
Interval Order Synthesis of EN-Systems with Read and
Mutex Arcs
Maciej Koutny1,∗, Łukasz Mikulski2 and Marta Pietkiewicz-Koutny1

1School of Computing, Newcastle University, Urban Sciences Building, 1 Science Square, Newcastle Helix, Newcastle upon
Tyne, NE4 5TG, United Kingdom
2Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, Chopina 12/18, Toruń, Poland

Abstract
Elementary net systems (EN-systems) are a fundamental Petri net model with simple markings and simple con-
nections between places and transitions. To enhance their modelling power, a number of extensions have been
proposed such as transition probabilities or inhibitor arcs. In this paper, we consider EN-systems extended with
read and mutex arcs. The resulting ENRM-systems allow one to capture a wider range of computational/dynamic
systems than the original EN-systems.

The standard semantical models of EN-systems and their extensions are based on sequences of executed
transitions (or total orders) or sequences of sets of transitions executed simultaneously (or stratified orders). The
first kind of semantics does not capture simultaneity of executed transitions, and the second kind only allows a
restrictive form of (transitive) simultaneity.

In this paper, we introduce semantics of ENRM-systems based on interval (partial) orders which allows one
to describe behaviours where transitions have non-atomic duration and the simultaneity of executed transitions
does not need to be transitive. Assuming such a semantical model, we consider the net synthesis problem for
ENRM-systems, and demonstrate that the standard notion of a region of a transition system (providing input to the
synthesis procedure) can still be applied after suitable modifications.

Keywords
theory of concurrency, Petri net, elementary net system, interval order semantics, interval transition system,
rm-regions, synthesis problem, structure and behaviour of Petri net

1. Introduction

Petri nets are a general model of concurrent systems which emerged as a counterpart to the state machines
that were used so successfully to model sequential systems. In particular, concepts related to fundamental
notions of concurrency theory, such as causality and independence, can be well explained using the
framework provided by Petri nets (see, e.g., [1, 2, 3]). A fundamental class of Petri nets in that respect
are Elementary Net Systems (EN-systems) [4]. In this paper, we consider EN-systems extended with read
and mutex arcs which allow two ways of testing for non-emptiness of places (ENRM-systems).

The execution semantics of Petri nets (i.e., the representation of individual runs or observations) is often
captured by total orders of executed transitions (or, equivalently, by firing sequences), or stratified orders
of executed transitions where simultaneity is transitive (or, equivalently, by step sequences). Having said
that, it can be argued that any execution that can be observed by a single observer must be an interval
order [5], where simultaneity is often non-transitive.

In this paper, extending the ideas presented in [6, 7], we first show how one can generate interval order
executions of ENRM-systems in a direct way, without the need to modify the original system specification
(e.g., by splitting transitions into explicit beginnings and endings) as it was done, for example, in [8, 9, 10].
The proposed semantical treatment of read arcs follows the way in which we approached the interval order
semantics of inhibitor arcs in [7]. Intuitively, the latter allows a degree of ‘fuzziness’ when looking at the
creation and consumption of tokens. When such an approach is applied to read arcs, it accepts that a token

International Workshop on Algorithms & Theories for the Analysis of Event Data, June, 2025, Paris, France
∗Corresponding author.
$ maciej.koutny@ncl.ac.uk (M. Koutny); lukasz.mikulski@mat.umk.pl (Ł. Mikulski); marta.koutny@ncl.ac.uk
(M. Pietkiewicz-Koutny)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1234

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:maciej.koutny@ncl.ac.uk
mailto:lukasz.mikulski@mat.umk.pl
mailto:marta.koutny@ncl.ac.uk
https://creativecommons.org/licenses/by/4.0/deed.en

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

is consumed gradually, and so the token only disappears completely after the transition connected with
an ordinary arc and responsible for this is completed. This allows for overlapping of executions of two
transitions connected to a shared place by a read arc and an ordinary directed arc. Dealing with mutex arcs
follows a different, much stricter, policy as any overlap of two transitions when one of them is connected
to a shared place by a mutex arc is prohibited. Thus, in the proposed interval semantics, one cannot
simulate mutex arcs by read arcs. They cannot be simulated by self-loops either as our model excludes
them. And, even if self-loops were available, the mutex arcs could not be simulated by them because
self-loops and mutex arcs interact differently with read arcs as mentioned earlier. Hence, adding mutex
arcs to the semantics based on interval orders increases the modelling expressiveness of the resulting
model. It is also worth emphasizing that the proposed semantics is a variant of the ‘a priori’ approach as
we capture conditions under which a transition can start its execution, but we do not stipulate when it
should terminate even if there are other transitions waiting for the tokens it is supposed to produce.

We also define Interval Reachability Graphs (IR-graphs) which are finite generators of potentially
infinite sets of interval orders defined by ENRM-systems. IR-graphs are a subclass of Interval Transition
Systems (ITR-systems) which differ from the standard transition systems since instead of having their arcs
labelled by executed transitions, they have states labelled by sets of transitions (interpreted as transitions
currently being executed). Then, assuming the interval order semantics of ENRM-systems, we consider
the problem of synthesising ENRM-systems from given ITR-systems.

We approach the new synthesis problem using the standard synthesis approach based on the theory
of regions [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. If one considers sequential behaviours of nets, a
transition system is realised by a net iff it is isomorphic to the sequential reachability graph (or case graph)
of this net. As in the existing literature about Petri net synthesis, we demonstrate that all ENRM-system
realisable ITR-systems are characterised by suitably adapted State Separation and Forward Closure
axioms.

Though in a majority of the existing works dealing with synthesis problem(s) it was assumed that the
actions/transitions have atomic duration and are executed sequentially, there were also papers dealing
with non-atomic durations and partial order executions, e.g., [6, 7, 22, 23].

The paper is organised as follows. In the next two sections, we recall basic facts about partial orders
and introduce ENRM-systems. Section 4 presents our first contribution, viz. the interval order semantics of
ENRM-systems which does not rely on transition splitting, and the resulting IR-graph representation. The
latter is a subclass of ITR-systems generating interval orders discussed in Section 5. Section 6 comprises
our second contribution, viz. a full characterisation of those ITR-systems which can be synthesised to
ENRM-systems, and a procedure to do so. Section 7 concludes the paper.

2. Partial orders

Executions of concurrent systems can be represented by partial orders as acyclicity of events is a clear
requirement resulting from physical considerations, and event precedence is transitive (this is true whether
or not events are considered as instantaneous). Moreover, the simultaneity of events (corresponding to
the overlapping of time intervals) amounts to the lack of ordering between events.

There are different partial order models of concurrent behaviours reflecting, e.g., the underlying
hardware and/or software. In the literature, there are three main kinds of such models, namely the total,
stratified, and interval orders, as recalled below.

Let X be a finite set (of events), ≺ be a binary (precedence) relation over X , and ℓ be a labelling function
for X (in this paper, labels are net transitions). Then po = ⟨X ,≺, ℓ⟩ is called (below x,y,z,w ∈ X):

• partial order if x ̸≺ x and x ≺ y ≺ z =⇒ x ≺ z.
• total order if x ̸≺ x, x ̸= y =⇒ x ≺ y ∨ y ≺ x, and x ≺ y ≺ z =⇒ x ≺ z.
• stratified order if x ̸≺ x, x ̸≺ y ̸≺ x ∧ x ≺ z =⇒ y ≺ z, x ≺ y ≺ z =⇒ x ≺ z, and x ̸≺ y ̸≺ x ∧ z ≺

x =⇒ z ≺ y.
• interval order if x ̸≺ x and x ≺ y ∧ z ≺ w =⇒ x ≺ w ∨ z ≺ y.

1235

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

(a)

a

b
c (b)

a

b
c (c) c

b

a

Figure 1: Diagram of (a) total order, (b) stratified order which is not total, and (c) interval order ipoo
which is not stratified.

All total orders are stratified, all stratified orders are interval, and all interval orders are partial. The
maximal elements of po = ⟨X ,≺, ℓ⟩ are maxpo = {x ∈ X | ¬∃y ∈ X : x ≺ y}. For all x ̸= y ∈ X , x ⌒ y if
x ̸≺ y ̸≺ x, i.e., ⌒ relates unordered elements. Figure 1 shows examples of three different kinds of partial
orders which are discussed in this paper.

The adjective in ‘interval order’ derives from an alternative definition (see [24]): po is an interval
order if there exist real-valued mappings, β and ε , such that, for all x,y ∈ X , β (x)< ε(x) and x ≺ y ⇐⇒
ε(x)< β (y). Intuitively, β and ε represent the ‘beginnings’ and ‘endings’ of the event intervals.

The relevance of interval orders follows from an observation, credited to Wiener [5], that any execution
of a physical system that can be observed by a single observer must be an interval order. Hence the
most precise qualitative semantics is the one defined in terms of interval orders (cf. [25]). In the area
of concurrency theory, the use of interval orders can be traced back to [26, 27, 28], and processes of
concurrent systems with interval order semantics were studied in [29, 10]. Interval orders were used to
investigate communication protocols in [30], using the approach of [31].

Interval order executions of, e.g., EN-systems can be generated by splitting each transition into a ‘begin’
followed by an ‘end’ transitions and, after executing the modified model using sequential semantics,
deriving the corresponding interval orders. However, this can also be done directly, i.e., without splitting
actions, as shown in [6].

3. ENRM-systems and their standard semantics

In this section, we present ENRM-systems and two semantical models based on total and stratified orders.

Definition 1 (ENRM-system). An elementary net system with read and mutex arcs (or ENRM-system) is a
tuple enrm = ⟨P,T,F,R,M,m0⟩, where P and T are disjoint finite sets of nodes, called respectively places
and transitions, F ⊆ (T ×P)∪ (P×T) is the flow relation, R ⊆ P×T is the set of read arcs, M ⊆ P×T
is the set of mutex arcs, and m0 ⊆ P is the initial marking (in general, any subset of places is a marking).
For every node x and every set of nodes X, we denote:

•x = {y | ⟨y,x⟩ ∈ F} •X =
⋃︁
{•x | x ∈ X}

x• = {y | ⟨x,y⟩ ∈ F} X• =
⋃︁
{x• | x ∈ X}

⊙x = {y | ⟨x,y⟩ ∈ R ∨ ⟨y,x⟩ ∈ R} ⊙X =
⋃︁
{⊙x | x ∈ X}

⊗x = {y | ⟨x,y⟩ ∈ M ∨ ⟨y,x⟩ ∈ M} ⊗X =
⋃︁
{⊗x | x ∈ X}

�x = •x∪⊙x∪⊗x �X = •X ∪⊙X ∪⊗X .

Moreover, und(enrm) = ⟨P,T,F,∅,∅,m0⟩. We then require, for all transitions t and places p:

1. •t ̸=∅ ̸= t• and t•∩ (•t ∪⊙t ∪⊗t) =∅.
2. There is a place q such that •p = q•, p• = •q, and p ∈ m0 ⇐⇒ q /∈ m0.
3. If q is a place such that •p = •q and p• = q• then p ∈ m0 ⇐⇒ q ∈ m0.
4. There is no q ̸= p such that •p = •q, p• = q•, ⊙p = ⊙q, and ⊗p = ⊗q.

The semantics of arcs ⟨x,y⟩ ∈ F in ENRM-systems is standard, i.e., as in EN-systems. The read arcs are
formed when p ∈ ⊙t and the mutex arcs are formed when p ∈ ⊗t. Intuitively, p ∈ ⊙t means that a marked
p is needed for the execution of t, but such an execution does not change the marking of p. Similarly,
p ∈ ⊗t means that a marked p is needed for the execution of t and the execution of t does not change the

1236

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

p1

p2

p3

p4

p5

p6
a b c d

Figure 2: ENRM-system.

marking of p; moreover, in this second case, no other transition which needs a marked p for its execution
can be simultaneous with t.

Note that Definition 1(2,3,4) is included in order to simplify Definition 2. Also, und(enrm) can
be regarded as an elementary net system (EN-system) underlying enrm, and some of the subsequent
definitions introduced for enrm are conservative extensions of those provided for EN-systems in [6].

In diagrams, places are represented by circles, transitions by rectangles, the flow relation by directed
arcs, the read arcs by edges with ⊙ as an arrowhead, the mutex arcs by edges with ⊗ as an arrowhead,
and a marking by small black dots drawn inside places belonging to the marking. Figure 2 shows an
ENRM-system such that, e.g., •b = {p1, p4}, c• = {p4, p6}, ⊙d = {p4}, and ⊗a = {p5}. Moreover, the
initial marking is m0 = {p2, p3, p5}.

Until Section 5.1, we assume that enrm = ⟨P,T,F,R,M,m0⟩ is a fixed ENRM-system.

3.1. Firing sequences and total orders of ENRM-systems

The first kind of dynamic behaviour of ENRM-systems is given using sequences of executed transitions.

Definition 2 (firing sequences of ENRM-system). The firing sequences (of transitions) of enrm, denoted
by SEQenrm, are generated as follows.

• The empty sequence λ is a firing sequence of enrm, and it leads to marking marλ = m0.
• Let σ be a firing sequence of enrm leading to marking marσ , and t be a transition such that

�t ⊆ marσ (t is enabled at marσ). Then σt is a firing sequence of enrm leading to marking
marσt = (marσ \•t)∪ t•.

In what follows, we will assume that each transition of an ENRM-system occurs in at least one firing
sequence, i.e., there are no dead transitions.

Proposition 1. Let σ ∈ SEQenrm, t ∈ T , and p,q ∈ P.

1. SEQenrm ⊆ SEQund(enrm).
2. If •p = q• and p• = •q, then p ∈ marσ ⇐⇒ q /∈ marσ .
3. If �t ⊆ marσ , then t•∩marσ =∅.

Figure 2 shows an ENRM-system where, intuitively, three components represented by cyclic sub-nets
progress independently, but any action shared by two components can be executed only if both of them
do so. Moreover, d can only be executed if p4 is marked and a can only be executed if p5 is marked (in
addition, a cannot be simultaneous with c though this feature is not relevant for the purely sequential
semantics). For example, cdab is a firing sequence leading back to the initial marking.

One can also associate total orders of transition occurrences with the executed interleaving sequences
of transitions. The n-th occurrence of transition t will be denoted by t(n) and called event. The labelling
function ℓ in all partial orders in this paper maps events (occurrences of transitions) to their names.

Definition 3 (total orders of ENRM-system). The total orders of enrm, denoted by TPOenrm, are generated
as follows.

1237

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

• tpo∅ = ⟨∅,∅,∅⟩ is a total order of enrm, and it leads to marking martpo∅ = m0.
• Let tpo = ⟨X ,≺, ℓ⟩ be a total order of enrm leading to marking martpo, and t be a transition such

that �t ⊆martpo. Then, tpo′ = ⟨X ∪{x},≺∪ (X ×{x}), ℓ∪{⟨x, t⟩}⟩ is a total order of enrm leading
to martpo′ = (martpo \•t)∪ t•, where x = t(1+|ℓ−1(t)|).

Proposition 2. TPOenrm ⊆TPOund(enrm) and {martpo | tpo ∈TPOenrm} ⊆ {martpo | tpo ∈TPOund(enrm)}.

3.2. Step sequences and stratified orders of ENRM-systems

To capture concurrent behaviour of ENRM-systems one can use sequences of sets of executed transitions
(steps).

Definition 4 (step sequences of ENRM-system). The step sequences of enrm, denoted by SSEQenrm, are
generated as follows.

• The empty sequence λ is a step sequence of enrm, and it leads to marking marλ = m0.
• Let ξ be a step sequence of enrm leading to marking marξ , and t be a transition such that �t ⊆marξ .

Then ξ{t} is a step sequence of enrm leading to marking marξ{t} = (marξ \•t)∪ t•.
• Let ξ = ξ ′U be a step sequence of enrm leading to marking marξ , and t be a transition such that

(1) •t ∪⊗t ⊆ marξ \U• (3) �t ∩⊗U = ∅
(2) ⊙t ⊆ (marξ \U•)∪ •U (4) ⊗t ∩�U = ∅ .

Then ξ ′(U ∪{t}) is a step sequence of enrm leading to marking marξ ′(U∪{t}) = (marξ \•t)∪ t•.

Observe that the third item of Definition 4 contains the conditions that must be satisfied by t to be
added to the step U to make a bigger step, U ∪{t}, enabled at marξ ′ . Tokens from the places in •U are
already ‘reserved’ for transitions from U (i.e., marξ ∩•U = ∅) and tokens in the places in U• are not
available at marξ ′ . So, after the step sequence ξ ′, the pre-places of t and the mutex places of t must rely
on the tokens that are not needed for the execution of any of the transitions from U to exclude conflicts
for resources. This is captured by the inclusion in (1). The second inclusion, in (2), reflects the fact that
the tokens from the places of •U , at the marking marξ ′ , can be used by t if it is connected to them by read
arcs. Conflicts resulting from mutex arcs related to t or transitions from U are prevented by (3) and (4).
Observe also that the condition (4) can be replaced by ⊗t ∩ (⊗U ∪⊙U) =∅ as ⊗t ∩ •U =∅ is implied by
(1).

Proposition 3. Let ξ ∈ SSEQenrm, t ∈ T , and p,q ∈ P.

1. SSEQenrm ⊆ SSEQund(enrm).
2. If •p = q• and p• = •q, then p ∈ marξ ⇐⇒ q /∈ marξ .
3. If �t ⊆ marξ , then t•∩marξ =∅.

One can also associate stratified orders of events with step sequences.

Definition 5 (stratified orders of ENRM-system). The stratified orders of enrm, denoted by SPOenrm, are
generated as follows.

• spo∅ = ⟨∅,∅,∅⟩ is a stratified order of enrm, and it leads to marking marspo∅ = m0.
• Let spo = ⟨X ,≺, ℓ⟩ be a stratified order of enrm leading to marking marspo, and t be a transition

such that �t ⊆ marspo. Then spo′ = ⟨X ∪{x},≺ ∪(X ×{x}), ℓ∪{⟨x, t⟩}⟩ is a stratified order of
enrm leading to marspo′ = (marspo \•t)∪ t•, where x = t(1+|ℓ−1(t)|).

• Let spo = ⟨X ,≺, ℓ⟩ ̸= spo∅ be a stratified order of enrm leading to marking marspo, and t be a
transition such that

•t ∪⊗t ⊆ marspo \ℓ(maxspo)
• �t ∩⊗ℓ(maxspo) = ∅

⊙t ⊆ (marspo \ℓ(maxspo)
•)∪ •ℓ(maxspo)

⊗t ∩�ℓ(maxspo) = ∅ .

Then spo′ = ⟨X ∪{x},≺ ∪((X \maxspo)×{x}), ℓ∪{⟨x, t⟩}⟩ is a stratified order of enrm leading
to marspo′ = (marspo \•t)∪ t•, where x = t(1+|ℓ−1(t)|).

Proposition 4. SPOenrm ⊆ SPOund(enrm) and {marspo | spo ∈ SPOenrm} ⊆ {marspo | spo ∈ SPOund(enrm)}.

1238

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

4. Interval order semantics of ENRM-systems

The above standard execution semantics of ENRM-systems implicitly assumes that events are executed
instantaneously (atomically), or that their duration is negligible. In the semantical model adopted in this
paper, firing of transitions is transaction-like. By this we mean that when event x based on transition
(action) t starts its execution it consumes tokens from all the places in •t, and when x ends its execution,
then the tokens present in the places in t• become available for other transitions. Moreover, the read and
mutex arcs impose additional constraints on the relationships between events. In particular, if event z
based on transition v consumes a token from a read place of t, then z cannot directly precede event x
(based on t), but when v adds a token to a read place of t, then z must finish before x starts.

Following the approach initiated in [6] and then followed in [7], we now define an interval order
semantics for enrm. Similarly as in Definitions 3 and 5, we will use an inductive approach. This leads to
the following question:

Given an interval order execution ipo, resulting from extending the initial empty interval
order by successive events, what could we say about the interval order obtained after starting
another enabled transition? In other words, what could we say about ipo′ derived from ipo
after starting a single event x based on transition t?

Our answer is based on the following key observations:

(i) All non-maximal events in ipo must precede x.
(ii) No maximal event in ipo has consumed a token that t wants to consume or exclusively reserve

(i.e. z ∈ maxipo ⇒ •ℓ(z)∩ (•t ∪⊗t) =∅).
(iii) The maximal events in ipo belong to three categories: Cntd comprises events which must be

continued when x starts, Fin events which must be finished before x starts, and any remaining
events which may be continued or may be finished. More precisely,

(a) z ∈ Cntd if •ℓ(z)∩⊙t ̸=∅, and then z ⌒ipo′ x.
(b) z ∈ Fin if (ℓ(z)•∪⊗ℓ(z))∩�t ̸=∅ or ⊙ℓ(z)∩⊗t ̸=∅, and then z ≺ipo′ x.
(c) z ∈ maxipo \(Cntd∪Fin), and then z ≺ipo′ x or z ⌒ipo′ x.

(iv) Cntd∩Fin =∅ as we cannot have both z ≺ipo′ x and z ⌒ipo′ x.

Intuitively, the maximal events in ipo can be considered ‘pending’ before starting x, and can either be
finished ‘just before’ x started, or continued to be finished after the execution of x has started.

In case (a) above, z ∈ Cntd has to continue, as its finishing would finish removing a token from a place
which acts as a read place for t.

In case (b) above, we have different reasons for finishing z ∈ Fin. First, if ℓ(z)• ∩�t ̸= ∅, then x
needs a token produced by z for its execution (this is similar to the treatments in [6] and [7]). Second,
if ⊗ℓ(z)∩�t ̸= ∅, then z cannot be simultaneous with x, and it has to finish before x starts. Third, if
⊙ℓ(z)∩⊗t ̸=∅ then there is a mutex place p for t which is also needed for the enabling of ℓ(z). If we
allowed z ⌒ipo′ x, then x and z would become overlapping events violating the mutex arc constraint.
Hence z ≺ipo′ x.

In case (c) above, z can be either terminated or continued as it has no impact on the executability of x.
This is, in fact, the source of non-determinism which is not present in the standard interleaving or step
sequence execution semantics of enrm.

4.1. Interval orders generated by ENRM-systems

The observations we have just made lead to the following definition.

Definition 6 (interval orders of ENRM-system). The interval orders of enrm, denoted by IPOenrm, are
generated as follows.

• ipo∅ = ⟨∅,∅,∅⟩ is an interval order of enrm, and it leads to marking maripo∅ = m0.

1239

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

• Let ipo = ⟨X ,≺, ℓ⟩ be an interval order of enrm leading to marking maripo, and t be a transition
such that

•t ∪⊗t ⊆ maripo \ℓ(Cntd)• and ⊙t ⊆ (maripo \ℓ(Cntd)•)∪ •ℓ(Cntd) and Cntd∩Fin =∅ ,

where Fin = {z ∈ maxipo | (ℓ(z)•∪⊗ℓ(z))∩�t ̸=∅ ∨ ⊙ℓ(z)∩⊗t ̸=∅} and Cntd = {z ∈ maxipo |
•ℓ(z)∩⊙t ̸=∅}. Then, assuming that x = t(1+|ℓ−1(t)|) and Cntd ⊆ Exec ⊆ maxipo \ Fin,

ipo′ = ⟨X ∪{x},≺ ∪ ((X \Exec)×{x}), ℓ∪{⟨x, t⟩}⟩

is an interval order of enrm leading to marking maripo′ = (maripo \•t)∪ t•.

We also denote ipo →enrm ipo′ and ipo
t:ℓ(Exec)−−−−−→enrm ipo′.

Intuitively, Cntd are the maximal events of ipo which we must ‘keep’ executing simultaneously with
x, Fin are the maximal events of ipo which must be ‘finished’ before the start of x, and Exec are all
those maximal events of ipo which we keep ‘executing’ simultaneously with x (and so Cntd ⊆ Exec and
Fin∩Exec = ∅). The annotation of the arc, t:ℓ(Exec), means that the move from ipo to ipo′ has been
achieved by executing transition t, while the transitions in ℓ(Exec) that started earlier are still active.

The nondeterministic execution of t results from having 2k, where k = |maxipo \(Cntd∪Fin)|, possi-
bilities for choosing Exec.

Definition 6 extends conservatively a corresponding definition of interval order semantics introduced
for EN-systems in [6]. We can therefore carry over a number of suitably adapted results established in [6].

Proposition 5. Assume the notation as in Definition 6. Then:

1. t ̸∈ ℓ(maxipo).
2. t•∩maripo =∅.
3. maxipo′ \maxipo = {x}.
4. Cntd ⊆ maxipo′ \{x} ⊆ maxipo \ Fin.
5. ℓipo′(maxipo′ \maxipo) = {t}.
6. ℓipo′(maxipo′ \{x}) = ℓ(Exec)⊆ ℓ(maxipo \ Fin).
7. If x ̸= y ∈ X are such that ℓ(x) = ℓ(y), then x ≺ y or y ≺ x.

8. If ipo t:V−→enrm ipo′ and ipo t:V−→enrm ipo′′, then ipo′ = ipo′′ and maripo′ = maripo′′ .

Proposition 6. IPOenrm is a set of interval orders such that TPOenrm ⊆ SPOenrm ⊆ IPOenrm ⊆ IPOund(enrm)

and {maripo | ipo ∈ IPOenrm} ⊆ {maripo | ipo ∈ IPOund(enrm)}.

Leading to the same marking is not enough to ensure that two generated interval orders have the same
extensions. The next definition adds another requirement.

Definition 7 (extension equivalent interval orders of ENRM-system). Two interval orders of enrm, ipo
and ipo′, are extension equivalent if maripo = maripo′ and ℓipo(maxipo) = ℓipo′(maxipo′).
We denote this by ipo ∼enrm ipo′.

Clearly, ∼enrm is an equivalence relation. Moreover, the following result is needed to define states of
ENRM-systems.

Proposition 7. If ipo ∼enrm ipo′ and ipo t:V−→enrm ipoo, then there is ipo′o such that ipo′ t:V−→enrm ipo′o and
ipoo ∼enrm ipo′o.

1240

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

(a)

p1 p2 p3

p4 p5 p6

a b c

(b)

{p1,p2,p3}
∅

{p4,p2,p3}
{a}

{p1,p5,p3}
{b}

{p1,p2,p6}
{c}

{p4,p2,p6}
{a,c}

{p4,p2,p6}
{c}

{p4,p5,p3}
{a,b}

{p4,p5,p3}
{a}

{p4,p2,p6}
{a}

{p1,p5,p6}
{b}

{p4,p5,p6}
{a}

{p4,p5,p6}
{a,b}

Figure 3: (a) ENRM-system and (b) its IR-graph.

4.2. Reachable states and interval reachability graphs

As observed in [6], markings alone are insufficient to identify states of EN-systems under the interval
order semantics. A solution to this problem proposed there, and one which we adopt here, is to associate
a state of enrm with all those interval orders which lead to the same marking, and have the same set of
labels of maximal events. The reason is that all the ‘continuations’ for such interval orders are the same
(see Proposition 7).

We then define the reachability graph of an ENRM-system.

Definition 8 (interval reachability graph of ENRM-system). The interval reachability graph (or IR-graph)
of enrm is irgenrm = ⟨Q,→,q0, ι⟩, where:

1. Q = {stateenrm(ipo) | ipo ∈ IPOenrm}, where stateenrm(ipo) = ⟨maripo, ℓipo(maxipo)⟩ is the state
corresponding to ipo ∈ IPOenrm.

2. →= {⟨stateenrm(ipo),stateenrm(ipo′)⟩ | ipo →enrm ipo′} are the arcs.
3. q0 = stateenrm(ipo∅) is the initial state.
4. ι : Q → 2T is the labelling such that ι(stateenrm(ipo)) = ℓipo(maxipo), for every ipo ∈ IPOenrm.

Figure 3(b) shows the IR-graph of enrm, the ENRM-system in Figure 3(a). It has 12 states given as
follows, where ipoo is the interval partial order as in Figure 1(c):

⟨{p1, p2, p3},∅⟩ = stateenrm(poλ) ⟨{p1, p5, p3},{b}⟩ = stateenrm(pob)
⟨{p4, p2, p3},{a}⟩ = stateenrm(poa) ⟨{p1, p2, p6},{c}⟩ = stateenrm(poc)
⟨{p4, p5, p3},{a}⟩ = stateenrm(poba) ⟨{p3, p4, p5},{a,b}⟩= stateenrm(po{a,b})

⟨{p4, p2, p6},{c}⟩ = stateenrm(poac) ⟨{p4, p2, p6},{a,c}⟩= stateenrm(po{a,c})

⟨{p4, p2, p6},{a}⟩ = stateenrm(poca) ⟨{p1, p5, p6},{b}⟩ = stateenrm(pocb)
⟨{p4, p5, p6},{a,b}⟩= stateenrm(ipoo) ⟨{p4, p5, p6},{a}⟩ = stateenrm(pocba).

The maximal events of ipo of a state in an IR-graph can belong to Cntd or Fin only with respect to the
new transition to be executed. This is clearly visible in the net and IR-graph depicted in Figure 4. E.g.,
at the state ⟨{p2, p4, p6},{a}⟩ of the IR-graph in Figure 4(b), transitions b, c, and d are enabled. At
this state, if we want to execute b, a(1) ∈ Fin (a•∩ •b ̸=∅) and therefore b must wait for a to finish in
order to start its execution leading to ⟨{p3, p4, p6},{b}⟩, where only b is active. However, if we want to
execute c at ⟨{p2, p4, p6},{a}⟩, then a(1) ∈ Cntd (•a∩⊙c ̸=∅) meaning that according to Definition 6

1241

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

p1

p2

p3

p4

p5

p6

p7

a

b

c

d

(a)

(b)

{p1,p4,p6}
∅

{p2,p4,p6}
{a}

{p1,p5,p6}
{c}

{p3,p4,p6}
{b}

{p2,p5,p6}
{a,c}

{p2,p4,p7}
{d}

{p2,p5,p6}
{a}

{p3,p5,p6}
{b}

{p3,p5,p6}
{b,c}

{p2,p5,p7}
{d}

{p2,p5,p7}
{c,d}

{p3,p4,p7}
{b}

{p3,p5,p7}
{b}

{p3,p5,p7}
{b,c}

Figure 4: (a) ENRM-system (some redundant places needed by Definition 1 are omitted); and (b) its
IR-graph.

transition c is indeed enabled at this state, but c can only be executed at ⟨{p2, p4, p6},{a}⟩ by joining a.
Therefore, executing c at ⟨{p2, p4, p6},{a}⟩ leads to ⟨{p2, p5, p6},{a,c}⟩, where both a and c are active.
At the state ⟨{p2, p4, p6},{a}⟩, d is also enabled. Its execution requires that a(1) ∈ Fin (a•∩⊗d ̸=∅) and
executing it leads to ⟨{p2, p4, p7},{d}⟩, where only d is active.

Consider then ⟨{p2, p5, p6},{a,c}⟩. At this state, b is enabled as a(1) ∈ Fin for b, and c(1) /∈ Cntd∪Fin
for b. Hence we have two possibilities for executing b: it must wait for a to finish, but it may wait for c to
finish (leading to ⟨{p3, p5, p6},{b}⟩) or may overlap with c (leading to ⟨{p3, p5, p6},{b,c}⟩).

In the next section, we will show that irgenrm = ⟨Q,→,q0, ι⟩ is a generator of all the interval orders of
enrm. For that we need yet another result and an extension to the notation of Definition 8(2), where the
annotation in t:V−→ is used explicitly for ipo t:V−→enrm ipo′.

Proposition 8. For every ipo ∈ IPOenrm :

ipo t:V−→enrm ipo′ =⇒ stateenrm(ipo) t:V−→ stateenrm(ipo′)

stateenrm(ipo) t:V−→ q =⇒ ∃ipo′ ∈ IPOenrm : ipo t:V−→enrm ipo′∧ q = stateenrm(ipo′) .
(1)

5. Transition systems generating interval orders

In general, we are interested in transition systems which are capable of generating interval orders.

Definition 9 (interval transition system). An interval transition system over T (or ITR-system) is itrs =
⟨S,→,s0, ι⟩, where S is a finite set of states, →⊆ S×S is the set of arcs, s0 ∈ S is the initial state, and
ι : S → 2T is the labelling of states. The following hold, for all s,r,q ∈ S:

1. All states are reachable from s0.
2. ι(s) =∅ iff s = s0.
3. If s → r, then there are t ∈ T \ ι(s) and V ⊆ ι(s) such that ι(r) =V ∪{t}.

We also denote s t:V−→ r. Moreover, we denote s t:V−→ (or s ̸ t:V−→) if there is (resp. there is no) r ∈ S
such that s t:V−→ r.

1242

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

(a) a d b (b) c a b (c)

a bc
(d)

a bc

(e) a b (f)

a d b

c (g)

a d b

c (h)

a

d
bc

(i)

a

d
b

c

Figure 5: Interval orders generated by the maximal paths in the transition system of Figure 4(b).

4. For every t ∈ T , there are u ∈ S and V ⊆ T such that u t:V−→.

5. If s t:V−→ r and s t:V−→ q, then r = q.

Proposition 9. irgenrm is an ITR-system.

The above proposition justifies the use of the same notations for the relations and labelling functions in
irgenrm and itrs graphs.

Definition 10 (interval orders of ITR-system). Let itrs = ⟨S,→,s0, ι⟩ be an ITR-system. Its interval orders,
denoted by IPOitrs, are the interval orders ipoπ derived from paths π originating at the initial state. They
are generated as follows:

• ipoπ = ipo∅ is the interval order generated by π = s0.

• Let π = s0 . . .sk be a path such that ipo = ipos0...sk−1
= ⟨X ,≺, ℓ⟩ and sk−1

t:V−→ sk. Then

ipoπ = ⟨X ∪{x},≺ ∪ ((X \Exec)×{x}), ℓ∪{⟨x, t⟩}⟩

is interval order generated by π , where Exec = maxipo∩ ℓ−1(V) and x = t(1+|ℓ−1(t)|).

Figure 5 shows interval orders generated by different paths in the transition system of Figure 4(b).
Every state of this transition system (IR-graph) is labelled by maximal elements of the interval order
(associated with the state) obtained so far by progressing along a particular path. Going along the two
‘outer’ paths in Figure 4(b), we obtain interval orders depicted in Figure 5(a,b). The ‘diamond’ at the
top of the IR-graph indicates that transitions a and c can overlap and that they can do this in more than
one way, but in our semantics of ENRM-systems, we can only express the fact that a started its execution
before c, or the other way around. After the diamond, which shows the simultaneity of a and c, there
are two possibilities for executing b: (i) after both a and c finished their execution (Figure 5(c)); or (ii)
b can start its execution waiting only for a to finish, but joining c which is still active and can overlap
with b (Figure 5(d)). Once a was executed in the net of Figure 4(a) and b consumed the delivered token
from p2, both c and d cannot be executed (Figure 5(e)). Figure 5(f) shows an interesting case. The
transitions a and c of the net in Figure 4(a) can start their executions, in whatever order, and overlap. In
this case, a finishes first allowing d to start and overlap with c (c, which was started before, can finish
whenever it wants; the enabling conditions are checked only at the beginning of its execution). After d
completes b can be executed (b and d are mutually exclusive). In the case of Figure 5(f), b also waits for
c to complete, but it does not need to. Transitions c and b can overlap. This alternative is illustrated in
Figure 5(g). Figure 5(h) shows a possibility of a and c overlapping in their executions at first, and then,
after they both finished (c does not need to finish, but it may) d can be executed followed by b (b and
d are mutually exclusive). If we execute b first, d will not have a chance to fire (Figure 5(c)). Finally,
Figure 5(i) shows the possibility of sequential execution of all the transitions in the net of Figure 4(a):
cadb.

Proposition 10. IPOenrm = IPOirgenrm
.

1243

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

5.1. ITRS-isomorphism

The standard definition of transition system isomorphism can be adapted for ITR-systems as shown below,
where itrs = ⟨S,→,s0, ι⟩ and itrs′ = ⟨S′,=⇒,s′0, ι

′⟩ are fixed ITR-systems over T .

Definition 11 (isomorphism of ITR-systems). itrs and itrs′ are isomorphic if there is a bijection ψ : S → S′

such that ψ(s0) = s′0, ι = ι ′ ◦ψ , and s → r ⇐⇒ ψ(s) =⇒ ψ(r), for all s,r ∈ S.
We denote this by itrs ≈ψ itrs′ and itrs ≈ itrs′. ⋄

Proposition 11. ≈ is an equivalence relation such that itrs ≈ itrs′ implies IPOitrs = IPOitrs′ .

The next result is consequence of the fact that if in an ITR-system we replace each arc s → r by a
labelled arc s t:V−→ r, where {t} = ι(r) \ ι(s) and V = ι(r)∩ ι(s), and remove the mapping ι , then the
result is a deterministic finite state automaton such that each state is reachable from the initial state.

Proposition 12. If itrs ≈ itrs′ then there is exactly one ψ such that itrs ≈ψ itrs′. Also, if s ∈ S then:

1. s t:V−→ r implies that there is exactly one r′ ∈ S′ such that ψ(s) t:V
=⇒ r′; moreover, ψ(r) = r′.

2. ψ(s) t:V
=⇒ r′ implies that there is exactly one r ∈ S such that s t:V−→ r; moreover, ψ(r) = r′.

6. Synthesis

The synthesis procedure introduced in this section follows the standard approach applied in [11, 13, 15,
18, 19, 21], where a transition system with its global states is used as an initial specification from which
local states (places of Petri nets) are inferred in the form of regions. In our case, transition systems are
ITR-systems. The verification that a given ITR-system is realisable by an ENRM-system with interval order
semantics is essentially done by checking whether the derived regions satisfy suitable state separation
and forward closure properties.

Until Definition 13, we assume that itrs = ⟨S,→,s0, ι⟩ is a fixed ITR-system over T . The regions we
are going to introduce will be called RM-regions.

Definition 12 (RM-region of ITR-system). An RM-region of itrs is r= ⟨Inr,Outr,Readr,Mutr,Sr⟩, where
Inr,Outr,Readr,Mutr ⊆ T , and Sr ⊆ S are such that the following hold, for all s t:V−→ r and v ∈ T :

1. t ∈ Inr iff s /∈ Sr and r ∈ Sr.
2. t ∈ Outr iff s ∈ Sr and r /∈ Sr.
3. If t ∈ Outr and v ∈ Inr∩ ι(s), then v /∈ ι(r).
4. If t ∈ Inr and v ∈ Outr∩ ι(s), then v /∈ ι(r).
5. If t ∈ Readr and s /∈ Sr, then Outr∩ ι(s) ̸=∅.
6. If t ∈ Readr and v ∈ Outr∩ ι(s), then v ∈ ι(r).
7. If t ∈ Readr and v ∈ (Inr∪Mutr)∩ ι(s), then v /∈ ι(r).
8. If t ∈ Mutr and v ∈ (Inr∪Readr∪Mutr)∩ ι(s), then v /∈ ι(r).
9. If t ∈ Outr and v ∈ Mutr∩ ι(s), then v /∈ ι(r).

10. If t ∈ Mutr then s ∈ Sr.

There are two trivial RM-regions, ⟨∅,∅,∅,∅,S⟩ and ⟨∅,∅,∅,∅,∅⟩. The set of all non-trivial RM-
regions of itrs is denoted by Ritrs, and Rs = {r ∈Ritrs | s ∈ Sr} are the non-trivial RM-regions comprising
a state s ∈ S. We also denote, for all t ∈ T and U ⊆ T :

■t = {r ∈Ritrs | t ∈ Outr} t■ = {r ∈Ritrs | t ∈ Inr} �t = ■t ∪�t ∪⊠t
⊠t = {r ∈Ritrs | t ∈ Mutr} �t = {r ∈Ritrs | t ∈ Readr} �U =

⋃︁
{�t | t ∈U}

■U =
⋃︁
{■t | t ∈U} U■ =

⋃︁
{t■ | t ∈U} ⊠U =

⋃︁
{⊠t | t ∈U} .

(2)

Proposition 13. If r= ⟨Inr,Outr,Readr,Mutr,Sr⟩ ∈Ritrs then r= ⟨Outr, Inr,∅,∅,S\Sr⟩ ∈Ritrs.

1244

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

To provide some intuition for Definition 12, we need to look ahead and imagine that regions will
become places of the synthesised net. Then, Sr is the set of states where region/place r is marked or
waiting to be marked. The transitions from Inr will deposit tokens in r (Definition 12(1)), and transitions
from Outr will be consuming tokens from r (Definition 12(2)). As the transition t will be executing
in the context of some currently active transitions, Definition 12(3,4,7,8,9) must make sure that some
previously active transitions, say v, which share parts of their environment with t, should finish their
executions before t starts, respecting the properties of places in ENRM-systems and/or the need of some
of the transitions to have mutually exclusive access to the token of the place/region r. Definition 12(5)
captures the situation where t is connected to place/region r by a read arc. As t is enabled at s and
s /∈ Sr (r is not marked at s), the only possibility of t ‘seeing’ a token in r is the existence of some other
active transition from Outr, say v, which is in the process of consuming this token. Definition 12(6) is
then making sure that v continues its execution as t starts, so the token is not yet consumed. Finally,
Definition 12(10) guarantees that if a transition t is enabled at s and is connected to r by a mutex arc,
then r must be marked at s (s ∈ Sr) as, with respect to place r, t cannot be ‘helped’ by any other active
transition connected to r as it was done when t ∈ Readr (see Definition 12(5,6)).

The next two results relate the RM-regions involved in a move between two states of itrs.

Proposition 14. Let s t:V−→ r. Then:

t■∩�t =∅ ■t ⊆Rs
■t ∩Rr =∅ Rs \Rr =

■t Rr \Rs = t■ .

Proposition 15. Let s t:V−→. Then:

■t ∪⊠t ⊆Rs \ cntd■ �t ⊆ (Rs \ cntd■)∪■cntd cntd∩fin =∅ cntd ⊆V ⊆ ι(s)\ fin

where cntd = {v ∈ ι(s) | ■v∩�t ̸=∅} and fin = {v ∈ ι(s) | (v■∪⊠v)∩�t ̸=∅ ∨ �v∩⊠t ̸=∅}.

We can now provide a precise definition of all those ITR-systems which can be translated into semanti-
cally equivalent ENRM-systems.

Definition 13 (ENRM-ITR-system). Let itrs = ⟨S,→,s0, ι⟩ be an ITR-system over T . Then itrs is an
ENRM-ITR-system if the following hold, for all t ∈ T , V ⊆ T , and s ̸= r ∈ S:

1. t■ ̸=∅ ̸= ■t.
2. If ι(s) = ι(r), then there is r ∈Ritrs such that |Sr∩{s,r}|= 1. (state separation)

3. If s ̸ t:V−→, then at least one of the following holds: (forward closure)

■t ∪⊠t ̸⊆Rs \ cntd■ t ∈ ι(s) cntd∩fin ̸=∅ V ̸⊆ ι(s)\ fin
�t ̸⊆ (Rs \ cntd■)∪■cntd V ̸⊆ ι(s) cntd ̸⊆V

where cntd and fin are as in Proposition 15.

The above three ‘axioms’ characterise the ENRM-system realisable ITR-systems. ‘State separation’
requires that if two distinct states of itrs are not distinguished by at least one RM-region, then they
are distinguished by the labels of the maximal elements of their associated interval orders. ‘Forward
closure’ is a variation of similar axioms that can be found in the literature for solving synthesis problems,
e.g., [11, 21, 15, 18, 19]. Note, however, that both state separation and forward closure axioms for
ENRM-ITR-systems differ from their standard formalisation as they do not rely only on RM-regions, but
also on sets of transitions labelling the states.

Definition 14. The tuple associated with an ENRM-ITR-system itrs is given by enrmitrs =
⟨Ritrs,T,Fitrs,Ritrs,Mitrs,Rs0⟩, where:

Fitrs = {⟨r, t⟩ ∈Ritrs ×T | t ∈ Outr}∪{⟨t,r⟩ ∈ T ×Ritrs | t ∈ Inr}
Ritrs = {⟨r, t⟩ ∈Ritrs ×T | t ∈ Readr}
Mitrs = {⟨r, t⟩ ∈Ritrs ×T | t ∈ Mutr} .

1245

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

Until the end of this section, we assume that enrm = enrmitrs = ⟨Ritrs,T,Fitrs,Ritrs,Mitrs,Rs0⟩ is the
tuple associated with an ENRM-ITR-system itrs = ⟨S,→,s0, ι⟩, and irgenrm = ⟨Q,→o,q0, ιo⟩ is the IR-
graph of enrmitrs. Moreover, we use the circle-notation in the context of enrmitrs, and the box-notation in
the context of itrs.

Referring to irgenrm as the ‘IR-graph of enrmitrs’ is justified as enrmitrs is a valid ENRM-system.

Proposition 16.
1. enrmitrs is an ENRM-system.
2. •t = ■t, t• = t■, ⊙t = �t, and ⊗t = ⊠t, for every t ∈ T .
3. •r= Inr and r• = Outr, for every r ∈Ritrs.

We then obtain the second major contribution of this paper.

Theorem 1. itrs ≈s irgenrm, where s : S → Q is such that s(s) = ⟨Rs, ι(s)⟩, for every s ∈ S.

7. Concluding remarks

As already mentioned, our treatment in interval order semantics of ENRM-systems of read arcs is consistent
with that of inhibitor arcs introduced in [7] (which, in turn, agrees with the semantics proposed in, e.g.,
[10], where transitions are split). The treatment of mutex arcs, however, does not seem to have a close
predecessor. In system models, the read and mutex arcs can be used to check the availability of resources.
Including both read and mutex arcs in the proposed model allowed us to express two types of conflict
for resources. We have the ‘soft’ conflict when read and ordinary arcs are involved allowing, in some
situations, more than one transition to access a shared resource for a period of time. We also can express
the ‘hard’ conflict when mutex arcs are involved and exclusive access for checking the availability of a
shared resource is required.

We expect that the theoretical concepts and results presented in this paper and its predecessors [6, 7]
can provide a foundation to develop practical methods and tools for synthesising nets operating according
to the interval order semantics. In particular, since many algorithms developed in the area of process
mining (process discovery) were inspired by the results obtained for synthesising Petri nets from regions
of the standard transition systems, we feel that a similar development is possible in the case of event logs
that record events with duration. Such event logs could be derived, e.g., from records of transaction-like
executions in distributed environments, where the start and finish of a transaction indicate its duration,
and the overlapping of transactions is possible. Such event logs could be represented by interval orders
(intuitively corresponding to paths in ITR-systems). We feel that the approach outlined in this paper can
provide a line of work in the area of process discovery which is an alternative to the existing approaches
pursued in, e.g., [32, 33, 34, 35, 36].

The ITR-systems (including IR-graphs) do not directly show all the relationships between transi-
tions/actions, but these relationships can be inferred from them during the synthesis procedure and become
evident in the synthesised ENRM-systems. One can also find other treatments of non-atomic actions in
the literature. For example, Context-Aware Temporal Network Representation (TNR) graphs of [37]
that are extracted from event logs capture the global relationships between different non-instantaneous
activities/actions and use 13 relationships to relate the intervals of any two activities as described by
Allen’s Interval Algebra [38]. In our approach, we use an abstraction that recognises only two rela-
tionships between the intervals related to two transitions, viz. one can precede the other or they can
overlap. Moreover, assuming that it is not possible to observe the beginnings (or endings) of two intervals
simultaneously, the relationships expressible in Allen’s Interval Algebra can be embedded in the present
framework using additional intervals. For example, we can express the fact that x and y overlap and x
started before y started, provided that there is z such that z ≺ y and z ⌒ x ⌒ y (recall that the relation ⌒
does not need to be transitive). In essence, the approaches of [37, 38] are semantically close to real-time
semantics whereas the approach pursued in this paper is more abstract. For similar reasons, the interval
order semantics used in this paper and the ‘interval semantics’ or ‘interval time semantics’ of, e.g.,
[39, 40], are incomparable.

1246

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

Acknowledgments

This research was supported by the Leverhulme Trust funded grant RPG-2022-025. The authors are
grateful to the anonymous referees, whose comments contributed to the final version of this paper.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] J. Desel, W. Reisig, Place/transition Petri nets, in: Advances in Petri Nets, volume 1491 of Lecture
Notes in Computer Science, Springer, 1996, pp. 122–173.

[2] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1,
Basic Concepts, Monographs in Theoretical Computer Science, Springer-Verlag, 1997.

[3] W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies,
Springer, 2013.

[4] G. Rozenberg, J. Engelfriet, Elementary net systems, in: Advances in Petri Nets, volume 1491 of
Lecture Notes in Computer Science, Springer, 1996, pp. 12–121.

[5] N. Wiener, A contribution to the theory of relative position, Proc. of the Cambridge Philosophical
Society 17 (1914) 441–449.

[6] M. Koutny, M. Pietkiewicz-Koutny, Synthesising elementary net systems with interval order
semantics, in: ATAED/PN4TT, volume 3424 of CEUR Workshop Proc., CEUR-WS.org, 2023.

[7] M. Koutny, M. Pietkiewicz-Koutny, Synthesising ENI-systems with interval order semantics, in:
PNSE, volume 3730 of CEUR Workshop Proc., CEUR-WS.org, 2024, pp. 33–52.

[8] E. Best, M. Koutny, Petri net semantics of priority systems, Theoretical Computer Science 96
(1992) 175–174.

[9] W. M. Zuberek, Timed Petri nets and preliminary performance evaluation, in: Proc. 7th Annual
Symposium on Computer Architecture, ACM, 1980, pp. 88–96.

[10] R. Janicki, X. Yin, Modeling concurrency with interval traces, Information and Computation 253
(2017) 78–108.

[11] N. Busi, G. M. Pinna, Synthesis of nets with inhibitor arcs, in: CONCUR, volume 1243 of Lecture
Notes in Computer Science, Springer, 1997, pp. 151–165.

[12] A. Ehrenfeucht, G. Rozenberg, Partial (set) 2-structures. part II: state spaces of concurrent systems,
Acta Informatica 27 (1990) 343–368.

[13] A. Ehrenfeucht, G. Rozenberg, Theory of 2-structures, part I: clans, basic subclasses, and morphisms,
Theoretical Computer Science 70 (1990) 277–303.

[14] A. Ehrenfeucht, G. Rozenberg, Theory of 2-structures, part II: representation through labeled tree
families, Theoretical Computer Science 70 (1990) 305–342.

[15] E. Badouel, L. Bernardinello, P. Darondeau, Petri Net Synthesis, Texts in Theoretical Computer
Science. An EATCS Series, Springer, 2015.

[16] E. Badouel, P. Darondeau, Theory of regions, in: Advances in Petri Nets, volume 1491 of Lecture
Notes in Computer Science, Springer, 1996, pp. 529–586.

[17] L. Bernardinello, Synthesis of net systems, in: PETRI NETS, volume 691 of Lecture Notes in
Computer Science, Springer, 1993, pp. 89–105.

[18] L. Bernardinello, G. D. Michelis, K. Petruni, S. Vigna, On the synchronic structure of transition
systems, in: STRICT, Workshops in Computing, Springer, 1995, pp. 69–84.

[19] M. Mukund, Petri nets and step transition systems, International Journal of Foundations of Computer
Science 3 (1992) 443–478.

[20] M. Nielsen, G. Rozenberg, P. S. Thiagarajan, Elementary transition systems, Theoretical Computer
Science 96 (1992) 3–33.

1247

Maciej Koutny et al. CEUR Workshop Proceedings 1234–1248

[21] M. Pietkiewicz-Koutny, The synthesis problem for elementary net systems with inhibitor arcs,
Fundamenta Informaticae 40 (1999) 251–283.

[22] R. Bergenthum, Synthesizing Petri nets from Hasse diagrams, in: BPM, volume 10445 of Lecture
Notes in Computer Science, Springer, 2017, pp. 22–39.

[23] R. Bergenthum, J. Desel, R. Lorenz, S. Mauser, Synthesis of Petri nets from finite partial languages,
Fundamenta Informaticae 88 (2008) 437–468.

[24] P. C. Fishburn, Intransitive indifference with unequal indifference intervals, Journal of Mathematical
Psychology 7 (1970) 144–149.

[25] R. Janicki, M. Koutny, Structure of concurrency, Theoretical Computer Science 112 (1993) 5–52.
[26] L. Lamport, The mutual exclusion problem: part I - a theory of interprocess communication, Journal

of ACM 33 (1986) 313–326.
[27] L. Lamport, On interprocess communication: part I: basic formalism, Distributed Computing 1

(1986) 77–85.
[28] V. R. Pratt, Modeling concurrency with partial orders, International Journal of Parallel Programming

15 (1986) 33–71.
[29] R. Janicki, M. Koutny, Fundamentals of modelling concurrency using discrete relational structures,

Acta Informatica 34 (1997) 367–388.
[30] U. Abraham, S. Ben-David, M. Magidor, On global-time and inter-process communication, in:

Proc. Semantics for Concurrency, Workshops in Computing, Springer, 1990, pp. 311–323.
[31] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Communications of

the ACM 21 (1978) 558–565.
[32] J. Carmona, J. Cortadella, M. Kishinevsky, A region-based algorithm for discovering Petri nets

from event logs, in: BPM, volume 5240 of Lecture Notes in Computer Science, Springer, 2008, pp.
358–373.

[33] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, A. Serebrenik, Process discovery
using integer linear programming, in: PETRI NETS, volume 5062 of Lecture Notes in Computer
Science, Springer, 2008, pp. 368–387.

[34] R. Bergenthum, Prime miner - process discovery using prime event structures, in: ICPM, IEEE,
2019, pp. 41–48.

[35] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Using life cycle information in process
discovery, in: BPM, volume 256 of Lecture Notes in Business Information Processing, Springer,
2015, pp. 204–217.

[36] M. Dumas, L. García-Bañuelos, Process mining reloaded: Event structures as a unified representa-
tion of process models and event logs, in: PETRI NETS, volume 9115 of Lecture Notes in Computer
Science, Springer, 2015, pp. 33–48.

[37] A. Senderovich, M. Weidlich, A. Gal, Context-aware temporal network representation of event logs:
Model and methods for process performance analysis, Information Systems 84 (2019) 240–254.

[38] J. F. Allen, Maintaining knowledge about temporal intervals, Communications of ACM 26 (1983)
832–843.

[39] E. Pelz, Full axiomatisation of timed processes of interval-timed Petri nets, Fundamenta Informaticae
157 (2018) 427–442.

[40] L. Popova-Zeugmann, E. Pelz, Algebraical characterisation of interval-timed Petri nets with discrete
delays, Fundamenta Informaticae 120 (2012) 341–357.

1248

	1 Introduction
	2 Partial orders
	3 enrm-systems and their standard semantics
	3.1 Firing sequences and total orders of enrm-systems
	3.2 Step sequences and stratified orders of enrm-systems

	4 Interval order semantics of enrm-systems
	4.1 Interval orders generated by enrm-systems
	4.2 Reachable states and interval reachability graphs

	5 Transition systems generating interval orders
	5.1 itrs-isomorphism

	6 Synthesis
	7 Concluding remarks

