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Abstract

In this paper we investigate process mining for nets-within-nets. Nets-within-nets, also known as nets-as-tokens,

describe formalisms, where the tokens of a Petri net are nets again. Therefore, a net is located as a token inside

a place and this place acts a local context for this net-token. Regarding process mining this leads to scenarios

where we like to mine nested structures. Nested structures arises naturally in many applications, i.e., robots are

acting within the context a factory or workflows are processed within an organisation.

Unfortunately, existing process mining algorithms generate flat models, which do not express nesting or

execution context. Since no mining algorithm especially dedicated to nets-within-nets exists, we try to adapt

existing technology as far as possible, as a first step.

In this contribution we compare two approaches to design a process mining techniques for nets-within-nets

built upon existing algorithms: The first, so-called compositional approach, splits the log file into parts and

mines Petri nets independently for each part. The nets-within-nets models is then composed of these separate

Petri nets. The second, decompositional approach, is just the other way around. It mines one single flat Petri

net model from the whole log and then decomposes the net into sub-nets that constitute the parts of the desired

nets-within-nets model.
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1. Mining Nets-within-Nets

Process mining [1] is – beyond any doubt – a success story, especially in the combination with Petri

nets as a target formalism. It demonstrates the necessity for a good theoretical foundation when solving

realistic problems.

In our research on adaptive systems we have experienced the fact that the concept of a context is

extremely useful. However, context is a concept that is very hard to capture with flat net models, like p/t

nets. In process algebra this gave rise to mobility calculi like the Ambient Calculus [2] or the 𝜋-calculus

[3]. For process mining the target model is usually not process algebra, but a Petri net model. Therefore,

we like to step from flat models towards nested model for process mining.

In this paper, we try to extend process mining onto nets-within-nets [4], i.e. Petri nets where the

tokens of are nets again. This concept directly expresses the notion of context as the firing of a net-

token’s transition happens within a place of the surrounding system net. For example, the system

might describe some physical entity, like a factory with robots, and the net-tokens workpieces being

process within this factory. Moving net-tokens around expresses mobility of workpieces in a very

natural way [5]. Another example is an adaptive system executing some process plan and adaptation

is allowed to modify the process plan at run-time, e.g. by following the well-known MAPE-K pattern

[6] (monitor-analyse-plan-execute with knowledge). For this scenario the system net describes the

MAPE-K loop and the process plan is a net-token being “moved” within the loop (cf. our model in [7]).

Our setting is closely connected to the recent approaches of object-centric process mining [8] with the

specialty that the in our setting we consider active(!) objects, i.e. objects with its own process thread,

like assumed e.g. for actor programming [9].

To reach our aim, we try to re-use existing process mining technology [1] to mine nets-within-nets.

In our setting we assume that our event log is generated by a very simple nets-within-nets formalism,
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i.e., by an elementary object net system (Eos) [10]. An Eos consists of a system net (which is a p/t net)

that contains object nets as tokens (which are called net-tokens). The transitions of these two levels are

related by synchronisation.

A central question that arises is how the mining process reflects the compositional nesting structure

of nets-within-nets. Here, we study two obvious candidates, which we call compositional and

decompositional. For the compositional approach we filter the log file 𝐿 into several fragments

𝐿𝑖 belonging to the system’s parts (like factory and robots), apply processing mining to each 𝐿𝑖

independently, and finally compose the mined nets into an Eos OS . For the decompositonal approach

we start with the complete log 𝐿 and apply mining techniques to obtain a Petri net 𝑁 . In the basic case

the net 𝑁 generated is a p/t net. We already know from our work on Eos in [10] that – under certain

conditions – the behaviour of an Eos OS can be approximated by a p/t net Rn(OS ), called the reference

net. The major task is then to decompose the reference net into its constituting parts, i.e., the system net

and the object nets.

At this very early step of our investigation we will investigate whether one of the two approaches

seems to be more promising than the other.

The paper has the following structure: Section 2 discusses other approaches to re-construct hierarchi-

cal processes. After that, we start with the foundations of our work. Section 3 introduces the formalism

of Elementary Object Net Systems (Eos). Section 4 explains in more detail the two mining approaches

we identified here: the compositional and the decompositional method, which are based on existing

algorithms. We evaluate our approach in Section 5, where we study some examples. The work ends

with a conclusion.

2. Related Work

Mining hierarchical and nested process models has attracted increasing interest in the process mining

community, as many real-world processes exhibit inherent hierarchical structure. Several approaches

have been proposed to extend flat process discovery techniques to support hierarchy.

Xixi Lu et al. introduced Hierarchical Process Trees and techniques to discover them from event

logs [11]. Their approach recursively detects nested behavior and constructs a tree-based process

model with hierarchical operators. Similarly, Sander Leemans et al. [12] introduced multi-level logs

and generalised hierarchical models to discover simpler models from existing logs. Other work has

addressed modular and multi-level process discovery. Begicheva et al. [13] present an algorithm for

discovering hierarchical process models represented as two-level workflow nets. The algorithm is based

on predefined event clustering.

In the domain of Petri nets, several techniques exist for process discovery, but most generate flat

models. While hierarchical Petri nets and especially object nets provide natural means to represent

nesting, discovery techniques for these extended net types are still in their infancy. Our work builds

upon the developments mentioned above by addressing the challenge of discovering nets-within-nets,

a more expressive hierarchical formalism where nets act as tokens in other nets.

Compared to existing hierarchical discovery approaches, our contribution specifically targets mining

execution context and nested token dynamics — as required by nets-within-nets — rather than purely

structural hierarchy.

3. Elementary Object Net Systems (Eos)

In this Section we recall the definition of Eos as presented in the survey [10]. Let MS (𝐷) denote

the set of multisets over a set 𝐷. A p/t net is a tuple 𝑁 = (𝑃, 𝑇,pre,post), such that 𝑃 is a set of

places, 𝑇 is a set of transitions, with 𝑃 ∩ 𝑇 = ∅, and pre,post : 𝑇 → MS (𝑃 ) are the pre- and

post-condition functions. An elementary object system (Eos) is composed of a system net, which is a

p/t net
̂︀𝑁 = ( ̂︀𝑃 , ̂︀𝑇 ,pre,post) and a set of object nets 𝒩 = {𝑁1, . . . , 𝑁𝑛}, which are p/t nets given

as 𝑁 = (𝑃𝑁 , 𝑇𝑁 ,pre𝑁 ,post𝑁 ), where 𝑁 ∈ 𝒩 . In extension we assume that all sets of nodes (places
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and transitions) are pairwise disjoint. Moreover we assume
̂︀𝑁 ̸∈ 𝒩 and the existence of the object net

∙ ∈ 𝒩 , which has no places and no transitions and is used to model anonymous, so called black tokens.

The system net places are typed by 𝑑 : ̂︀𝑃 → 𝒩 with the meaning, that a place ̂︀𝑝 ∈ ̂︀𝑃 of the system

net with 𝑑(̂︀𝑝) = 𝑁 may contain only net-tokens of the object net type 𝑁 .
1

No place of the system net

is mapped to the system net itself since
̂︀𝑁 ̸∈ 𝒩 .

Figure 1: An Elementary Object Net System

Nested Markings Since the tokens of an Eos are instances of object nets, a marking of an Eos is a

nested multiset. A marking of an Eos OS is denoted 𝜇 =
∑︀|𝜇|

𝑘=1(̂︀𝑝𝑘,𝑀𝑘), where ̂︀𝑝𝑘 is a place of the

system net and 𝑀𝑘 is the marking of a net-token with type 𝑑(̂︀𝑝𝑘). To emphasise the nesting, markings

are also denoted as 𝜇 =
∑︀|𝜇|

𝑘=1 ̂︀𝑝𝑘[𝑀𝑘]. For example, the marking of Fig. 1 is 𝜇 = ̂︀𝑝1[𝑞1]. The set of all

markings which are syntactically consistent with the typing 𝑑 is denoted ℳ, where 𝑑−1(𝑁) ⊆ ̂︀𝑃 is

the set of system net places of the type 𝑁 :

ℳ := MS
(︁⋃︁

𝑁∈𝒩

(︀
𝑑−1(𝑁)×MS (𝑃𝑁 )

)︀)︁
(1)

We define the partial order ⊑ on nested multisets by setting 𝜇1 ⊑ 𝜇2 iff ∃𝜇 : 𝜇2 = 𝜇1 + 𝜇.

Events Analogously to markings, which are nested multisets 𝜇, the events of an Eos are also nested.

An Eos allows three different kinds of events – as illustrated by the Eos in Fig. 1.

1. System-autonomous: The system net transition 𝑡 fires autonomously which moves the net-token

from 𝑝1 to 𝑝2 without changing its marking.

2. Object-autonomous: The object net fires transition 𝑡1, which “moves” the black token from 𝑞1 to

𝑞2. The object net itself remains at its location 𝑝1.

3. Synchronisation: The system net transition 𝑡 fires synchronously with 𝑡1 in the object net.

Whenever synchronisation is necessary, autonomous actions are forbidden.

The set of events is denoted Θ. Events are formalised as a pair ̂︀𝜏 [𝜗], where ̂︀𝜏 is either the transition

that fires in the system net or a special “idle” transition id ̂︀𝑝 (cf. below); and 𝜗 is a function such that

𝜗(𝑁) is the multiset of transitions, which have to fire synchronously with ̂︀𝜏 , (i.e. for each object net

𝑁 ∈ 𝒩 we have 𝜗(𝑁) ∈ MS (𝑇𝑁 )).2

In general ̂︀𝜏 [𝜗] describes a synchronisation, but autonomous events are special subcases: Obviously,

a system-autonomous events is the special case, where 𝜗 = 0 with 0(𝑁) = 0 for all object nets 𝑁 . To

describe an object-autonomous event we assume the set of idle transitions {id ̂︀𝑝 | ̂︀𝑝 ∈ ̂︀𝑃}, where id ̂︀𝑝
formalises object-autonomous firing on the place ̂︀𝑝:

1

In some sense, net-tokens are object nets with its own marking. However, net-tokens should not be considered as instances

of an object net (as in object-oriented programming), since net-tokens do not have an identity. This is reflected by the fact

that the firing rule joins and distributes the net-tokens’ markings.

Instead, all net-tokes of an object net act as a collective entity, like a group. This group can be considered as an object with

identy – an object with its state distributed over the net-tokens. For in in-depth discussion of this semantics cf. [4].

2

In the graphical representation the events are generated by transition inscriptions. For each object net 𝑁 ∈ 𝒩 a system net

transition ̂︀𝑡 is labelled with a multiset of channels
̂︀𝑙(̂︀𝑡)(𝑁) = ch1 + · · ·+ ch𝑛, depicted as ⟨𝑁 :ch1, 𝑁 :ch2, . . .⟩. Similarily,

an object net transition 𝑡 may be labelled with a channel 𝑙𝑁 (𝑡) = ch – depicted as ⟨:ch⟩ whenver there is such a label.

We obtain an event ̂︀𝑡[𝜗] by setting 𝜗(𝑁) := 𝑡1 + · · · + 𝑡𝑛 to be any transition multiset such that the labels match:

𝑙𝑁 (𝑡1) + · · ·+ 𝑙𝑁 (𝑡𝑛) = ̂︀𝑙(̂︀𝑡)(𝑁).
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1. Each idle transition id ̂︀𝑝 has ̂︀𝑝 as a side condition: pre(id ̂︀𝑝) = post(id ̂︀𝑝) := ̂︀𝑝.

2. Each idle transition id ̂︀𝑝 synchronises only with transitions from 𝑁 = 𝑑(̂︀𝑝):
∀̂︀𝜏 [𝜗] ∈ Θ : ̂︀𝜏 = id ̂︀𝑝 =⇒ ∀𝑁 ∈ 𝒩 : (𝜗(𝑁) ̸= 0 ⇐⇒ 𝑁 = 𝑑(̂︀𝑝))

Definition 1. An elementary object system (Eos) is a tuple OS = ( ̂︀𝑁,𝒩 , 𝑑,Θ, 𝜇0), where:

1.
̂︀𝑁 is a p/t net, called the system net.

2. 𝒩 is a finite set of disjoint p/t nets, called object nets.

3. 𝑑 : ̂︀𝑃 → 𝒩 is the typing of the system net places.

4. Θ is the set of events.

5. 𝜇0 ∈ ℳ is the initial marking.

Example Figure 2 shows an Eos with the system net
̂︀𝑁 and the object nets 𝒩 = {𝑁1, 𝑁2}. The system

has four net-tokens: two on place ̂︀𝑝1 and one on ̂︀𝑝2 and ̂︀𝑝3 each. The net-tokens on ̂︀𝑝1 and ̂︀𝑝2 share the

same net structure, but have independent markings. (Ignore the net-tokens above ̂︀𝑡 and on the placeŝ︀𝑝4, ̂︀𝑝5 and ̂︀𝑝5 at this moment, as they illustrate the firing of ̂︀𝑡; they are not part of the marking.)

Figure 2: An Elementary Object Net System – illustrating the Firing of ̂︀𝑡[𝑁1 ↦→ 𝑡1, 𝑁2 ↦→ 𝑡2]

The system net is
̂︀𝑁 = ( ̂︀𝑃 , ̂︀𝑇 ,pre,post), where

̂︀𝑃 = {̂︀𝑝1, . . . , ̂︀𝑝6} and
̂︀𝑇 = {̂︀𝑡}.

We have two object nets 𝑁𝑖 = (𝑃𝑖, 𝑇𝑖,pre𝑖,post𝑖), 𝑖 = 1, 2 with 𝑃1 = {𝑎1, 𝑏1}, 𝑇1 = {𝑡1}, 𝑃2 =
{𝑎2, 𝑏2, 𝑐2}, and 𝑇2 = {𝑡2}.

The typing is 𝑑(̂︀𝑝1) = 𝑑(̂︀𝑝2) = 𝑑(̂︀𝑝4) = 𝑁1 and 𝑑(̂︀𝑝3) = 𝑑(̂︀𝑝5) = 𝑑(̂︀𝑝6) = 𝑁2.

The labelling (not shown in the Figure) generates one event such that ̂︀𝑡 fires synchronously with 𝑡1 and

𝑡2, i.e., we have Θ = {̂︀𝑡[𝑁1 ↦→ 𝑡1, 𝑁2 ↦→ 𝑡2]}.

The initial marking has two net-tokens on ̂︀𝑝1, one on ̂︀𝑝2, and one on ̂︀𝑝3:

𝜇 = ̂︀𝑝1[𝑎1 + 𝑏1] + ̂︀𝑝1[0] + ̂︀𝑝2[𝑎1] + ̂︀𝑝3[𝑎2 + 𝑏2]

Note that the structure is the same for the three net-tokens on ̂︀𝑝1 and ̂︀𝑝2 but the net-tokens’ markings

are different.

Firing Rule The projectionΠ1
on the first component abstracts from the substructure of all net-tokens

for a marking of an Eos:

Π1
(︁∑︁𝑛

𝑘=1
̂︀𝑝𝑘[𝑀𝑘]

)︁
:=

∑︁𝑛

𝑘=1
̂︀𝑝𝑘 (2)
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The projection Π2
𝑁 on the second component is the sum of all net-token markings 𝑀𝑘 of the type

𝑁 ∈ 𝒩 , ignoring their local distribution within the system net:

Π2
𝑁

(︁∑︁𝑛

𝑘=1
̂︀𝑝𝑘[𝑀𝑘]

)︁
:=

∑︁𝑛

𝑘=1
1𝑁 (̂︀𝑝𝑘) ·𝑀𝑘 (3)

where the indicator function 1𝑁 : ̂︀𝑃 → {0, 1} is 1𝑁 (̂︀𝑝) = 1 iff 𝑑(̂︀𝑝) = 𝑁 . Note that Π2
𝑁 (𝜇) results in

a marking of the object net 𝑁 .

A system event ̂︀𝜏 [𝜗] removes net-tokens together with their individual internal markings. Firing the

event replaces a nested multiset 𝜆 ∈ ℳ that is part of the current marking 𝜇, i.e. 𝜆 ⊑ 𝜇, by the nested

multiset 𝜌. Therefore the successor marking is 𝜇′ := (𝜇− 𝜆) + 𝜌. The enabling condition is expressed

by the enabling predicate 𝜑OS (or just 𝜑 whenever OS is clear from the context):

𝜑(̂︀𝜏 [𝜗], 𝜆, 𝜌) ⇐⇒ Π1(𝜆) = pre(̂︀𝜏) ∧Π1(𝜌) = post(̂︀𝜏) ∧
∀𝑁 ∈ 𝒩 : Π2

𝑁 (𝜆) ≥ pre𝑁 (𝜗(𝑁)) ∧
∀𝑁 ∈ 𝒩 : Π2

𝑁 (𝜌) = Π2
𝑁 (𝜆)− pre𝑁 (𝜗(𝑁)) + post𝑁 (𝜗(𝑁))

(4)

With
̂︁𝑀 = Π1(𝜆) and

̂︁𝑀 ′ = Π1(𝜌) as well as 𝑀𝑁 = Π2
𝑁 (𝜆) and 𝑀 ′

𝑁 = Π2
𝑁 (𝜌) for all 𝑁 ∈ 𝒩 the

predicate 𝜑 has the following meaning:

1. The first conjunct expresses that the system net multiset
̂︁𝑀 corresponds to the pre-condition of

the system net transition ̂︀𝜏 , i.e.
̂︁𝑀 = pre(̂︀𝜏).

2. In turn, a multiset
̂︁𝑀 ′

is produced, that corresponds to the post-set of ̂︀𝜏 .

3. A multi-set 𝜗(𝑁) of object net transitions is enabled if the sum 𝑀𝑁 of the net-token markings

(of type 𝑁 ) enable it, i.e. 𝑀𝑁 ≥ pre𝑁 (𝜗(𝑁)).

4. The firing of ̂︀𝜏 [𝜗] must also obey the object marking distribution condition: 𝑀 ′
𝑁 = 𝑀𝑁 −

pre𝑁 (𝜗(𝑁)) + post𝑁 (𝜗(𝑁)), where post𝑁 (𝜗(𝑁))− pre𝑁 (𝜗(𝑁)) is the effect of the object

net’s transitions on the net-tokens.

Note that conditions 1. and 2. assure that only net-tokens relevant for the firing are included in 𝜆
and 𝜌. Conditions 3. and 4. allow for additional tokens in the net-tokens.

For system-autonomous events ̂︀𝑡[0] the enabling predicate 𝜑 can be simplified further. We have

pre𝑁 (0(𝑁)) = post𝑁 (0(𝑁)) = 0. This ensures Π2
𝑁 (𝜆) = Π2

𝑁 (𝜌), i.e. the sum of markings in the

copies of a net-token is preserved w.r.t. each type 𝑁 . This condition ensures the existence of linear

invariance properties

Analogously, for an object-autonomous event we have an idle-transition ̂︀𝜏 = id ̂︀𝑝 for the system net

and the first and the second conjunct is: Π1(𝜆) = pre(id ̂︀𝑝) = ̂︀𝑝 = post(id ̂︀𝑝) = Π1(𝜌). So, there is an

addend 𝜆 = ̂︀𝑝[𝑀 ] in 𝜇 with 𝑑(̂︀𝑝) = 𝑁 and 𝑀 enables 𝜗(𝑁).

Definition 2 (Firing Rule). Let OS be an Eos and 𝜇, 𝜇′ ∈ ℳ markings. The event ̂︀𝜏 [𝜗] is enabled in 𝜇
for the mode (𝜆, 𝜌) ∈ ℳ2

iff 𝜆 ⊑ 𝜇 ∧ 𝜑(̂︀𝜏 [𝜗], 𝜆, 𝜌) holds.

An event ̂︀𝜏 [𝜗] that is enabled in 𝜇 for the mode (𝜆, 𝜌) can fire: 𝜇
̂︀𝜏 [𝜗](𝜆,𝜌)−−−−−→

OS
𝜇′

. The resulting successor

marking is defined as 𝜇′ = 𝜇− 𝜆+ 𝜌.

Note that the firing rule makes no a-priori assumptions about how to distribute the object net

markings onto the generated net-tokens. Therefore we need the mode (𝜆, 𝜌) to formulate the firing of̂︀𝜏 [𝜗] in a functional way.

As for p/t nets the firing rule has several nice properties [10]: Firing enjoys monotonicity, it is

symmetric when inverting arc directions, and when projecting a firing sequence of an Eos onto the

system net we obtain a valid firing sequence of the system net considered as a p/t net.

Example Consider the Eos of Figure 2 again. The current marking 𝜇 of the Eos enables ̂︀𝑡[𝑁1 ↦→
𝑡1, 𝑁2 ↦→ 𝑡2] in the mode (𝜆, 𝜌), where

𝜇 = ̂︀𝑝1[0] + ̂︀𝑝1[𝑎1 + 𝑏1] + ̂︀𝑝2[𝑎1] + ̂︀𝑝3[𝑎2 + 𝑏2] = ̂︀𝑝1[0] + 𝜆
𝜆 = ̂︀𝑝1[𝑎1 + 𝑏1] + ̂︀𝑝2[𝑎1] + ̂︀𝑝3[𝑎2 + 𝑏2]
𝜌 = ̂︀𝑝4[𝑎1 + 𝑏1 + 𝑏1] + ̂︀𝑝5[0] + ̂︀𝑝6[𝑐2]
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The net-token markings are added by the projections Π2
𝑁 resulting in the markings Π2

𝑁 (𝜆). The

sub-synchronisation generates Π2
𝑁 (𝜌). (The results are shown above and below the transition ̂︀𝑡.) After

the synchronisation we obtain the successor marking 𝜇′
with net-tokens on ̂︀𝑝4, ̂︀𝑝5, and ̂︀𝑝6 as shown in

Figure 2:

𝜇′ = (𝜇− 𝜆) + 𝜌 = ̂︀𝑝1[0] + 𝜌
= ̂︀𝑝1[0] + ̂︀𝑝4[𝑎1 + 𝑏1 + 𝑏1] + ̂︀𝑝5[0] + ̂︀𝑝6[𝑐2]

Note, that we have only presented one mode (𝜆, 𝜌) of the event and that other modes are possible, too.

4. Mining Approaches for Eos

The behaviour of an Eos differs from the system-net (and from the object nets) when considered in

isolation due to the synchronisation; the effect is very similar to modularised p/t nets [14]. To express

this relation of surrounding system net and net-tokens we have defined in [10] the so-called reference

net, which is the p/t net obtained by putting system net and the object nets aside (by a set theoretical

union of places) and use all synchronisations as transistions.

Since the places of all nets in 𝒩 are disjoint by definition, the projections (Π1(𝜇), (Π2
𝑁 (𝜇))𝑁∈𝒩 )

can be identified with the multiset:

Rn(𝜇) := Π1(𝜇) +
∑︁
𝑁∈𝒩

Π2
𝑁 (𝜇)

The Reference Net For each Eos there is an obvious construction of a p/t net, called the reference

net, which is constructed by taking as the set of places the disjoint union of all places and the set of

events as transitions.

Definition 3. Let OS = ( ̂︀𝑁,𝒩 , 𝑑,Θ, 𝜇0) be an Eos. The reference net Rn(OS ) is defined as the p/t net:

Rn(OS ) =
(︁(︁ ̂︀𝑃 ∪

⋃︁
𝑁∈𝒩

𝑃𝑁

)︁
,Θ,preRn,postRn, Rn(𝜇0)

)︁
where preRn (and analogously: postRn) is defined by:

preRn(̂︀𝜏 [𝜗]) = pre(̂︀𝜏) +∑︁
𝑁∈𝒩

pre𝑁 (𝜗(𝑁))

The net is called reference net because it behaves as if each object net would have been accessed via

pointers and not like a value: A black token on a system net place ̂︀𝑝 is interpreted as a pointer to the

object 𝑁 = 𝑑(̂︀𝑝), where each object net has exactly one instance but several pointers referring to it.

Theorem 1 ([10], Thm. 6.1). Every event ̂︀𝜏 [𝜗] that is activated in OS for (𝜆, 𝜌) is so in Rn(OS ):

𝜇
̂︀𝜏 [𝜗](𝜆,𝜌)−−−−−→

OS
𝜇′ =⇒ Rn(𝜇)

̂︀𝜏 [𝜗]−−−−→
Rn(OS)

Rn(𝜇′)

Please note that while the reference net is sufficient to recover the structure it is not behaviorally

equivalent to the original Eos as every enabled firing sequence of the Eosis enabled in the reference

net, too, but not vice versa – the 𝛼-centauri example serves as a counter example for the latter [10].

The main reason is that the system net places of an Eos act as a context for the object-nets. So, the

reference net is a kind of behavioral over-approximation of an Eos and among the set of all p/t nets

it is the best approximation. However, in the mining context this theoretical significant difference is

of less importance, since we only consider event logs and in logs we can only observe possible Eos

sequences which are also present in the over-approximation. Therefore since we already know that the

sequence has been possible in the Eos it is sufficient to mine this reference net. A major plus point is

that we can re-use existing process mining algorithms. To conclude: The reference net is sufficient to

reconstruct the Eos as long as we have the additional information, which places belong to the system

net and which to the object nets.

86



Heiko Rölke CEUR Workshop Proceedings 81–94

Compositional vs. Decompositional Approaches We like to avoid to develop an Eos-specific

process mining algorithm. Instead, we are interested in re-using existing, well-optimised process mining

algorithms. However, it is not clear which kind of pre-processing of our logs is needed and which

post-processing steps are needed to generate an Eos from the mined nets. We see two alternative

approaches to mine Eos, which differ in the order of mining and (de)composition:

1. (Composition) If we identify from the log the parts belonging to specific object nets 𝑁𝑖, we can

filter the log for each and generate several object nets; analogously for the system net.

Log 𝐿
filter−−→ Logs 𝐿𝑖

mine
𝑛

−−−→ Nets 𝑁𝑖
integrate−−−−−→ Eos OS

However, it is subtle how this integration (or: synchronisation) is carried out in detail, as we have

a many-to-many synchronisation for Eos.

2. (Decomposition) In the second case, we obtain the following tool chain. From the log we mine

a p/t net, which is expected to be the reference net of the generating Eos. By using additional

information which places belong to the surrounding system and which to the nested net-tokens

we decompose the reference net into system- and object-net, i.e., an Eos:

Log 𝐿
mine−−→ Net 𝑁 ≃ Reference-Net Rn(OS )

decompose−−−−−−→ Eos OS

On the pro side we have the whole log information during the mining; on the contrary, we have

to decompose and it is not clear which places belong to which part.

In the following we evaluate both approaches studying a scenario of a mobile robot.

5. Comparative Evaluation of the two Approaches

To evaluate the two approaches to mining nets-within-nets, we use a simple scenario, introduced in the

following section. Afterwards, both approaches are tested and compared.

5.1. Scenario: A Coffee Serving Robot

We study a simplified variant of the mobile household robot [5]. Imagine a typical day of a university

professor. When working, the professor can write papers or give lessons. Thanks to modern communi-

cation techniques, he or she does not have to leave the comfort of the office for these tasks. Every once

a while, the professor needs coffee - other duties certainly have to wait then. To spend leftover funding,

the department our example professor works in has purchased a coffee delivering robot system. The

professor just has to order an coffee and wait for it. The coffee robot does all the work.

Figure 3: Household System: Object Net Prof (simplified)
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Figure 3 shows the object net specifying the professor. Note that this and the other nets shown in

this section are in principal executable reference nets in Renew format, but certain details have been

left out to avoid visual clutter (e.g., net inscriptions for logging or type definitions).

Some remarks on the Prof net: Inscriptions in bold font are names or explanations. Arcs are inscribed

with variables packed in tuples - these tuples are the markings in Renew reference nets. Transition

inscription starting with a colon, like :new(...) are synchronous channels, linking this net to other nets.

We can easily see that our Prof net is a net-token of another net. This would be the system net,

controlling the overall system behaviour. Let’s have a look at the system net.

Figure 4: Household System: The System Net ̂︀𝑁 (simplified)

Figure 4 shows the system net
̂︀𝑁 . The system net defines the spatial contexts of our simple example,

coffee machine and office. Once a Prof is introduced to the system, she or he cannot leave the office

anymore
3
. Actions like researching and teaching are not considered here. The only interactions to the

outside world are ordering coffee and taking coffee from the robot.

For the coffee robot, more possible interactions are modeled. A coffee robot is activated (new robot)
once a professor orders coffee. The coffee robot can get coffee, deactivate itself, move between coffee

machine location and offices, and serve coffee. This is where to spatial contexts come into play: coffee

can only be fetched at the coffee machine and served at the professor’s office. The robot has to move to

fulfill its tasks.

Let’s have a look at the coffee robot, also implemented in terms of an object net: Figure 5 shows the

object net specifying the robot.
Once a robot is activated by someone ordering a coffee, the robot can move around and get coffee.

Holding a coffee, the coffee can be served and the robot can be deactivated afterwards. Note that there

is no planning or scheduling procedure for the robot – it is possible that the robot moves aimlessly

without end and the professor waits for the coffee forever. An important observation is the interplay

between spatial context (the system net) and the robot: Certain actions like getting a coffee or serving

it are only possible at the right place. The robot has to move between places to fulfill its tasks. A log of

the system can be found in Table 1.

It is not important to look at every detail of the log, but an important observation is that certain

events lead to two or more log entries, namely synchronized events between system and object nets.

Examples are the move events (e.g., move to office and move, in red) or the serving of the coffee in

green. The latter spans over all three nets, as can be seen in the last column (net instance). Based on log

3

In our view, this is a realistic assumption.
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Figure 5: Household System: Object Net Robot (simplified)

case event timestamp net instance
1 new prof 03/24/2025 10:38:06:942 system
1 start working 03/24/2025 10:38:06:943 prof
1 give lesson 03/24/2025 10:38:06:946 prof
1 give lesson 03/24/2025 10:38:06:948 prof
1 give lesson 03/24/2025 10:38:06:949 prof
1 give lesson 03/24/2025 10:38:06:951 prof
1 order coffee 03/24/2025 10:38:06:952 prof
1 new robot 03/24/2025 10:38:06:957 system
1 move to office 03/24/2025 10:38:06:959 system
1 move 03/24/2025 10:38:06:960 robot
1 move 03/24/2025 10:38:06:962 robot
1 move to coffee 03/24/2025 10:38:06:962 system
1 get coffee 03/24/2025 10:38:06:964 system
1 get coffee 03/24/2025 10:38:06:965 robot
1 move to office 03/24/2025 10:38:06:966 system
1 move 03/24/2025 10:38:06:967 robot
1 serve coffee 03/24/2025 10:38:06:982 system
1 drink coffee 03/24/2025 10:38:06:983 prof
1 serve coffee 03/24/2025 10:38:06:983 robot
1 move 03/24/2025 10:38:06:985 robot
1 move to coffee 03/24/2025 10:38:06:985 system
1 write paper 03/24/2025 10:38:06:986 prof
1 remove robot 03/24/2025 10:38:06:988 system
1 deactivate 03/24/2025 10:38:06:988 robot

Table 1

A Log of the Household System

files like the one in the example, we can try to reconstruct the overall net system, as outlined in the

previous section.

5.2. Decompositional Approach

An obvious and very simple approach is to dump the complete log file into an existing mining algorithm

and see what happens. That is the idea behind the decompositional approach: mine the entire log file

and decompose the mined net into the nets that generated the log. Ideally, there should be a loose

coupling between these subnets, so that there are identifiable cuts.

A little bit of thinking reveals that this cannot always be the case, as it is easy to construct nets-

within-nets with intertwined control flow handed over from net to net. However, let’s have a look at
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the mining results of our example.

For the mining, we use the PM4Py framework.
4

For importing the log data, the only necessary

preprocessing step was to describe the date format, so that it can be properly included to a pandas
5

dataframe. Note that the log we used here was the result of a longer run of the example net system and

included several profs and robots acting in parallel. Figure 6 shows the net mined.

We tried several mining algorithms, the inductive miner produced the most meaningful results.

However, the mining results are unsatisfactory. The mined net allows processes that are not possible in

the original net and vice versa. One example: new prof → start working → deactivate, without a robot

being created before. In addition, all elements of the system are intertwined and hard to disentangle.

We have no idea how to split the mined flat net into the object nets without heavily relying on domain

knowledge. If this is not possible for a rather simple net system of three object nets, we do not have

much hope for the general case. Therefore, the decompositional approach cannot be used for our

purposes.

5.3. Compositional Approach

The log data in Table 1 contains the net instance name (system, robot, prof) in the last column. It is

straightforward to separate the log file to object net logs, consisting only of the events of the respective

object net.

Doing so, we can follow the compositional approach and mine the object nets separately. An

interesting fact is that for the separate object nets, the alpha plus miner sometimes works better than

the inductive miner, while it more or less failed for the mining of the complete log.

Figure 7 shows the system net mined, relying on the alpha plus miner for this task. The system net is

quite similar to the net we defined, as can be seen by comparing Figure 7 to Figure 4. An important

difference is that the order coffee transition is unconnected in the mined net. The rest is not too bad

and more or less resembles the original behavior.

Please note that we did several runs of the robot-prof system leading to log files of various sizes.

Mining these logs led to subtle differences in the mined nets. All mined nets showed one or more

deviations from the original net system, similar to the problem described above (order coffee). We only

show one result here. The shortcomings of this example are similar to those of all the other outcomes.

Let us have a look at the other object nets. Figure 8 shows the object net mined for the professor.

The professor described by the mined net seems to be more of a caffeine-addict than our original one.

Without coffee, no work (writing papers, giving lessons) is done, making the mined professor maybe

even a bit more real. Beside this difference and some not really necessary silent transitions, the professor

net can be counted a success. The professor net was mined using the inductive miner, as the alpha plus

miner produced a professor that can only drink coffee and is never working.

Figure 9 shows the mined net for the robot, using the inductive miner. On first sight, this net looks

even better than professor net, as it is more compact. However, on closer inspection one can see that

the mined robot can be deactivated while still carrying a coffee. That would be a pity and can lead to

a deadlock in the overall system, as the professor would wait forever for the coffee without getting

anything done. Another notable difference is that the robot can serve one coffee several times. It is

important to know, that this is not due to shortcomings in the log file.

It is interesting that the alpha plus miner produced better results for the robot, as can be seen in

Figure 10: Coffee has to be served before deactivating, and the robot can move at any time. So far, we

cannot give a universal rule which mining algorithm produces better results for our purposes.

The results of the experiments with the compositional approach shown above are more promising

than those of the decompositional approach. While it is not surprising that we get separate object nets,

these nets more or less resemble the object nets designed by us and can serve as a starting point for

the composition step. The composition itself is straightforward, but we do not have an implemented

algorithm for it. The nets produced by the miner (shown above) have to be inscribed with synchronous

4

see https://pypi.org/project/pm4py/

5

see https://pandas.pydata.org/
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Figure 6: Output of the inductive miner in pm4py for the example log
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channels at those transitions that should occur simultaneously (synchronized transitions). The object

nets have to be instantiated (special channel new) in the system net and the arcs of the system net have

to be inscribed with identifier variables for the object nets. Doing so by hand revealed some minor

issues but produced an executable net system that can be simulated using the Renew software.

One minor issue is that the mining algorithms produce a marked starting place for each net, while

this is only necessary for the system net and potentially produces a deadlock in the object nets. Another

issue we discovered was due to some sloppiness in our logging: we sometimes used the names of the

transitions as log entries instead of the channel inscriptions - if available. This has to be stratified when

automating our approach in the future.

Besides these small shortcomings the compositional approach can be counted a success.

5.4. Discussion and Next Steps

In the experiments described above, we tried out both the decompositional approach and the compo-

sitional approach. The decompositional approach – using the entire log file of the net system as the

source for the mining and decomposing the mined net afterwards – did not produce any meaningful

results. The compositional approach, i.e. splitting or filtering the log file according to the separate

subnets, mining those logs separately and composing the mined nets afterwards, seems to be a possible

approach for going further.

During the experiments we discovered an additional problem, namely the usage of the "right" mining

algorithm. We have to carry out additional experiments in this direction. Hopefully, we can find a

suitable way or at least some best practice.

An important next step is to automate the parts of our experiment that we did manually, like the

net composition. We are optimistic that this can be done, but additional problems might occur when

generalizing the findings of the small case study presented here.

Other steps to be done:

• Automating the logging in Renew

• Deciding about the best mining algorithm

• Possibly integrating the mining into the Renew tool for convenience

• Automating the net composition

We will tackle these steps in the near future, as we do not expect bigger problems here. When done,

we have achieved a round-trip mining of nets-within-nets. We will base further research on these

achievements, as the more general goal is to be able to mine net systems without the exact knowledge

about the subnets.

6. Conclusion and Outlook

In this paper we extended Petri net based process mining to nets-within-nets, i.e., nets where the

tokens are Petri nets again. This is useful especially for scenarios where events are contextualised,

either because they happen within some physical location or within some abstract context like an outer

self-adaption loop, like in the MAPE-K pattern.

To capture the structure of nets-within-nets, i.e., the nesting structure of nets and their vertical

synchronisation, during the mining process we made experiments with two alternative candidates,

which we call the compositional and the decompositional approach. The compositional approach

integrates the nets 𝑁𝑖 that are mined for the log files 𝐿𝑖 filtered w.r.t. different aspects of the system,

while the decompositional approach mines the reference net Rn(OS ) and tries to decompose it into the

Eos OS .

We observed from our experiments that the decompositional approach seems to be less promising

than the compositional one. The compositional approach in its present state still needs some additional

work, as outlined in the section above.
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We plan the following research threads for future research: Firstly, we like to extend our work mine

probabilistic Nets-within-Nets [15]. This extension seems to be straightforward since the log files

contains the event frequencies anyway. Secondly, we plan to investigate the mining of net systems

without knowing the exact subnets that produced the log file.

Thirdly, we would like to go beyond Eos. A major extension is to allow algebraic expressions for arcs

with the meaning that the topology of net-tokens is modified during firing. This aspect is covered by

eHornets [16]. In this case we are faced with a new challenge whenever mining the structure of objects

nets: Since firing modifies the net-tokens, the order (or time stamps) of events becomes important,

since a dependency present in an early part of the log might be no longer valid in a later part. So we

either have to separate the log whenever a system net transition modifies the net-tokens topology or

we introduce some ‘aging’ mechanism into the mining algorithm such that older events are given less

confidence than more recent ones.
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Figure 7: Output System Figure 8: Mined Object Net for Prof
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Figure 9: Mined Object Net for Robot

Figure 10: Mined Object Net for Robot using the alpha plus miner
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