.io/en/

latest/, 2024. Accessed on June 1, 2025.

[47] O. C. Initiative, OCI – Open Container Initiative Specifications, https://opencontainers.org/, 2024.

Accessed on June 1, 2025.

[48] M. Pace, Zero Trust Networks with Istio, Master’s thesis, Politecnico Di Torino, 2021. URL:

https://webthesis.biblio.polito.it/21170/.

[49] Open Container Initiative, OCI Runtime Spec, 2025. URL: https://github.com/opencontainers/

runtime-spec/blob/main/runtime.md.

[50] C. Albuquerque, K. Relvas, F. F. Correia, K. Brown, Proactive monitoring design patterns for

cloud-native applications, in: Proceedings of the 27th European Conference on Pattern Languages

of Programs, EuroPLop ’22, Association for Computing Machinery, New York, NY, USA, 2023, pp.

1–13. URL: https://doi.org/10.1145/3551902.3551961. doi:10.1145/3551902.3551961.

[51] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, C. Maltzahn, Ceph: A Scalable, High-

Performance Distributed File System, in: 7th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 06), USENIX Association, Seattle, WA, 2006, pp. 307–320. URL: https:

//www.usenix.org/conference/osdi-06/ceph-scalable-high-performance-distributed-file-system.

[52] Rook, Authors, Rook Documentation, 2025. URL: https://rook.io/docs/rook/latest-release, accessed:

2025-04-25.

[53] L. Mercl, J. Pavlik, Public Cloud Kubernetes Storage Performance Analysis, in: N. T.

Nguyen, R. Chbeir, E. Exposito, P. Aniorté, B. Trawiński (Eds.), Computational Collective In-

telligence, Springer International Publishing, Cham, 2019, pp. 649–660. URL: https://doi.org/10.

1007/978-3-030-28374-2_56. doi:10.1007/978-3-030-28374-2_56.

[54] C. N. C. Foundation, CNCF – Cloud Native Computing Foundation, https://www.cncf.io/, 2024.

Accessed on June 1, 2025.

[55] T. L. Foundation, The Linux Foundation – Supporting Open Source Innovation, https://www.

linuxfoundation.org/, 2024. Accessed on June 1, 2025.

[56] The Linux Foundation, Cloud Native Landscape, 2025. URL: https://landscape.cncf.io/.

[57] Ceph, Authors, Ceph Documentation: Reef Release, 2025. URL: https://docs.ceph.com/en/reef/,

accessed: 2025-04-25.

[58] Y. Breitbart, H. Garcia-Molina, A. Silberschatz, Overview of multidatabase transaction management,

in: CASCON First Decade High Impact Papers, CASCON ’10, IBM Corp., USA, 2010, p. 93–126.

URL: https://doi.org/10.1145/1925805.1925811.

[59] T. Haerder, A. Reuter, Principles of transaction-oriented database recovery, ACM computing

surveys (CSUR) 15 (1983) 287–317.

[60] A. Kemper, A. Eickler, Datenbanksysteme – Eine Einführung, 8 ed., Oldenbourg Verlag, 2011.

[61] E. A. Brewer, Towards robust distributed systems, in: PODC, volume 7, Portland, OR, 2000, pp.

343–477.

[62] D. Moldt, J. H. Röwekamp, M. Simon, A Simple Prototype of Distributed Execution of Reference

Nets Based on Virtual Machines, in: R. Bergenthum, E. Kindler (Eds.), Algorithms and Tools for

Petri Nets Proceedings of the Workshop AWPN 2017, Kgs. Lyngby, Denmark October 19-20, 2017,

DTU Compute Technical Report 2017-06, 2017, pp. 51–57.

[63] J. H. Röwekamp, D. Moldt, M. Feldmann, Investigation of Containerizing Distributed Petri Net

Simulations, in: D. Moldt, E. Kindler, H. Rölke (Eds.), Petri Nets and Software Engineering.

International Workshop, PNSE’18, Bratislava, Slovakia, June 25-26, 2018. Proceedings, volume

2138 of CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp. 133–142. URL: http://ceur-ws.org/

Vol-2138/.

[64] J. H. Röwekamp, Investigating the Java Spring Framework to Simulate Reference Nets with Renew,

in: R. Lorenz, J. Metzger (Eds.), Algorithms and Tools for Petri Nets, number 2018-02 in Reports /

Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg, 2018, pp.

41–46. URL: https://opus.bibliothek.uni-augsburg.de/opus4/41861.

[65] J. H. Röwekamp, D. Moldt, RenewKube: Reference Net Simulation Scaling with Renew and

79

https://docs.podman.io/en/latest/
https://docs.podman.io/en/latest/
https://opencontainers.org/
https://webthesis.biblio.polito.it/21170/
https://github.com/opencontainers/runtime-spec/blob/main/runtime.md
https://github.com/opencontainers/runtime-spec/blob/main/runtime.md
https://doi.org/10.1145/3551902.3551961
http://dx.doi.org/10.1145/3551902.3551961
https://www.usenix.org/conference/osdi-06/ceph-scalable- high-performance-distributed-file-system
https://www.usenix.org/conference/osdi-06/ceph-scalable- high-performance-distributed-file-system
https://rook.io/docs/rook/latest-release
https://doi.org/10.1007/978-3-030-28374-2_56
https://doi.org/10.1007/978-3-030-28374-2_56
http://dx.doi.org/10.1007/978-3-030-28374-2_56
https://www.cncf.io/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://landscape.cncf.io/
https://docs.ceph.com/en/reef/
https://doi.org/10.1145/1925805.1925811
http://ceur-ws.org/Vol-2138/
http://ceur-ws.org/Vol-2138/
https://opus.bibliothek.uni-augsburg.de/opus4/41861


Laif-Oke Clasen et al. CEUR Workshop Proceedings 60–80

Kubernetes, in: S. Donatelli, S. Haar (Eds.), Application and Theory of Petri Nets and Concurrency

- 40th International Conference, PETRI NETS 2019, Aachen, Germany, June 23-28, 2019, Proceedings,

volume 11522 of Lecture Notes in Computer Science, Springer, 2019, pp. 69–79. URL: https://doi.org/

10.1007/978-3-030-21571-2_4.

[66] J. H. Röwekamp, M. Feldmann, D. Moldt, M. Simon, Simulating Place / Transition Nets by a

Distributed, Web Based, Stateless Service, in: D. Moldt, E. Kindler, M. Wimmer (Eds.), Petri Nets

and Software Engineering. International Workshop, PNSE’19, Aachen, Germany, June 24, 2019.

Proceedings, volume 2424 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 163–164. URL:

http://CEUR-WS.org/Vol-2424.

[67] J. H. Röwekamp, M. Buchholz, D. Moldt, Petri Net Sagas, in: M. Köhler-Bußmeier, E. Kindler,

H. Rölke (Eds.), Proceedings of the International Workshop on Petri Nets and Software Engineering

2021 co-located with the 42nd International Conference on Application and Theory of Petri Nets

and Concurrency (PETRI NETS 2021), Paris, France, June 25th, 2021 (due to COVID-19: virtual

conference), volume 2907 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 65–84. URL:

http://ceur-ws.org/Vol-2907.

[68] J. H. Röwekamp, Skalierung von nebenläufigen und verteilten Simulationssystemen für inter-

agierende Agenten, Ph.D. thesis, University of Hamburg, Department of Informatics, Vogt-Kölln

Str. 30, D-22527 Hamburg, 2023. URL: https://ediss.sub.uni-hamburg.de/handle/ediss/10040.

[69] H. Rölke, Modellierung von Agenten und Multiagentensystemen – Grundlagen und Anwendungen,

volume 2 of Agent Technology – Theory and Applications, Logos Verlag, Berlin, 2004. URL: http:

//logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng&id=.

[70] G. S. Thomas, J. Zahorjan, Parallel simulation of performance petri nets: Extending the domain of

parallel simulation, Technical Report, Institute of Electrical and Electronics Engineers (IEEE), 1991.

[71] H. H. Ammar, S. Deng, Time warp simulation of stochastic Petri nets, in: Proceedings of the

Fourth International Workshop on Petri Nets and Performance Models PNPM91, IEEE, 1991, pp.

186–195.

[72] G. Chiola, A. Ferscha, Distributed simulation of petri nets, IEEE Parallel and Distributed Technology

1 (1993) 33–50.

[73] A. Ferscha, Adaptive time warp simulation of timed petri nets, IEEE Transactions on Software

Engineering 25 (1999) 237–257.

[74] L. Clasen, C. Nayci, E. Nacyi, J. Middendorf, T. Mack, Investigations Towards Dynamic Scaling

of Distributed P/T Nets, in: M. Köhler-Bußmeier, D. Moldt, H. Rölke (Eds.), Proceedings of the

International Workshop on Petri Nets and Software Engineering 2025 co-located with the 46th

International Conference on Application and Theory of Petri Nets and Concurrency (PETRI NETS

2025), June 22 - 27, 2025, Paris, France, CEUR Workshop Proceedings, CEUR-WS.org, 2025.

80

https://doi.org/10.1007/978-3-030-21571-2_4
https://doi.org/10.1007/978-3-030-21571-2_4
http://CEUR-WS.org/Vol-2424
http://ceur-ws.org/Vol-2907
https://ediss.sub.uni-hamburg.de/handle/ediss/10040
http://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng& id=
http://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng& id=

	1 Introduction
	2 Foundations
	2.1 Renew
	2.2 Distributed P/T Nets
	2.3 Failures
	2.4 Resilience
	2.5 Kubernetes

	3 Problem Description
	4 Distributed System
	5 Detecting Failures of Simulators
	5.1 Requirements
	5.2 Specification
	5.3 Design
	5.4 Implementation
	5.5 Evaluation

	6 Recovering Failures of Simulators - DPTNResiliency
	6.1 Requirements
	6.2 Specification
	6.3 Design
	6.4 Implementation
	6.5 Evaluation

	7 Producer-Storage-Consumer Scenario
	7.1 Setup
	7.2 Execution
	7.3 Observations

	8 Discussion
	9 Related Work
	10 Conclusion
	10.1 Summary
	10.2 Future Work


