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Abstract
After briefly recalling basic notations of Petri Nets, home spaces, and semiflows, we focus on ℱ+, the set of semi-
flows with non-negative coordinates where the notions of minimality of semiflows and minimality of supports
are particularly critical to develop an effective analysis of invariants and behavioral properties of Petri Nets such
as boundedness or even liveness. We recall known behavioral properties attached to the notion of semiflows
that we associate with extremums. We also recall three known decomposition theorems considering N, Q+, and
Q respectively where the decomposition over N is being improved with a necessary and sufficient condition.

Then, we regroup a number of properties (old and new) especially around the notions of home spaces and
home states which, in combination with semiflows, are used to efficiently support the analysis of behavioral
properties.

We introduce a new result on the decidability of liveness under the existence of a home state. We intro-
duce new results on the structure and behavioral properties of Petri Nets, illustrating again the importance of
considering generating sets of semiflows with non-negative coordinates.

As examples, we present two related Petri Net modeling arithmetic operations (one of which represents
an Euclidean division), illustrating how results on semiflows and home spaces can be methodically used in
analyzing the liveness of the parameterized model and underlining the efficiency brought by the combination of
these results to the verification engineer.
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1. Introduction

1.1. Motivations

Parallel programs, distributed digital systems, telecommunication networks, or cyber-physical systems
are entities that are complex to design, model, and verify. Using formal verification at different stages of
the system development life cycle is a strong motivation and provides us with the rationale for revisiting
the notions of semiflows and home spaces and illustrate through examples how they can be combined
to analyze behavioral properties of Petri Nets. In this regard, invariants are of paramount importance as
they are almost systematically used in system specifications to describe specific behavioral properties.
One can argue that properties such as liveness, deadlock freeness, or boundedness are in some way
invariants since they must hold regardless of the evolution of the digital system under study.

Often, engineers and researchers will try to prove that a formula belonging to a system specification
is an invariant, meaning that the formula holds during any possible evolution of their model. But, can
we find a way by which invariants or at least a meaningful subset of invariants can be organized and
concisely described, and some of them can be discovered by computation? Such invariants that do
not belong in the system specification, can just express a sub-property of a more complex known one;
however, they also can reveal an under-specified model or an unsuspected function of the system under
study (which in turn, could constitute a component of a security breach). In this paper, we provide
some elements to answer this question especially through the notions of generating sets and minimality.
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Then, we show how basic arithmetic, linear algebra, or algebraic geometry can efficiently support
invariant calculus.

One of our motivations is to go beyond regrouping and rewriting in a unified manner a number
of known algebraic results dispersed throughout the Petri Nets literature and introduce improved or
new results. How can invariants be combined to represent meaningful behaviors? We will address this
question by combining results on home spaces and invariants and illustrate how engineers can proceed
through two examples.

This paper can be considered as a continuation of the work started in [1], providing new results
particularly on home spaces as well as new examples. We want to show how linear algebra or algebraic
geometry can efficiently sustain invariant calculus and can be applied and utilized to prove a large
variety of behavioral properties, sometimes with simple arithmetic reasoning. When Petri Net or colored
Petri Nets ([2]) are parameterized, this type of reasoning can be useful to determine in which domain of
these parameters, behavioral properties can be satisfied.

1.2. Outline and contributions

After providing basic notations in Section 2 and grouping a first set of classic properties for semiflows
(in Z or N) and introducing two extremums in Section 3, the notions of generating sets and minimality
are briefly recalled from [1] in Section 4.

The three decomposition theorems of Section 4.2 have been first published in [3] then improved in [1].
Here, the first theorem is extended once more into a necessary and sufficient condition (instead of just
a necessary condition in our previous papers) to fully characterize minimal semiflows and generating
sets over N. The other two theorems are just recalled for completeness.

Then, the notion of home space is described Section 5 with a set of old and new results linked to their
structure and later to their key relation with liveness in Section 5.2. In particular, a new decidability
result is provided for Petri Nets with home states linked to Karp and Miller’s coverability tree finite
construction.

Subsequently, Theorem 5 is using a generating set to compute three extremums. This result does not
depend on the chosen generating set. These important details were never stressed out before despite
their importance from a computational point of view, and their impact in supporting the analysis of
parameterized models.

These results are used in the analysis of two examples presented in Section 6 where two parameterized
examples are given to illustrate how invariants and home spaces can be associated with basic arithmetic
reasoning to methodically prove behavioral properties of a Petri Net (described section 6.1).

Section 7 concludes and provides a possible avenue for future research.

2. Basic notations

In this section, we briefly recall Petri Nets, including the notion of potential state space that is usual in
Transition Systems, introducing notations that will be used in this paper. Then, we define semiflows in
Z and basic properties in N highlighting why semiflows in N may be considered more useful to analyze
behavioral properties.

A Petri Net is a tuple 𝑃𝑁 = ⟨𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡⟩, where 𝑃 is a finite set of places and 𝑇 a finite set of
transitions such that 𝑃 ∩𝑇 = Ø. A transition 𝑡 of 𝑇 is defined by its Pre(·, t) and 𝑃𝑜𝑠𝑡(·, 𝑡) conditions1:
𝑃𝑟𝑒 : 𝑃 × 𝑇 → N is a function providing a weight for pairs ordered from places to transitions, while
𝑃𝑜𝑠𝑡 : 𝑃 × 𝑇 → N is a function providing a weight for pairs ordered from transitions to places. Here,
𝑑 will denote the number of places: 𝑑 = |𝑃 |.

A marking (or state in Transition Systems) 𝑞 : 𝑃 → N allows representing the evolution of the
system along the execution (or firing) of a transition 𝑡 or of a sequence of transitions 𝜎 (i.e., a word in

1We use here the usual notation: 𝑃𝑟𝑒(·, 𝑡)(𝑝) = 𝑃𝑟𝑒(𝑝, 𝑡) and 𝑃𝑜𝑠𝑡(·, 𝑡)(𝑝) = 𝑃𝑜𝑠𝑡(𝑝, 𝑡).
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𝑇 *). We say that 𝑡 is enabled at marking 𝑞 if and only if 𝑞 ≥ 𝑃𝑟𝑒(·, 𝑡), and as an enabled transition at 𝑞
(we write that 𝑞 ∈ Dom(𝑡)), 𝑡 can be executed, reaching a marking 𝑞′ from 𝑞 such that:

𝑞′ = 𝑞 + 𝑃𝑜𝑠𝑡(·, 𝑡)− 𝑃𝑟𝑒(·, 𝑡).

This is also denoted as 𝑞′ = 𝑡(𝑞) or more traditionally 𝑞
𝑡→ 𝑞′ (we also write 𝑞′ ∈ Im(𝑡)). Similarly, for

a sequence of transitions 𝜎 allowing to reach a marking 𝑞′ from a marking 𝑞, we write 𝑞
𝜎→ 𝑞′. When

the sequence of transitions allowing to reach a marking 𝑞′ from a marking 𝑞 is unknown, we may write
𝑞

*→ 𝑞′. Given a marking 𝑞, a place 𝑝 is said to contain 𝑘 tokens as 𝑞(𝑝) = 𝑘.
We also define 𝑄, the set of all potential markings (also known as state space in Transition Systems).

Without additional information on the domain in which markings may vary, we assume 𝑄 = N𝑑 .
𝑅𝑆(𝑃𝑁, 𝐼𝑛𝑖𝑡) denotes the set of reachability of a Petri Net 𝑃𝑁 from a subset 𝐼𝑛𝑖𝑡 of 𝑄:

𝑅𝑆(𝑃𝑁, 𝐼𝑛𝑖𝑡) = {𝑞 ∈ 𝑄 | ∃ 𝑎 ∈ 𝐼𝑛𝑖𝑡, 𝑎
*→ 𝑞}.

𝑅𝐺(𝑃𝑁, 𝐼𝑛𝑖𝑡), and 𝐿𝑅𝐺(𝑃𝑁, 𝐼𝑛𝑖𝑡) denote the reachability graph without labels (as in Figure 2)
and with labels in 𝑇 respectively; while 𝐿𝐶𝑇 (𝑃𝑁, 𝑞0) denote the labeled coverability tree given an
initial marking 𝑞0.

3. Petri Nets and Semiflow basic properties

The concept of semiflows over non negative integers were first described by Y.E. Lien [4] and indepen-
dently by K. Lautenbach and H. A. Schmid [5]. The algebraic calculus underneath can be find in [6].
Then, M. Silva [7] extended the definition to semiflows over integers. After recalling the definition of
semiflows, we gather four properties illustrating their their link with behavioral properties.

In this section, we consider a Petri Net 𝑃𝑁 with its initial marking 𝑞0 and the set of reachable
markings from 𝑞0 through all sequences of transitions denoted by 𝑅𝑆(𝑃𝑁, 𝑞0).

definition 1 (Semiflow). A Semiflow 𝑓 is a solution of the following homogeneous system of |𝑇 | dio-
phantine equations:

𝑓⊤𝑃𝑜𝑠𝑡(·, 𝑡) = 𝑓⊤𝑃𝑟𝑒(·, 𝑡), ∀𝑡 ∈ 𝑇, (1)

where 𝑥⊤𝑦 denotes the scalar product of the two vectors 𝑥 and 𝑦, since 𝑓, 𝑃𝑟𝑒(·, 𝑡) and 𝑃𝑜𝑠𝑡(·, 𝑡) can be
considered as vectors once the places of 𝑃 have been ordered.
ℱ and ℱ+ denote the sets of solutions of the system of equations (1) that have their coefficients in Z

and in N, respectively.

Any non-null solution 𝑓 of the homogeneous system of equations (1) allows to directly deduce the
following invariant of 𝑃𝑁 defined by its 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 functions (used in the system of equations (1)
that 𝑓 satisfies):

∀ 𝑞 ∈ 𝑅𝑆(𝑃𝑁, 𝑞0) : 𝑓
⊤𝑞 = 𝑓⊤𝑞0. (2)

In the rest of the paper, we abusively use the same symbol ‘0’ to denote (0, ..., 0)⊤ of N𝑛, for all 𝑛 in N.
The support of a semiflow 𝑓 is denoted by ‖𝑓‖ and is defined by

‖𝑓‖ = {𝑥 ∈ 𝑃 | 𝑓(𝑥) ̸= 0}.

We will use the usual component-wise partial order in which (𝑥1, 𝑥2, . . . , 𝑥𝑑)
⊤ ≤ (𝑦1, 𝑦2, . . . , 𝑦𝑑)

⊤ if
and only if 𝑥𝑖 ≤ 𝑦𝑖, for all 𝑖 ∈ {1, . . . , 𝑑}.

The most interesting set of semiflows, from a behavioral analysis standpoint, is ℱ+, defined over
natural numbers. This can be seen through the following three properties. First, we define the positive
and negative supports of a semiflow 𝑓 ∈ ℱ as:

‖𝑓‖+ = {𝑝 ∈ 𝑃 | 𝑓(𝑝) > 0}

and
‖𝑓‖− = {𝑝 ∈ 𝑃 | 𝑓(𝑝) < 0} ,
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with ‖𝑓‖ = ‖𝑓‖− ∪ ‖𝑓‖+. We can then rewrite Equation (2) as:

𝑓⊤𝑞 =

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑝∈‖𝑓‖+

𝑓(𝑝)𝑞(𝑝)

⃒⃒⃒⃒
⃒⃒−

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑝∈‖𝑓‖−

𝑓(𝑝)𝑞(𝑝)

⃒⃒⃒⃒
⃒⃒ = 𝑓⊤𝑞0. (3)

As we can see, the formulation of Equation (3) is a subtraction between the weighted number of
tokens in the places belonging to the positive support and the weighted number of tokens in the places
belonging to the negative support of 𝑓 . This expression allows deducing an invariant since, by Equations
(3), it remains constant during the evolution of the Petri Net. A first general property can be immediately
deduced by recalling that any marking 𝑞 belongs to N𝑑 and that a subset 𝐴 of places is bounded.

property 1. For any semiflow 𝑓 ∈ ℱ , ‖𝑓‖+ is bounded if and only if ‖𝑓‖− is bounded.

Of course, if ‖𝑓‖− = ∅, then 𝑓 ∈ ℱ+ and ‖𝑓‖ is necessarily structurally bounded (i.e., bounded
from any initial marking) and is sometime called conservative component as in [8]. More generally,
considering a weighting function 𝑓 over 𝑃 being defined over non-negative integers and verifying the
following system of inequalities:

𝑓⊤𝑃𝑜𝑠𝑡(·, 𝑡) ≤ 𝑓⊤𝑃𝑟𝑒(·, 𝑡), ∀𝑡 ∈ 𝑇, (4)

the following properties can be easily proven [3]:

property 2. If 𝑓 ≥ 0 is such that it verifies Equation (4), then the set of places of ‖𝑓‖ is structurally
bounded.

Moreover, the marking of any place 𝑝 of ‖𝑓‖ has an upper bound:

𝑞(𝑝) ≤ 𝑓𝑇 𝑞0
𝑓(𝑝)

, ∀𝑞 ∈ 𝑅𝑆(𝑃𝑁, 𝑞0).

If 𝑓 > 0, then ‖𝑓‖+ = ‖𝑓‖ = 𝑃 , and the Petri Net is also structurally bounded. The reverse is
also true: if the Petri Net is structurally bounded, then there exists a strictly positive solution for
the system of inequalities above (see [9] or [10]). This property is actually false for a semiflow that
satisfies Equation (1) but would have at least one negative coordinate, and constitutes a first reason for
particularly considering weight functions 𝑓 over 𝑃 being defined over non-negative integers including
ℱ+. We can then define Λ, the set of all possible bounds generated by semiflows:

Λ(𝑝, 𝑞0) = {𝑥 ∈ Q+ | ∃𝑓 ∈ ℱ+, 𝑥 =
𝑓𝑇 𝑞0
𝑓(𝑝)

}

and its extremum (and more useful element):

𝜆(𝑝, 𝑞0) = min
{𝑓∈ℱ+ | 𝑓(𝑝)̸=0}

𝑓⊤𝑞0
𝑓(𝑝)

The following corollary can be directly deduced from the fact that any semiflow in ℱ+ satisfies the
system of inequalities (4); therefore, Property 2 can apply:

corollary 1. For any place 𝑝 belonging to at least one support of a semiflow of ℱ+, an upper bound 𝜆
can be defined for the marking of 𝑝 relatively to an initial marking 𝑞0 such that:

∀𝑞 ∈ 𝑅𝑆(𝑃𝑁, 𝑞0), 𝑞(𝑝) ≤ 𝜆(𝑝, 𝑞0) = min
{𝑓∈ℱ+ | 𝑓(𝑝)̸=0}

𝑓⊤𝑞0
𝑓(𝑝)

.

We will see with Theorem 5 that this bound is computable as a consequence of Theorems 1 and 3.
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definition 2. Given a transition 𝑡 and a semiflow 𝑓 in ℱ+, the scalar product 𝑓𝑇𝑃𝑟𝑒(·, 𝑡) is called the
f-enabling threshold of 𝑡.

Sometimes, when there is no ambiguity, 𝑓𝑇𝑃𝑟𝑒(·, 𝑡) is more simply called the enabling threshold of 𝑡
as in [10]. In [11] P-290, we can find, through an example, a similar notion named as “non-fireability
condition".

This gives us a second reason for particularly considering a semiflow 𝑓 as being defined over non-
negative integers is that the system of inequalities

𝑓𝑇 𝑞0 ≥ 𝑓𝑇𝑃𝑟𝑒(·, 𝑡), ∀𝑡 ∈ 𝑇, (5)

becomes a necessary condition for any transition 𝑡 to stand a chance to be enabled from any reachable
marking from 𝑞0, then to be live. Equation (5) motivates the definition 2.

property 3. If 𝑡 is a transition and 𝑓 ∈ ℱ+ ∖ {0} such that 𝑓𝑇 𝑞0 < 𝑓𝑇𝑃𝑟𝑒(·, 𝑡), then 𝑡 cannot be
executed from ⟨𝑃𝑁, 𝑞0⟩.

More generally, a necessary condition for a transition 𝑡 to be executed at least once from ⟨𝑃𝑁, 𝑞0⟩ is

1 ≤ min
{𝑓∈ℱ+ | 𝑓⊤𝑃𝑟𝑒(·,𝑡)̸=0}

𝑓⊤𝑞0
𝑓⊤𝑃𝑟𝑒(·, 𝑡)

We can define Θ stemming from property 3 the same way we defined Λ stemming from property 2:

Θ(𝑡, 𝑞0) = {𝑥 ∈ Q+ | ∃𝑓 ∈ ℱ+, 𝑥 =
𝑓⊤𝑞0

𝑓⊤𝑃𝑟𝑒(·, 𝑡)
}

with its extremum 𝜃 the inequality of property 3 can rewritten such that:

1 ≤ 𝜃(𝑡, 𝑞0) = min
{𝑥∈Θ}

𝑥

Property 3 is not a sufficient condition for a transition to be enabled, see figure 1.

Figure 1: ℱ+ = N2, 𝑃𝑟𝑒(𝐴, 𝑡1) = 2, 𝑞0(𝐴) = 1, 𝑞0(𝐵) = 2 . We can verify that 1 ≤ 𝜃(𝑡1, 𝑞0) = 3/2

yet 𝑡1 cannot be executed from 𝑞0.

Property 3 is of interest when the model is defined with parameters, since some values of these
parameters for which the model is not live can be rapidly pruned away (see example Figure 3). Moreover,
it also says that the only way (without changing the structure of the model) to make the execution of
𝑡 possible is by adding tokens in ‖𝑓‖ for any semiflow 𝑓 for which inequality (5) is not satisfied. We
conjecture that the notion of siphon [11] could be useful here to improve property 2.

At last, the following known property ([3], [10], or [12]) can easily be proven true in ℱ+ and not
true in ℱ :

property 4. If 𝑓 and 𝑔 are two semiflows with non-negative coefficients, then we have: ‖𝑓 + 𝑔‖ = ‖𝑓‖∪
‖𝑔‖.

If 𝛼 is a non-null integer then ‖𝛼𝑓‖ = ‖𝑓‖.

This property is used to prove theorem 3 section 4.2 and theorem 5 section 5.3. These results have
been cited and utilized many times in various applications going beyond computer science, electrical
engineering, or software engineering. For instance, they have been used in domains such as population
protocols [13] or biomolecular chemistry relative to chemical reaction networks [14], which brings us
back to the C. A. Petri’s original vision, when he highlighted that his nets could be used in chemistry.
Many other applications can be found in the literature.
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4. Generating sets and minimality

The notion of generating sets for semiflows is well known and efficiently supports the handling of an
important class of invariants. Several results have been published, starting from the initial definition
and structure of semiflows [6] to a wide array of applications used especially to analyze Petri Nets
[11, 15, 14, 16].

Minimality of semiflows and minimality of their supports are critical to understand how to best
decompose semiflows. Invariants directly deduced from minimal semiflows relate to smaller weighted
quantities of resources, simplifying the analysis of behavioral properties. Furthermore, the smaller the
support of semiflows, the more local their footprint (i.e., the more constrained the potential exchanges
between resources is). In the end, these two notions of minimality will foster analysis optimization.

4.1. Three definitions

definition 3 (Generating set). A subset 𝒢 ofℱ+ is a generating set over a set S (where S ∈ {N,Q+,Q}
with Q+ denoting the set of non-negative rational numbers) if and only if for all 𝑓 ∈ ℱ+, we have
𝑓 =

∑︀
𝑔𝑖∈𝒢 𝛼𝑖𝑔𝑖, where 𝛼𝑖 ∈ S and 𝑔𝑖 ∈ 𝒢.

Since N ⊂ Q+ ⊂ Q, a generating set over N is also a generating set over Q+, and a generating set
over Q+ is also a generating set over Q. However, the reverse is not true and is, in our opinion, a
source of some inaccuracies that can be found in the literature (see [17], for instance). Therefore, it is
important to specify over which set of {N,Q+,Q} the coordinates (used for the decomposition of a
semiflow) vary.

Several definitions around the concept of minimal semiflow were introduced in [12], p. 319, in [18], p.
68, [19], [20], or in [3, 21]. However, we will only consider two basic notions in order theory: minimality
of support with respect to set inclusion and minimality of semiflow with respect to the component-wise
partial order on N𝑑, since the various definitions found in the literature as well as the results of this
paper can be described in terms of these two classic notions.

definition 4 (Minimal support). A nonempty support ‖𝑓‖ of a semiflow 𝑓 is minimal with respect to
set inclusion if and only if ∄ 𝑔 ∈ ℱ+ ∖ {0} such that ‖𝑔‖ ⊂ ‖𝑓‖.

definition 5 (Minimal semiflow). A non-null semiflow 𝑓 is minimal with respect to ≤ if and only if
∄ 𝑔 ∈ ℱ+ ∖ {0, 𝑓} such that 𝑔 ≤ 𝑓 .

A minimal semiflow cannot be decomposed as the sum of another semiflow and a non-null non-
negative vector. This remark yields an initial insight into the foundational role of minimality in the
decomposition of semiflows. We are looking for characterizing generating sets such that they allow
analyzing various behavioral properties as efficiently as possible. That is to say that we want generating
sets as small as possible and, at the same time, able to easily handle semiflows in ℱ+. First, the number
of minimal semiflows over N can be quite large. Second, considering a basis over Q is of course relevant
to handle ℱ , while less relevant when it is about ℱ+, and may not capture behavioral constraints as
easily. We will have to consider Q+.

4.2. Three decomposition theorems

Generating sets can be characterized thanks to three decomposition theorems. A first version of them
can be found in [3] with their proofs. A second version can be found in [1] with improvements. Here,
Theorem 1, which is valid over N, is extended to a necessary and sufficient condition that characterizes
a minimal semiflow and generating sets over N. This result is provided with a new proof using Gordan’s
lemma (see Lemma 1). Theorems 2 and 3 are recalled for completeness and are unchanged from [1].
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4.2.1. Decomposition over non-negative integers

The fact that there exists a finite generating set over N is non-trivial and is often taken for granted in
the literature on semiflows. In fact, this result was proven by Gordan, circa 1885, then Dickson, circa
1913. Here, we directly rewrite Gordan’s lemma [22] by adapting it to our notations.

lemma 1. (Gordan) Let ℱ+ be the set of non-negative integer solutions of the System of equations (1).
Then, there exists a finite generating set over N of semiflows in ℱ+.

The question of the existence of a finite generating set being solved for N, is necessarily solved for
Q+ and Q. Lemma 1 is necessary not only to prove the decomposition theorem but also to claim the
computability of the extremums described in Theorem 5.

theorem 1. (Decomposition over N) A semiflow is minimal if and only if it belongs to all generating
sets over N.

The set of minimal semiflows of ℱ+ is a finite generating set over N.

Let’s consider a semiflow 𝑓 ∈ ℱ+ ∖ {0} and its decomposition over any family of 𝑘 non-null semiflows
𝑓𝑖, 1 ≤ 𝑖 ≤ 𝑘. Then, there exist 𝑎1, ..., 𝑎𝑘 ∈ N such that 𝑓 =

∑︀𝑖=𝑘
𝑖=1 𝑎𝑖𝑓𝑖. Since 𝑓 ̸= 0 and all coefficients

𝑎𝑖 are in N, there exists 𝑗 ≤ 𝑘 such that 0 ⪇ 𝑓𝑗 ≤ 𝑎𝑗𝑓𝑗 ≤ 𝑓 . If 𝑓 is minimal, then 𝑎𝑗 = 1 and 𝑓𝑗 = 𝑓 .
Hence, if a semiflow is minimal, then it belongs to any generating set over N. The reverse will become
clear once the second statement of the theorem is proven.

Applying Gordan’s lemma, there exists a finite generating set, 𝒢. Since any minimal semiflow is in
𝒢, the subset of all minimal semiflows is included in 𝒢 and therefore finite. Let ℰ = {𝑒1, ...𝑒𝑛} be this
subset and prove by construction that ℰ is a generating set.

For any semiflow 𝑓 ∈ ℱ+, we build the following sequence leading to the decomposition of 𝑓 over ℰ :
i) 𝑟0 = 𝑓 ,
ii) 𝑟𝑖 = 𝑟𝑖−1 − 𝑘𝑖𝑒𝑖 such that 𝑟𝑖 ∈ ℱ+ and 𝑟𝑖−1 − (𝑘𝑖 + 1)𝑒𝑖 /∈ ℱ+.
By construction of the non-negative integers 𝑘𝑖, we have 𝑟𝑛 = 𝑓 −

∑︀𝑖=𝑛
𝑖=1 𝑘𝑖𝑒𝑖 ∈ ℱ+ and ∀𝑒𝑖 ∈

ℰ , 𝑟𝑛 − 𝑒𝑖 /∈ ℱ+ therefore, ∀𝑒𝑖 ∈ ℰ , ∃𝑗, (𝑟𝑛)𝑗 − (𝑒𝑖)𝑗 < 0; therefore ∄𝑒𝑖 ∈ ℰ such that 𝑒𝑖 ≤ 𝑟𝑛. This
means that 𝑟𝑛 is either minimal or null. Since ℰ includes all minimal semiflows, therefore 𝑟𝑛 = 0, and
any semiflow can be decomposed as a linear combinations of minimal semiflows; in other words, ℰ is a
finite generating set2.

It is now clear that if a semiflow 𝑓 belongs to any generating set, then it belongs in particular to ℰ ;
therefore, 𝑓 is a minimal semiflow. □

Let’s point out that since ℰ is not necessarily a basis, the decomposition is not unique in general and
depends on the order in which the minimal semiflows of ℰ are considered to perform the decomposition.

However, a minimal semiflow does not necessarily belong to a generating set over Q+ or Q.

4.2.2. Decomposition over semiflows of minimal support

These two theorems can already be found in [1].

theorem 2. (Minimal support) If 𝐼 is a minimal support, then
i) there exists a unique minimal semiflow 𝑓 such that 𝐼 = ‖𝑓‖ and, for all 𝑔 ∈ ℱ+ such that ‖𝑔‖ = 𝐼 ,

there exists 𝑘 ∈ N such that 𝑔 = 𝑘𝑓 , and
ii) any non-null semiflow 𝑔 such that ‖𝑔‖ = 𝐼 constitutes a generating set over Q+ or Q for ℱ+

𝐼 =
{𝑔 ∈ ℱ+ | ‖𝑔‖ = 𝐼}.

In other words, {𝑓} is a unique generating set over N for ℱ+
𝐼 = {𝑔 ∈ ℱ+ | ‖𝑔‖ = 𝐼}. Indeed, this

uniqueness property is lost in Q+ or in Q, since any element of ℱ+
𝐼 is a generating set of ℱ+

𝐼 over Q+

or Q.
2If ℰ were to be infinite, the construction could still be used, since the monotonically decreasing sequence 𝑟𝑖 is bounded by
0 and N is nowhere dense, so we would have lim

𝑛→∞
(𝑓 −

∑︀𝑗=𝑛
𝑗=1 𝑘𝑗𝑒𝑗) = 0, with the same definition of the coefficients 𝑘𝑗 as

in ii).
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theorem 3. (Decomposition over Q+) Any support 𝐼 of semiflows is covered by the finite subset
{𝐼1, 𝐼2, . . . , 𝐼𝑁} of minimal supports of semiflows included in 𝐼 : 𝐼 =

⋃︀𝑖=𝑁
𝑖=1 𝐼𝑖.

Moreover, for all 𝑓 ∈ ℱ+ such that ‖𝑓‖ ⊆ 𝐼 , one has 𝑓 =
∑︀𝑖=𝑁

𝑖=1 𝛼𝑖𝑔𝑖, where, for all 𝑖 ∈
{1, 2, ...𝑁}, 𝛼𝑖 ∈ Q+ and the semiflows 𝑔𝑖 are such that ‖𝑔𝑖‖ = 𝐼𝑖.

A sketch of the proof of Theorem 3 using Property 4 can be found in [23], and a complete proof, in
[3]. This last theorem says that one cannot have a generating set with less than 𝑛 semiflows where 𝑛 is
the number of minimal supports included in 𝑃 .

5. Home spaces and home states

The notion of home space was first defined in [21] for Petri Nets relatively to a single initial marking.
Here, we effortlessly extend its definition relatively to a nonempty subset of markings. Early descriptions
of properties 6, 7, 8 can be found in [21, 24, 25] (in french). Here, they are generalized by extension or
addition of a sub-property.

Home spaces are extremely useful to analyze liveness (see [26]) or resilience (see [27]). Any behavioral
property requiring to eventually become satisfied after executing a sequence of transitions can be
supported by a home space (a property satisfied for any reachable marking would be an invariant).

5.1. Definitions and basic properties

Given a Petri Net 𝑃𝑁 , its associated set 𝑄 of all potential markings and a subset 𝐼𝑛𝑖𝑡 of 𝑄, we say that
a set HS is an Init-home space if and only if, for any progression (i.e. sequence of transitions) from any
element of 𝐼𝑛𝑖𝑡, there exists a way of prolonging this progression and reach an element of HS. In other
words:

definition 6 (Home space). Given a nonempty subset 𝐼𝑛𝑖𝑡 of 𝑄, a set HS is an Init-home space if and
only if, for all 𝑞 ∈ 𝑅𝑆(𝑃𝑁, 𝐼𝑛𝑖𝑡), 𝑅𝑆(𝑃𝑁, 𝑞)∩𝐻𝑆 ̸= Ø, in other words, there exists ℎ ∈ HS such that
ℎ is reachable from 𝑞, (i.e. 𝑞 *→ ℎ).

This definition is general and can be applied to any Transition System. In [28], we can find, for Petri Nets,
an equivalent definition: HS is an Init-home space if and only if 𝑅𝑆(𝑃𝑁, 𝐼𝑛𝑖𝑡) ⊆ 𝑅𝑆−1(𝑃𝑁,𝐻𝑆 ∩𝑄).

definition 7 (Home state). Given a nonempty subset Init of 𝑄, a marking 𝑠 is an Init-home state if and
only if {𝑠} is an Init-home space.

If 𝑠 is an Init-home state, then it is straightforwardly an {𝑠}-home state, and we simply say that 𝑠 is a
home state when there is no ambiguity. This is the usual notation that can be found in [10], p.59, or in
[17], p. 63, in [29] and in many other papers.

In many systems, the initial marking 𝑞0 represents an idle state from which the various capabilities of
the system can be executed. In this case, it is important for 𝑞0 to be a home state. This property is usually
guaranteed by a reset function that can be modeled in a simplistic way by adding a transition 𝑟 such
that 𝑅𝑆(𝑀, 𝑞0) ⊆ Dom(𝑟) and {𝑞0} = Im(𝑟) (which means that 𝑟 is executable from any reachable
marking and that its execution reaches 𝑞0). However, by requiring to add too much complexity to 𝑅𝐺
(one edge per node), this function is most of the time abstracted away when building 𝑅𝐺 up.

It is not always easy to prove that a given set is an Init-home space. This question is addressed in [28]
and is proven decidable for home states for Petri Nets but is still open in a more complex conceptual
model. Furthermore, a corpus of decidable properties can be found in [24, 30, 27], or [28].

It may be worth mentioning the straightforward following properties, given two subsets 𝐴 and 𝐵 of
markings.

property 5. If 𝐻𝑆 is an A-home space, it is a B-home space for any nonempty subset 𝐵 of 𝐴. If 𝐻𝑆1 is
an 𝐴1-home space and 𝐻𝑆2 is an 𝐴2-home space, then 𝐻𝑆1 ∪𝐻𝑆2 is an (𝐴1 ∪𝐴2)-home space.
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However, the intersection of two home spaces is not necessarily a home space. Figure 2 represents the
reachability graph of a Transition System with eight markings. 𝐻𝑆1, 𝐻𝑆2 and 𝐻𝑆3, as defined Figure 2,
are three {𝑞0}-home spaces. While 𝐻𝑆1 ∩𝐻𝑆3 = {𝑞1, 𝑞3} is a {𝑞0}-home space, 𝐻𝑆1 ∩𝐻𝑆2 = {𝑞1}
is not a {𝑞0}-home space (even if it is a {𝑞1}-home state).

Figure 2: With 𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7}, 𝐻𝑆1 = {𝑞1, 𝑞3, 𝑞4}, 𝐻𝑆2 = {𝑞1, 𝑞5} and 𝐻𝑆3 =
{𝑞1, 𝑞3, 𝑞5} are three {𝑞0}-home space. 𝐻𝑆4 = {𝑞1, 𝑞4, 𝑞7} is a {𝑞6}-home space as well as a {𝑞0}-home
space.

Given a Petri Net 𝑃𝑁 and a subset of markings 𝐼𝑛𝑖𝑡, a sink is a marking with no successor in the
associated reachability graph 𝑅𝐺(𝑃𝑁, 𝐼𝑛𝑖𝑡). More generally, a subset 𝑆 of markings is a sink in
𝑅𝐺(𝑃𝑁, 𝐼𝑛𝑖𝑡) if and only if 𝑅𝑆(𝑀,𝑆) = 𝑆. Similarly, we say that strongly connected component 𝑆
of 𝑅𝐺(𝑃𝑁, 𝐼𝑛𝑖𝑡) is strongly connected component sink if and only if ∄ 𝑦 ∈ 𝑅𝑆(𝑀, 𝐼𝑛𝑖𝑡) ∖ 𝑆 such that
∃ 𝑥 ∈ 𝑆 and 𝑥 → 𝑦. As any directed graph, 𝑅𝐺(𝑀, 𝐼𝑛𝑖𝑡) can have its vertices (markings) partitioned
into strongly connected components and some of them can be sink at the same time. The following
property can be easily deduced from the definition of sink, strongly connected component, and home
space.

property 6. If there exists a unique strongly connected component sink 𝑆 in 𝑅𝐺(𝑀, 𝐼𝑛𝑖𝑡) then 𝑆 is a
home space. Moreover, a marking is a home state if and only if it belongs to 𝑆.

Furthermore, any home space has at least one element in each strongly connected component sink of the
reachability graph [24].

It is easy to prove that these properties hold even as the reachability graph can be infinite, considering
that the definitions of sources, sinks, or strongly connected components are the same as in the case
where the directed reachability graph is finite.

property 7. we consider a Petri Net 𝑃𝑁 paired with a single initial marking 𝑞0. Then, three following
statements are equivalent:

(i) the initial marking 𝑞0 is a home state;
(ii) every reachable marking is a home state;

(iii) the reachability graph is strongly connected.

If 𝑞0 is the initial marking, then, for all 𝑥, 𝑦 ∈ 𝑅𝑆(𝑃𝑁, 𝑞0), there exists a path from 𝑞0 to 𝑥 and a path
from 𝑞0 to 𝑦, and since 𝑞0 is a home state, there also exists a path from 𝑥 to 𝑞0 and from 𝑦 to 𝑞0 in the
reachability graph. Hence, 𝑞0, 𝑥 and 𝑦 belong to the same strongly connected component. We easily
conclude that the reachability graph is strongly connected. The other elements of the property become
obvious. □

It is easy to deduce that any reachable marking from a home state ℎ is a home state even if ℎ is not
the initial marking. The strong connectivity of a given reachability graph means that some transitions
are necessarily live. This remark linking the notions of home state, strong connectivity, and liveness
requires to be explored further. It is at the core of the following subsection.

5.2. Home spaces, semiflows, and liveness

Semiflows are intimately associated with home spaces and invariants and can greatly simplify the
proof of fundamental properties of Petri Nets (even including parameters as in [31]) such as safeness,
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boundedness, or more complex behavioral properties such as liveness. Let us provide three properties
supporting this idea.

Let Dom(t) denote the subset of markings from which the transition 𝑡 is executable, and Im(t), the
subset of markings that can be reached by the execution of 𝑡.

property 8. A transition 𝑡 is live if and only if there exists a home space 𝐻 such that 𝐻 ⊆ Dom(t).
Moreover, if Dom(t) is a home space, then Im(t) is also a home space.

This can be directly deduced from the usual definition of liveness and Definition 6 of home spaces. □
We consider ⟨𝑃𝑁, 𝑞0⟩, a Petri Net 𝑃𝑁 with its initial marking 𝑞0, its associated reachability set 𝑅𝑆,

its labeled reachability graph 𝐿𝑅𝐺, a home space 𝐻𝑆 and 𝐻 = 𝐻𝑆 ∩𝑅𝑆 such that 𝐻 induces (see,
for instance, [32] for the notion of induced subgraph) a strongly connected subgraph of 𝐿𝑅𝐺.

lemma 2. If a home space 𝐻 induces a strongly connected subgraph of LRG, then a transition 𝑡 is live if

and only if there exist ℎ𝑡 ∈ 𝐻 and 𝜎 ∈ 𝑇 * such that ℎ𝑡
𝜎𝑡

−→.

If 𝐻𝑆 is a home space, then 𝐻 is also a home space, and for all 𝑞 ∈ 𝑅𝑆, there exist 𝑠1 ∈ 𝑇 * and ℎ ∈ 𝐻
such that 𝑞 𝑠1→ ℎ.

The subgraph induced by 𝐻 being strongly connected, there exists a path from ℎ to ℎ𝑡; in other
words, there exists 𝑠2 ∈ 𝑇 * such that ℎ 𝑠2→ ℎ𝑡. We can construct a sequence 𝑠 = 𝑠1𝑠2𝜎 such that for all
𝑞 ∈ 𝑅𝑆, 𝑞

𝑠𝑡→. Hence 𝑡 is live in 𝑅𝑆(𝑀, 𝑞0). The reverse is obvious. □

property 9. Let 𝑃𝑁 be a Petri Net and 𝑞 be a home state. Then, any transition that is enabled at 𝑞 is
live, and, more generally, a transition is live if and only if it appears as a label in 𝐿𝑅𝐺(𝑃𝑁, 𝑞).

This can be proven directly from the definition of liveness and Lemma 2 □
We can then deduce from this property that liveness is decidable for Petri Nets equipped with a home

state. More precisely, we have:

theorem 4. Let 𝑃𝑁 be a Petri Net with a home state 𝑞, and 𝐿𝐶𝑇 (𝑃𝑁, 𝑞), the labeled coverability tree
of 𝑃𝑁 . A transition is live if and only if it appears as a label in 𝐿𝐶𝑇 (𝑃𝑁, 𝑞).

This can be proven directly from the fact that a transition appears as a label of an edge of 𝐿𝑅𝐺(𝑃𝑁, 𝑞)
if and only if it appears as a label of an edge of 𝐿𝐶𝑇 (𝑃𝑁, 𝑞), and by considering Property 9. □

corollary 2. For any Petri Net with a home state 𝑞, liveness is decidable.

This is a direct consequence of Theorem 4 combined with Karp and Miller’s theorem [33], stating
that the coverability tree is finite □

In [34], we find the following result: if a free choice Petri net is safe then there exists a home state.
From corollary 2, we can conclude that liveness is decidable for free choice safe Petri Nets.

Given an initial state 𝑞0, each semiflow can be associated with an invariant that, in turn, can be
associated with a home space. In other words, if 𝑓 ∈ ℱ , then 𝐻𝑆(𝑓, 𝑞0) = {𝑞 ∈ 𝑄 | 𝑓⊤𝑞 = 𝑓⊤𝑞0} is a
{𝑞0}-home space, since 𝑅𝑆(𝑀, 𝑞0) ⊆ 𝐻𝑆(𝑓, 𝑞0).

property 10. If 𝑓 ∈ ℱ , then, for all 𝛼 ∈ Q ∖ {0}, 𝐻𝑆(𝛼𝑓, 𝑞0) = 𝐻𝑆(𝑓, 𝑞0). Also, for all 𝑓 and 𝑔 ∈ ℱ
and for all 𝛼 and 𝛽 ∈ Q, 𝐻𝑆(𝑓, 𝑞0)∩𝐻𝑆(𝑔, 𝑞0) ⊆ 𝐻𝑆(𝛼𝑓+𝛽𝑔, 𝑞0). Moreover, 𝐻𝑆(𝑓, 𝑞0)∩𝐻𝑆(𝑔, 𝑞0)
is a {𝑞0}-home space.

Note that 𝐻𝑆(𝑓, 𝑞0) ∩ 𝐻𝑆(𝑔, 𝑞0) is straightforwardly a {𝑞0}-home space, since they both contain
𝑅𝑆(𝑀, 𝑞0)

3. If 𝑞 ∈ 𝐻𝑆(𝑓, 𝑞0) ∩ 𝐻𝑆(𝑔, 𝑞0), then 𝛼(𝑓⊤𝑞) = 𝛼(𝑓⊤𝑞0) and 𝛽(𝑔⊤𝑞) = 𝛽(𝑔⊤𝑞0), so
(𝛼𝑓 + 𝛽𝑔)⊤𝑞 = (𝛼𝑓 + 𝛽𝑔)⊤𝑞0, and, therefore, 𝑞 ∈ 𝐻𝑆(𝛼𝑓 + 𝛽𝑔, 𝑞0) □

We define Ω, the closure under ∩ of {𝐻 ⊆ 𝑄 | ∃𝑓 ∈ ℱ+, 𝐻 = 𝐻𝑆(𝑓, 𝑞0)}, that is the smallest
subset of 2𝑄 stable for ∩ containing {𝐻 ⊆ 𝑄 | ∃𝑓 ∈ ℱ+, 𝐻 = 𝐻𝑆(𝑓, 𝑞0)}. For the same reason as for
property 10, all elements of Ω are home spaces and there exists a unique nonempty minimal element
𝜔 = minℎ∈Ω ℎ characterized in the next section.
3Let us recall that, in general, the intersection of home spaces is not a home space (see Figure 2).
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5.3. Three extremums computability

Knowledge of any finite generating set allows a practical computation of the three extremums (𝜆, 𝜃,
and 𝜔) defined in the previous sections.

We know that a finite generating set does exist by Gordan’s lemma (1) and we know how to compute a
generating set (see [7] for instance). Subsequently, we can state the following theorem which expresses
the fact that three extremums (𝜆, 𝜃, and 𝜔) are computable as soon as any finite generating set is
available.

theorem 5. Let ℰ = {𝑒1, ...𝑒𝑁} be any finite generating set of ℱ+, and 𝑞0 ∈ 𝑄, an initial marking.

(i) If ℰ is over S, then we have: 𝜔 =
⋂︀

𝑓∈ℱ+ 𝐻𝑆(𝑓, 𝑞0) =
⋂︀

𝑒𝑖∈ℰ 𝐻𝑆(𝑒𝑖, 𝑞0);
(ii) If ℰ is over Q+ or N, then, for any place 𝑝 belonging to at least one support of a semiflow of ℱ+, for

all 𝑞 ∈ 𝑅𝑆(𝑃𝑁, 𝑞0), we have :

𝑞(𝑝) ≤ 𝜆(𝑝, 𝑞0) = min
{𝑓∈ℱ+ | 𝑓(𝑝)̸=0}

𝑓⊤𝑞0
𝑓(𝑝)

= min
{𝑒𝑖∈ℰ | 𝑒𝑖(𝑝)̸=0}

𝑒𝑖
⊤𝑞0

𝑒𝑖(𝑝)
;

(iii) If ℰ is over Q+ or N, then, for any transition 𝑡 belonging to at least one support of a semiflow of
ℱ+, for all 𝑞 ∈ 𝑅𝑆(𝑃𝑁, 𝑞0), we have :

𝜃(𝑡, 𝑞0) = min
{𝑓∈ℱ+ | 𝑓⊤𝑃𝑟𝑒(·,𝑡)̸=0}}

𝑓⊤𝑞0
𝑓⊤𝑃𝑟𝑒(·, 𝑡)

= min
{𝑒𝑖∈ℰ | 𝑒⊤𝑖 𝑃𝑟𝑒(·,𝑡)̸=0}}

𝑓⊤𝑞0
𝑓⊤𝑃𝑟𝑒(·, 𝑡)

.

For the item (i), let’s consider 𝑓 ∈ ℱ+ with 𝑓 =
∑︀𝑖=𝑁

𝑖=1 𝛼𝑖𝑒𝑖 and 𝑞 ∈
⋂︀

𝑒𝑖∈ℰ 𝐻𝑆(𝑒𝑖, 𝑞0). Then,
𝛼𝑖(𝑒

⊤
𝑖 𝑞) = 𝛼𝑖(𝑒

⊤
𝑖 𝑞0), for all 𝑖 ∈ {1, ...𝑁}, and, hence

∑︀𝑖=𝑁
𝑖=1 𝛼𝑖(𝑒

⊤
𝑖 𝑞) =

∑︀𝑖=𝑁
𝑖=1 𝛼𝑖(𝑒

⊤
𝑖 𝑞0). Then, for all

𝑓 ∈ ℱ+, 𝑓⊤𝑞 = 𝑓⊤𝑞0, and 𝑞 ∈ 𝐻𝑆(𝑓, 𝑞0).
Therefore, since ℰ ⊂ ℱ+ directly implies (

⋂︀
𝑓∈ℱ+ 𝐻𝑆(𝑓, 𝑞0)) ⊆

⋂︀
𝑒𝑖∈ℰ 𝐻𝑆(𝑒𝑖, 𝑞0), we have:⋂︀

𝑒𝑖∈ℰ 𝐻𝑆(𝑒𝑖, 𝑞0) =
⋂︀

𝑓∈ℱ+ 𝐻𝑆(𝑓, 𝑞0) = 𝜔.
For the item (ii), let’s consider a marking 𝑞0, a place 𝑝, and a semiflow 𝑓 of ℱ+ such that 𝑓(𝑝) > 0

and 𝑓 =
∑︀𝑖=𝑁

𝑖=1 𝛼𝑖𝑒𝑖, where 𝛼𝑖 ≥ 0, for all 𝑖 ∈ {1, ...𝑁}.
Let’s define 𝜆ℰ such that 𝜆ℰ = min{𝑒𝑖∈ℰ | 𝑒𝑖(𝑝)̸=0}

𝑒𝑖
⊤𝑞0

𝑒𝑖(𝑝)
. Then, there exists 𝑗 such that 1 ≤ 𝑗 ≤ 𝑁

and 𝜆ℰ =
𝑒𝑗

⊤𝑞0
𝑒𝑗(𝑝)

.

Therefore, for all 𝑖 ≤ 𝑁 such that 𝑒𝑖(𝑝) ̸= 0, there exists 𝛿𝑖 ∈ Q+ such that: 𝑒𝑗
⊤𝑞0

𝑒𝑗(𝑝)
= 𝑒𝑖

⊤𝑞0−𝛿𝑖
𝑒𝑖(𝑝)

. It
can then be deduced, for all 𝑖 such that 𝛼𝑖𝑒𝑖(𝑝) ̸= 0:

𝜆ℰ =
𝛼𝑖(𝑒𝑖

⊤𝑞0 − 𝛿𝑖)

𝛼𝑖𝑒𝑖(𝑝)
,

and, therefore:

𝜆ℰ =

∑︀
{𝑖 | 𝛼𝑖𝑒𝑖(𝑝)>0} 𝛼𝑖(𝑒𝑖

⊤𝑞0 − 𝛿𝑖)∑︀
{𝑖 | 𝛼𝑖𝑒𝑖(𝑝)>0} 𝛼𝑖𝑒𝑖(𝑝)

Since
∑︀

{𝑖 | 𝛼𝑖𝑒𝑖(𝑝)>0} 𝛼𝑖(𝑒𝑖
⊤𝑞0) = 𝑓⊤𝑞0 −

∑︀
{𝑖 | 𝛼𝑖𝑒𝑖(𝑝)=0} 𝛼𝑖(𝑒𝑖

⊤𝑞0)
and

∑︀
{𝑖 | 𝛼𝑖𝑒𝑖(𝑝)>0} 𝛼𝑖𝑒𝑖(𝑝) = 𝑓(𝑝)

𝜆ℰ =
𝑓⊤𝑞0 −

∑︀
{𝑖|𝑒𝑖(𝑝)>0} 𝛼𝑖𝛿𝑖 −

∑︀
{𝑖 | 𝑒𝑖(𝑝)=0} 𝛼𝑖𝑒𝑖

⊤𝑞0

𝑓(𝑝)

Then, since 𝛿𝑖 ≥ 0 and 𝛼𝑖 ≥ 0 for all 𝑖 such that 1 ≤ 𝑖 ≤ 𝑁 ,

𝜆ℰ ≤ 𝑓⊤𝑞0
𝑓(𝑝)
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This being verified for any semiflow of ℱ+, we have 𝜆(𝑝, 𝑞0) = 𝜆ℰ .
The item (iii) of the theorem can be proven by a similar demonstration □
Item (i) is similar to a result that can be found in [24]. The complexity of computing item (ii) or (iii)

depends on 𝑁 the number of elements of ℰ . We know from theorem 3 that 𝑁 cannot be less than the
number of minimal supports.

6. Reasoning with invariants, semiflows, and home spaces

Invariants, semiflows, and home spaces can be used in combination to prove a rich array of behavioral
properties of Petri Nets, in particular when using parameters.

6.1. Methodically analyzing behavioral properties

The results presented in this paper provide verification engineers with a few steps to methodically
analyze and prove behavioral properties, in particular that a subset of transitions are live:

- run existing algorithms to compute Generating sets,[7, 35], even with parameters as in [36];
comparisons and benchmarks can be found in [37] and more recently in [38],

- from a generating set, using property 10, infer a first home space that concisely describes how
tokens are distributed over places,

- use theorem 5 to prune away impossible situations,
- step by step proceed by refinement of home states, finding which transitions can be enabled and

constrain current home spaces until reaching a possible home state,
- Use algorithms as in [33, 39] to construct the labeled coverability tree (LCT), and then deduce

which transitions are live from the ones that appears in LCT (theorem 4),
- ultimately, decide whether the Petri Net is live or not.

Here, through two related parameterized examples, we proceed by using basic arithmetic and some
particularity of the structure of the model to determine a home space and a home state in the second
case. Then, it becomes easy to determine for which values of the parameters the Petri Net possesses the
required liveness property.

First, we propose to look at an example with a parameter 𝑖 to define its Pre and Post functions. This
example allows one to detect whether a natural number 𝑛 is a multiple of 𝑖. The second example is an
extension of the first one with a coloration of the tokens allowing one to detect the remainder of the
Euclidean division of 𝑛 by 𝑖.

6.2. A first example

The Petri Net 𝑇𝑁(𝑖) = ⟨{𝐴,𝐵}, {𝑡1, 𝑡2}, 𝑃 𝑟𝑒, 𝑃𝑜𝑠𝑡⟩ in Figure 3 is defined by:
𝑃𝑟𝑒(·, 𝑡1)⊤ = (𝑖, 0);𝑃𝑟𝑒(·, 𝑡2)⊤ = (1, 1);
𝑃𝑜𝑠𝑡(·, 𝑡1)⊤ = (0, 1);𝑃𝑜𝑠𝑡(·, 𝑡2)⊤ = (𝑖+ 1, 0).
The initial marking 𝑞0 is such that 𝑞0(𝐴) = 𝑛 and 𝑞0(𝐵) = 𝑥, where 𝑛 and 𝑥 ∈ N.
A first version of this example can be found for 𝑖 = 2 in [10] or in [21], without proof. Here, the Petri

Net 𝑇𝑁(𝑖) is enriched by introducing a parameter 𝑖 such that 𝑖 > 1 to define its Pre and Post functions.
𝑔⊤ = (1, 𝑖) is the minimal semiflow of minimal support, and we can prove that ⟨𝑇𝑁(𝑖), 𝑞0⟩ is not

live if and only if 𝑔⊤𝑞0 ≤ 𝑖 or 𝑔⊤𝑞0 = 𝑛× 𝑖, independently of 𝑞0(𝐵). In other words, 𝑇𝑁(𝑖) recognizes
whether a given number 𝑛 is a multiple of 𝑖.

First, if 𝑔⊤𝑞0 < 𝑖, then the enabling threshold of 𝑡1 can never be reached (Property 3) and neither 𝑡1
nor 𝑡2 can be executed (since 𝑞0(𝐵) is necessarily null to satisfy the inequality). Second, if 𝑔⊤𝑞0 ≥ 𝑖,
then we consider the Euclidean division of 𝑔⊤𝑞0 by 𝑖, giving 𝑔⊤𝑞0 = 𝑛 × 𝑖 + 𝑟, where 𝑟 < 𝑖. Then,
since 𝑔 is a semiflow, 𝑔⊤𝑞 = 𝑞(𝐴) + 𝑖𝑞(𝐵) ≡ 𝑟 mod 𝑖, and, therefore, 𝑞(𝐴) ≡ 𝑟 mod 𝑖, for all
𝑞 ∈ 𝑅𝑆(𝑇𝑁(𝑖), 𝑞0). If 𝑟 = 0, then we have 𝑞(𝐴) = 𝑛× 𝑖− 𝑖× 𝑞(𝐵), and 𝑡1 can always be executed
𝑛− 𝑞(𝐵) times to reach a marking with zero token in 𝐴.
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Figure 3: Semiflows must verify the system of equations (1) which is reduced to the following equation:
𝑖 × 𝑎 = 𝑏, for which 𝑔⊤ = (1, 𝑖) is an obvious solution. 𝑇𝑁(𝑖) is live if and only if 𝑔⊤𝑞0 > 𝑖 and is not a
multiple of 𝑖, regardless of the initial marking of 𝐵. For 𝑖 = 1, 𝑇𝑁(1) has no live transition, regardless of the
initial marking.

If 𝑟 ̸= 0 and 𝑔⊤𝑞0 > 𝑖, then after executing 𝑡1 𝑛− 𝑞(𝐵) times, we reach a marking with 𝑟 tokens in
𝐴 and at least one token in 𝐵. Therefore, 𝐻𝑆 = {𝑞 ∈ 𝑅𝑆(𝑇𝑁(𝑖), 𝑞0) | 𝑞(𝐴) ̸= 0 ∧ 𝑞(𝐵) ̸= 0} is a
home space such that 𝐻𝑆 ⊆ Dom(𝑡2) so, we can apply property 8 proving that 𝑡2 is live. It is easy to
conclude that the Petri Net 𝑇𝑁(𝑖) is live if and only if 𝑔⊤𝑞0 > 𝑖 and is not a multiple of 𝑖, regardless of
the initial marking of 𝐵. □

We can point out that it was not necessary to develop a symbolic reachability graph in order to decide
whether or not the Petri Net is live or bounded. We could analyze the Petri Net even partially ignoring
the initial marking (i.e., considering 𝑞0(𝐴) as an a parameter and without considering the values taken
by 𝑞0(𝐵)).

6.3. Euclidean division

From the properties of 𝑇𝑁(𝑖), it is natural to progress by one more step and propose to design a Petri
Net with the ability not only to recognize whether a natural number 𝑛 is a multiple of a given natural
number 𝑖, but more generally to recognize the remainder of the Euclidean division of 𝑛 such that 𝑛 > 0
by 𝑖 such that 𝑖 > 1. To this effect, we first consider the Colored Petri Net 𝑇𝑁𝐶𝐸𝐷(𝑖) of Figure 4, and
the parameter 𝑖 ≥ 2. Second, for easing the reasoning, we unfold 𝑇𝑁𝐶𝐸𝐷(𝑖) into the classic Petri Net
𝑇𝑁𝐸𝐷(𝑖), where each place 𝐴𝑗 represents the color 𝑗 of 𝑇𝑁𝐶𝐸𝐷(𝑖) (see Figures 4 and 5).

We define 𝑃 = {{𝐴𝑗 | 𝑗 ∈ [0, 𝑖− 1]}, 𝐵} and 𝑇 = {𝑡𝑗,1, 𝑡𝑗,2| 𝑗 ∈ [0, 𝑖− 1]}, where Pre and Post
are defined by :
𝑃𝑟𝑒(𝐴𝑗 , 𝑡𝑗,1) = 𝑖, 𝑃𝑟𝑒(𝐵, 𝑡𝑗,1) = 𝑃𝑟𝑒(𝐴𝑗 , 𝑡𝑗,2) = 1
𝑃𝑜𝑠𝑡(𝐴𝑗 , 𝑡𝑗,2) = 𝑖+ 1, 𝑃𝑜𝑠𝑡(𝐵, 𝑡𝑗,1) = 1.

where 𝑗 ∈ [0, 𝑖− 1] . The initial marking is such that 𝑞0(𝐴𝑗) = 𝑛 + 𝑗, where 𝑗 ∈ [0, 𝑖− 1], and
𝑞0(𝐵) = 𝑥, where 𝑛 > 0 and 𝑥 are natural numbers.

Figure 4: 𝑇𝑁𝐶𝐸𝐷(𝑖), is a Colored Petri Net with a set 𝐶 of colors to distinguish values between 0 and 𝑖− 1
plus 𝜏 as an undefined color of token; 𝐶 = ([0, ...𝑖− 1] ∩ N) ∪ {𝜏}.
We have a system of 𝑖 equations: 𝑖 × 𝑎𝑗 = 𝑏 with 𝑗 ∈ [0, 𝑖− 1] ∩ N, for which 𝑔 such that 𝑔(𝐴𝑗) = 1 for
𝑗 ∈ [0, 𝑖− 1]∩N and 𝑔(𝐵) = 𝑖 is the minimal semiflow of minimal support in N. This Colored Petri Net allows
knowing the remainder of the Euclidean division of a natural number 𝑛 by 𝑖.
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Figure 5: 𝑇𝑁𝐸𝐷(𝑖) is the unfolded version of 𝑇𝑁𝐶𝐸𝐷(𝑖). To compute semiflows, we have a system of 𝑖
equations: 𝑖× 𝑎𝑗 = 𝑏 with 𝑗 ∈ [0, 𝑖− 1], for which 𝑔 such that 𝑔(𝐴𝑗) = 1 for 𝑗 ∈ [0, 𝑖− 1] and 𝑔(𝐵) = 𝑖 is the
minimal semiflow of minimal support in N. This parameterized Petri Net allows knowing the remainder of the
Euclidean division of a natural number 𝑛 by 𝑖.

We set 𝑔𝑇𝑖 = (1, · · · 1, 𝑖), such that 𝑔(𝐴𝑗) = 1 for 𝑗 ∈ [0, 𝑖− 1], and 𝑔(𝐵) = 𝑖 is the minimal
semiflow of minimal support in N. We have a first invariant 𝐼 , for all 𝑞 ∈ 𝑅𝑆(𝑇𝑁𝐸𝐷(𝑖), 𝑞0):

𝑔⊤𝑞0 = 𝑔⊤𝑞 =

𝑗=𝑖−1∑︁
𝑗=0

𝑞0(𝐴𝑗) + 𝑖𝑞0(𝐵) = 𝑖× (𝑥+ 𝑛+
𝑖− 1

2
).

Then, we need to notice that any place 𝐴𝑗 is connected to only two transitions, 𝑡𝑗,1 and 𝑡𝑗,2, such
that:
𝑃𝑜𝑠𝑡(𝐴𝑗 , 𝑡𝑗,1)− 𝑃𝑟𝑒(𝐴𝑗 , 𝑡𝑗,1) = −𝑖,
𝑃𝑜𝑠𝑡(𝐴𝑗 , 𝑡𝑗,2)− 𝑃𝑟𝑒(𝐴𝑗 , 𝑡𝑗,2) = 𝑖.
Hence, for all 𝑞 ∈ 𝑅𝑆(𝑇𝑁𝐸𝐷(𝑖), 𝑞0) and 𝑗 ∈ [0, 𝑖− 1], 𝑞(𝐴𝑗) can only vary by ±𝑖. We then deduce

a family of invariants 𝐼(𝑗) for 𝑗 ∈ [0, 𝑖− 1]:

𝐼(𝑗) : ∀𝑞 ∈ 𝑅𝑆(𝑇𝑁𝐸𝐷(𝑖), 𝑞0), 𝑞(𝐴𝑗) ≡ 𝑞0(𝐴𝑗) mod 𝑖.

Let’s perform the Euclidean division of 𝑞0(𝐴𝑗) by 𝑖. We have: 𝑞0(𝐴𝑗) = 𝑛+ 𝑗 = 𝑎𝑗 × 𝑖+ 𝛼𝑗 , where
𝛼𝑗 < 𝑖 for all 𝑗 ∈ [0, 𝑖− 1]. A new family of invariants 𝐼 ′(𝑗) can be directly deduced from each 𝐼(𝑗):

𝐼 ′(𝑗) : ∀𝑞 ∈ 𝑅𝑆(𝑇𝑁𝐸𝐷(𝑖), 𝑞0), 𝑞(𝐴𝑗) ≥ 𝛼𝑗 .

Furthermore, it must be pointed out that {𝛼0, · · ·𝛼𝑖−1} is a permutation of {0, · · · 𝑖 − 1}. Indeed,
if there exist 𝑗 < 𝑖 and 𝑗′ < 𝑖 such that 𝛼𝑗 = 𝛼𝑗′ , then 𝑛 + 𝑗 − 𝑎𝑗 × 𝑖 = 𝑛 + 𝑗′ − 𝑎𝑗′ × 𝑖, and
|𝑗 − 𝑗′| = |𝑎𝑗 − 𝑎𝑗′ | × 𝑖. Since |𝑗 − 𝑗′| < 𝑖, we have 𝑎𝑗 = 𝑎𝑗′ and 𝑗 = 𝑗′. Therefore,

(a)
∑︀𝑗=𝑖−1

𝑗=0 𝑞(𝐴𝑗) ≥ 𝑖(𝑖−1)
2 (directly from the 𝐼 ′(𝑗) family of invariants), and

(b) there is a unique 𝑘 ∈ [0, 𝑖− 1] such that 𝛼𝑘 = 0.

From (a) and 𝐼 , we deduce, for all 𝑞 ∈ 𝑅𝑆(𝑇𝑁𝐸𝐷(𝑖), 𝑞0), 𝑞(𝐵) ≤ 𝑥 + 𝑛 (which is a better
bound than the one that can be deduced from Proposition 2). Also, from 𝐼(𝑗), we can deduce,
∀𝑞 ∈ 𝑅𝑆(𝑇𝑁𝐸𝐷(𝑖), 𝑞0), 𝑞(𝐴𝑗) = 𝑦𝑗 × 𝑖+ 𝛼𝑗 , where 𝑦𝑗 ∈ N.
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From any reachable marking 𝑞, the sequence 𝜎𝑞 = 𝑡𝑦00,1 · · · 𝑡
𝑦𝑖−1

𝑖−1,1 can be executed and reach the
marking 𝑞ℎ such that, for all 𝑗 ∈ [0, 𝑖− 1] , 𝑞ℎ(𝐴𝑗) = 𝛼𝑗 and 𝑞ℎ(𝐵) = 𝑥+ 𝑛.

We know 𝑞ℎ is a home state, since 𝜎𝑞 is defined for any reachable marking (Note that 𝑞0 is not a home
state). From Property 9, we deduce that, since any transition 𝑡𝑗,2 where 𝑗 ̸= 𝑘 is executable (𝑛 > 0
hence, 𝑞ℎ(𝐵) > 1 and 𝑞ℎ(𝐴𝑗) = 𝛼𝑗 > 0), then 𝑡𝑗,2 is live, and, therefore, the corresponding transitions
𝑡𝑗,1 are also live.

From (b), 𝑞ℎ(𝐴𝑘) = 0 from, which we deduce that 𝑡𝑘,1 and 𝑡𝑘,2 are not live4. Finally, we have
𝑛+ 𝑘 = 𝑎𝑘 × 𝑖, and the remainder of the Euclidean division of 𝑛 by 𝑖 is 𝑖− 𝑘.
𝑇𝑁𝐸𝐷(𝑖) provides the ability to recognize this remainder by the remarkable fact that (𝑡𝑘,1, 𝑡𝑘,2) is

the only couple of transitions not live □
Most of the time, in real-life use cases, when a model accepts a set of home states, then the initial

marking belongs to it. It is not the case in our example, and this suggests the following conjecture:
“If the initial marking 𝑞0 of a Petri Net 𝑃𝑁 is not a home state and there exists a home state in

𝑅𝑆(𝑃𝑁, 𝑞0), then there exists at least one non-live transition in ⟨𝑃𝑁, 𝑞0⟩."

7. Conclusion

It has been recalled how semiflows allow inferring strong constraints over all possible markings of a
given Petri Net, which greatly help analysis of behavioral properties such as not only boundedness but
also liveness. Moreover, analysis can be performed with incomplete information, particularly when
markings and even structures are described with parameters as in our two examples.

The set of semiflows can be characterized with the notion of minimal generating set, and we hope
that our three decomposition theorems reached their final version. They were useful to make properties
on boundedness or liveness computable. Theorem 5 is an indication that knowledge of a generating set
brings most of the information that semiflows in ℱ+ can provide for analysis of behavioral properties.

Most of the time, especially with real-life system models, it will be possible to avoid a painstaking
symbolic model checking or a parameterized and complex development of a reachability graph [40, 41].

We introduced new results about home spaces; in particular, theorem 4 is new to the best of our
knowledge (for instance, it does not appear in the recent survey on decidability issues for Petri Nets
[42]). This theorem is interesting for at least two different reasons. First, from a theoretical point of
view, it characterizes a class containing unbounded Petri Nets, since the existence of a home state
does not mean that the Petri Net is bounded. Second, from a practical point of view, it shed a new
light on the usage of coverability graphs, since real-life systems often have a home state by design. It
increases the importance one can grant to the construction of coverability trees, which is used mostly
to determine which places are bounded (see important works by Finkel and al [39] about accelerating
this construction) by supporting the analysis of liveness.

At last, we presented most of these results in the framework of Petri Nets, we believe that most of
these results apply to Transition Systems. This, indeed, constitutes a starting point for future work.

Declaration on Generative AI

During the preparation of this work, I used Overleaf and deepL for grammar and spelling check,
paraphrase and reword. After using these tools/services, I reviewed and edited the content as needed
and take(s) full responsibility for the publication’s content.

4Actually, it suffices to notice that 𝐴𝑘 is an empty deadlock that remains empty.
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