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Abstract
Probabilistic programming is a programming paradigm that enables the creation of probabilistic models, their
simulation through execution, and their analysis through various inference engines. Recently, it has been applied
in a framework for simulating Data Petri Nets (DPNs) – a class of Petri nets widely used in the business process
community for modeling and reasoning about data-aware processes. In this paper, we summarize recent advances
in this area and outline potential directions for future research. We hope this will highlight the potential of
the synergy between probabilistic programming and process science, and inspire further exploration at the
intersection of these fields.
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1. Introduction

Process simulation is a powerful concept that has numerous applications in Business Process Manage-
ment and Process Mining [1, 2]. Process simulation models can be discovered from event logs [3, 4, 5, 6]
and used for tasks such as process redesign [7], what-if analysis and process performance improvement
[2], synthetic log generation [8], and augmented process execution [9].

The majority of simulation techniques rely on discrete event simulation (DES) [10, 2] or hybrid
approaches like in [11]. In DES, a frequentist perspective is typically adopted, treating all “unknowns”
(i.e., probabilities) as fixed frequencies a priori known by the domain expert.

In our recent paper [12], we explored an alternative simulation approach grounded in Bayesian
statistics.1 Specifically, we proposed using probabilistic programming (PP) [14] to represent business
processes as statistical models, and carry out (stochastic) simulation using a PP inference engine,
which samples different process simulation parameters from probability distributions provided by a
randomized scheduler that must be supplied together with the input process model. The framework
proposed in [12] was implemented in a prototype [15], which has so far been applied primarily to trace
generation scenarios.

In this paper, we provide a brief overview of our simulation approach and outline promising directions
for supporting more advanced simulation scenarios and analysis tasks.

2. The Approach

Simulatable process models. Our approach takes as input imperative process models enriched
with probability distributions over their non-deterministic decision points. These distributions offer a
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structured way to manage non-determinism [16] and allow the incorporation of domain knowledge
(e.g., execution rates), enabling more realistic and flexible simulation scenarios.

There are a few ways in which such models can be obtained. One option is to directly discover
stochastic models from event logs [17, 18, 19]. Alternatively, one can apply separate techniques to
discover the control-flow model and the associated simulation parameters, as in [5]. Another approach
involves defining randomized schedulers handling non-deterministic choices by assigning probability
distributions to respective decision points [12].2 We elaborate on this last approach below.

It is important to note that schedulers offer greater flexibility by assigning full probability distri-
butions (rather than fixed stochastic weights) to decision points. These can also be derived from the
aforementioned discovery methods. However, manually defining such schedulers is challenging, as it
requires both in-depth knowledge of the process and expertise in probabilistic modeling to properly
map business requirements to meaningful probability distributions.

In [12], we proposed a scheduler-based simulation approach for data Petri nets (DPNs for short) [20,
21, 22]. A DPN is a labeled place-transition net (in [12] it is considered without silent transitions)
extended with guards defined over a finite set of (typed) process variables. Each guard consists of two
boolean expressions: a pre-condition and a post-condition. Each DPN state is represented as a pair
(𝑀, 𝛼), where 𝑀 is a marking (token distribution) and 𝛼 is a process variable valuation. A transition
𝑡 is enabled in a state (𝑀, 𝛼) if (1) 𝑀 contains enough tokens for 𝑡 to fire (according to the net’s flow
relation), and (2) the pre-condition of 𝑡 is satisfied under variable valuation 𝛼. Upon firing, a transition
consumes/produces tokens (as per the standard execution semantics of P/T nets [23]) and updates
variables based on its post-condition.

It is easy to see that DPNs can induce infinitely many distinct states. Each such state is the result of
performing 1. non-deterministic choices between multiple enabled transitions, and 2. non-deterministic
selection of variable valuations satisfying the post-condition (e.g., a post-condition 𝑥′ > 0 defined over
a real-valued variable 𝑥 is satisfied by any positive real number) of the chosen transition. To resolve
both sources of non-determinism, in [12] we defined randomized schedulers. For each state (𝑀, 𝛼), the
scheduler specifies a probability distribution over net’s transitions and, for each variable modified by a
transition, a probability distribution over its domain. Transition selection is resolved by sampling a
transition according to the provided transition distributions. If some transitions are not enabled, their
probability is redistributed uniformly among the enabled ones. Once a transition is selected, values for
the variables modified by its post-condition are picked using the corresponding distributions assigned
to each such variable.

Coupling a DPN 𝑁 with a randomized scheduler 𝑆𝑐 has two outcomes. First, we can define a
probabilistic execution semantics for DPNs, enabling the computation of the probability of a run (i.e., a
sequence of transitions and variable valuations) reaching a given symbolic goal 𝐺 (e.g., a marking with
two tokens assigned to place 𝑝5 and process variables 𝑥, 𝑦 ∈ [−2.3, 100]). This is conceptually similar to
computing reachability probabilities in infinite-state Markov chains [24, 25]. We can thus say that a
run reaches a goal if its probability is non-zero. Second, given probability distributions for all decision
points of our process model, we can attempt to sample runs with non-zero probabilities, and extract a
process trace from each successfully sampled run. We describe below how this can be achieved using
the PP machinery.

Encoding into a PP language and simulation. For our approach, in [12] we introduced a probabilistic
guarded command language (called PPL) incorporating key features commonly found in probabilistic
programming (PP) languages [26], and its non-probabilistic core is closely aligned with Dijkstra’s
Guarded Command Language (GCL) [27]. The main constructs of PPL are as follows.
(1) Probabilistic assignment statement 𝑥 ∶= 𝐷 assigns probability distribution 𝐷 to program variable

𝑥 with which values will be sampled and assigned to 𝑥. For example, 𝑥 ∶= uniform(1, 3) defines
that 𝑥 will be randomly assigned a value between 1 and 3 with probability 1/3 each.

(2) observe 𝐵 is the conditioning command that incorporates observed evidence (in the shape of
predicate 𝐵) into the probabilistic program simulation. If the predicate 𝐵 holds, then the simulation

2The mechanism of schedulers is commonly used in discrete-event simulation [16].



continues. If 𝐵 fails, then it means that the simulation encountered an unrealistic result that should
be discarded. This blocks the ongoing simulation and, for example, can continue with obtaining
another sample for variables involved in 𝐵 by restarting the whole simulation process.

(3) The log 𝑌 command writes message 𝑌 into the program’s append-only log.

(4) Probabilistic guarded command 𝐵
𝐸
−→ 𝐶 executes command 𝐶 with probability defined in the

expression 𝐸 if the guard defined by the predicate 𝐵 holds. Such commands can be used either
in the unbounded loops or conditional statements.3 When used in unbounded loops, potentially
multiple probabilistic guarded commands will be executed until none of their guards hold, which in

turn leads to the loop termination. If a loop consists of multiple 𝐵𝑖
𝐸𝑖−−→ 𝐶𝑖 commands and at least

two distinct 𝐵𝑘 and 𝐵𝑙 hold, then their respective commands will be executed randomly by taking
into account the probabilities in 𝐸𝑘 and 𝐸𝑙. After a command is executed, the loop repeats. When
used in conditional statements, only one matching guarded command is executed, after which the
statement terminates.

Execution of a PPL program corresponds to stochastic simulation: values are sampled from defined
distributions and propagated through the program. Moreover, modern PP platforms provide inference
techniques to compute or approximate the probability distribution modeled by a program

The encoding of a DPN 𝑁 and its scheduler 𝑆𝑐 into a PPL program 𝑃 is rather straightforward and
systematically described in [12]. Here, we provide a high-level overview of our approach which should
also illustrate its potential applicability to other process modeling formalisms.

We start by creating a PPL variable for each DPN place and variable, enabling a 1-to-1 mapping
between DPN and PPL program states. These variables are initialized based on the initial state of

𝑁. Each DPN transition 𝑡 is encoded as guarded commands of the form ¬𝐺 ∧ enabled(𝑡)
𝑆𝑐(𝑡)
−−−−→ fire(𝑡),

where (1) 𝐺 is the symbolic goal expression discussed above, (2) the enabled(𝑡) expression performs the
enabledness check of 𝑡 by also taking into account its pre-condition, (3) 𝑆𝑐(𝑡) provides the transition
selection probability (only if 𝑡 is enabled), (4) fire(𝑡) is a subroutine that simulates the effect of firing 𝑡.
The fire(𝑡) subroutine performs the following steps: (1) update the DPN marking using the standard
marking equation; (2) sample temporary values for variables updated by 𝑡’s post-condition (stored in an
auxiliary set of variables), according to the scheduler (3) enforce the satisfaction of the post-condition on
the sampled values by executing the observe statement on the post-condition of 𝑡; (4) log the information
about the fired transition using log; (5) commit the sampled values to the DPN variables.

PPL programs can be then executed in any PP environment. Our prototype implementation [15]
currently targets WebPPL [28] – a PP language that comes with a versatile inference engine used for
simulating probabilistic programs. To configure a simulation scenario in our tool for a given DPN,
one has to define the scheduler (by providing probability distributions for transitions and variables
modified in their post-conditions), and provide simulation parameters such as the number of traces
to generate and maximum trace length. We reported on our preliminary evaluation in [15], showing
highly promising performance results.

Lastly, it is important to mention that with our approach we obtain a useful guarantee stipulating
that the probability of each generated trace matches the probability of the corresponding DPN run
induced by the selected scheduler.

3. Applications and Future Directions

Our preliminary investigation primarily aimed at establishing a foundational connection between
a class of data-aware Petri nets and a probabilistic programming (PP) language. The feasibility of
this integration was confirmed, and further experiments demonstrated that our PP-based simulation
approach is capable of generating a substantial number of traces in reasonable time.

Importantly, given that the resulting programs can be both simulated and analyzed using statistical
inference engines, our approach offers applications that go beyond mere trace generation. We highlight

3Due to space limitations, we refer to [12] for a full description of the PPL syntax.



two particularly promising use cases:
1: Rare event simulation and beyond. The use of inference engines enables the computation of
conditional probabilities for rare or domain-specific events, expressed as boolean formulas, similarly to
the way we specify 𝐺. An example of such formula 𝜑 is 𝑥 ≠ 10.5 ∧ 4 ≥ #𝑡1 ≤ 6, specifying a condition
for reaching a final marking according to which 𝑥 differs from 10.5 and transition 𝑡1 fires between 4 and
6 times (here #𝑡1 is a new variable that must be additionally introduced into the program). Given the
aforementioned goal of obtaining simulations in which the final marking is reached, we can add to our
program the statement ovbserve 𝜑 allowing us to restrict the simulation to those executions satisfying
𝜑 and obtain a conditional probability distribution over such executions (which correspond to process
traces) only. This paradigm allows us to simulate and analyze low-probability or otherwise constrained
behavior without modifying the underlying process model (and thus not affecting its PPL encoding).
This makes it useful for tasks such as risk analysis or behavioral auditing.
2: What-if analysis. To support hypothesis-driven exploration of new behaviors in the given DPN,
one can perform what-if analysis by modifying the scheduler and/or adding new observe 𝜑 statements,
similarly to the rare-event simulation setup. Beyond that, this approach also does not require altering
the DPN structure or its corresponding PPL encoding. However, crafting a scheduler that faithfully
models a behavioral hypothesis provided for a process can be a complex task, as mentioned previously.
This demands both deep domain expertise and strong understanding of probabilistic modeling to ensure
that modifications are meaningful and semantically coherent.

While these applications are within reach of the current prototype [15], they expose limitations in
the broader usability and extensibility of the approach.
• One of the limitations that the current approach has is the lack of a dedicated, well-defined and
user-friendly language for specifying goal predicates or formulas used in the ovbserve 𝜑 statements.
This clearly limits the adoption of our approach in practice as introducing new goals or conditioning
statements requires direct modification of the generated PPL code. Identifying or designing such a
language, along with its systematic translation to PPL, is a promising direction for future work and
an open challenge in PP-based process simulation.

• Another clear limitation of our approach is the lack of structured log generation capabilities. Although
multiple traces can be generated via repeated simulation, the resulting trace collections lack statistical
coherence and realism when combined into a process log. For instance, generating 100 traces of
length 15 may yield a diverse set which is representative of the process, while generating 100 traces
of length 32 (for the same process) may result in overfitting or skewed execution paths due to, e.g.,
marginal variations in sampled values obtained for one process variable. This issue underscores
the need for advanced mechanisms that can retain and leverage simulation history and most surely
should be addressed by extending the PPL language with memory-aware/stateful commands that can
be used to guide trace generation based on previous outcomes. Such an extension would move us
closer to the generation of realistic, statistically meaningful process logs.
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