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Abstract
This paper addresses conformance checking in a time-aware setting, that relates the timing of recorded events in
the log with the time constraints of the process model specified as a Time Petri Net. To evaluate whether a model
reflects the observed executions, several quality criteria were proposed.

We define the Timed Anti-Alignment Problem as finding model traces whose timing most deviate from
observed log traces. Anti-alignments, as witnesses for imprecision of the model, were proposed in untimed
settings to measure precision.

We solve the Purely Timed Anti-Alignment Problem for Acyclic Time Marked Graphs. By framing the problem
as an optimization task with linear constraints, we enable the use of efficient Linear Programming solvers. Finally,
we test our implementation’s performance to understand its practicability.
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1. Introduction

Processes are crucial for organizations, coordinating activities needed for delivering products and
services. The increase in event data collection has raised the need for process analysis techniques.
Process Mining uses event data to discover processes, check compliance, analyze bottlenecks, compare
process variants, and suggest improvements [1]. Conformance checking techniques evaluate how well
a process model represents an actual process. Real executions, recorded in event logs, are collections
of events executed during system operations: process models abstract these operations. The metrics
that assess model accuracy include fitness, precision[2], generalization, and simplicity. Alignments
are essential for the first three metrics, relating the model to an observed trace by providing the run
that most closely resembles it [3]. This paper focuses on Anti-Alignments [4], which identify the most
deviating behaviors not seen in the log. For models that should strictly adhere to specific behaviors (e.g.,
banking, healthcare), the absence of highly deviating Anti-Alignments and their early identification
may be crucial. This conformance checking tool has been first introduced in [5] as a way to complement
the already existing notion of alignment, i.e. the run of a process model the most similar to a given log
trace. Later in the same year, in [6] the authors expanded on the utility of anti-alignments, showing how
they can be used to measure two fundamental process mining metrics, i.e. precision (highly deviating
anti-alignments indicate a loss in precision) and generalization [4] [6], which remains the main use of
this conformance checking tool. In untimed settings, Anti-Alignments have been defined using both
Hamming and Levenshtein distances [4]. For the Levenshtein distance, an implementation through a
SAT encoding is provided in [7]. By introducing a discount factor into the distance calculation, a more
efficient algorithm was later developed in [8], allowing for practical yet approximate computation with
reduced complexity. However, Anti-Alignments have only been explored in untimed settings so far.
Our study is instead situated in the field of Time-Aware Process Mining, which focuses on identifying
timing-related properties in processes, such as the minimum delay between events or the maximum
duration for the system to reach a specific state. This field not only seeks to understand the processes
governing system behavior but also the time constraints they obey [9] [10] [11]. Various established
process model notations already exist to incorporate time constraints. In this paper we use Time Petri
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Figure 1: Example of a Sequential ATMG.

Nets (TPNs) [12], where each transition 𝑡 has an interval [𝑎, 𝑏] of possible firing delays: if transition 𝑡
was last enabled at time 𝜃, then 𝑡 can not fire before 𝜃 + 𝑎 and must fire by 𝜃 + 𝑏, unless it becomes
disabled. Firing a transition takes no time to complete [13]. Hence, TPNs record and check the duration
for firing transitions, imposing constraints on the relationships between the timestamps of different
events. In [14], it is shown how to describe symbolically the possible execution times for events of a
poset execution of a TPN. The case of extended free choice TPNs was studied in [15]. As Time-Aware
Process Mining grows, it becomes necessary to adapt quality measures and conformance checking
artifacts to consider temporal constraints. While in untimed contexts the computation of alignments
has been widely studied [16] [17] [18], the first attempt to extend this work to timed settings was made
only in [19]: the problem was addressed using two novel distance metrics and focusing exclusively on
the temporal aspects of traces. The authors later expand the work to include a solution for an additional
distance metric on timed traces [20]. Today, the problem of Anti-Alignments in timed settings remains
unaddressed in current research: this paper aims at being the first step in this direction. We first define
the General Timed Anti-Alignment Problem (GTAAP), i.e. finding the most distant traces from a log
using distance functions that consider both time and activities. However, to eventually approach such
problem, we initially focus on the reduced Purely Timed Anti-Alignment Problem (PTAAP), where
the untimed part of traces is not considered. We consider two distance functions, Stamp-Only and
Delay-Only [19]. We restrict the study to TPNs with no choice between activities and no loops, i.e.,
Acyclic Time Marked Graphs (ATMGs). For this class of models, each trace consists of the same activities,
allowing us to ignore its untimed part to focus on Purely Timed Anti-Alignments. We present the
following example to provide an initial understanding of the notion of Purely Timed Anti-Alignments.

Example 1. The process in Figure 1 describes a simple refunding process of an airline (adapted from
[21]): it starts with the registration of a client, the examination of their ticket, and the final decision
and payment from the airline. Considering only the activity information, this model produces one trace
variant, 𝜎 = (𝑟𝑒𝑔, 𝑒𝑡, 𝑑𝑒𝑐, 𝑝𝑎𝑦). However, a TPN produces "timed traces", where the timestamps for
each activity must comply with the model constraints. Therefore, variants differ in terms of timestamp
information. An example of a timed log accepted by this TPN is:

𝐿 =

⎧⎨⎩
⟨(reg, 0), (et, 2), (dec, 4), (pay, 4)⟩
⟨(reg, 0), (et, 2), (dec, 4.5), (pay, 5)⟩

⟨(reg, 0.5), (et, 2.5), (dec, 5), (pay, 5.2)⟩

⎫⎬⎭
Ignoring the activity information (as it is the same for all traces) and only considering timestamp
sequences, the log becomes:

𝐿 =

⎧⎨⎩
(0, 2, 4, 4)
(0, 2, 4.5, 5)

(0.5, 2.5, 5, 5.2)

⎫⎬⎭
Using the Stamp-Only distance (Manhattan distance for timestamp sequences), we aim to find a Purely
Timed Anti-Alignment, i.e., a timestamp sequence accepted by the TPN and the most distant from the
log. The distance from the log of a candidate Anti-Alignment is its minimal distance from any trace in
the log. Since in this example the traces are relatively close to each other (not sparse in the search space),
the intuitive approach is to maximize the timestamp value for each activity. Thus, the anti-alignment is
the timed trace (reg, 1), (et, 3), (dec, 7), (pay, 8). This trace being far from all the traces recorded in
the log, it can be considered as a witness for imprecision and used in a precision metric.



In the provided example, due to its simplicity, we could find a solution using common sense and
manual checks. However, this is not feasible for all cases. In this paper, we solve the PTAAP by framing
it as an optimization problem and using only linear constraints. As the problem is non-linear, we derive
equivalent linear formulations, obtaining a Mixed Integer Programming (MIP) problem. This allows
us to use more efficient Linear Programming solvers. We test the performance of our implementation
to assess its practicability, evaluating both accuracy and time requirements for increasingly complex
instances. Our results indicate lower time requirements and improved accuracy compared to a brute-
force approach. The paper is organized as follows. Section 2 provides the preliminary definitions: TPNs,
functions to work with timestamps, ATMGs, and the distances used. Section 3 formalizes the GTAAP
and the PTAAP, with relevant examples. Section 4 briefly summarizes the characteristics of the linear
reformulation of the problem. Section 5 reports experiments and their results. Section 6 concludes the
paper and suggests future research directions.

2. Preliminaries

2.1. Timed process modeling

Definition 1 (Timed trace and Timed events). A timed trace is a sequence 𝜎 ∈ (Σ× R+)* of timed
events. In other words, we represent events as pairs (𝑎, 𝜏) where 𝑎 ∈ Σ is the label of the action and 𝜏
denotes the time at which said action was taken.

Definition 2 (Timed event log). A timed event log L is a multiset of timed traces 𝜎 ∈ (Σ× R+)*.

The timed process model used here are Time Petri Nets.

Definition 3 (Time Petri Net [12]). A Time Petri Net (TPN) is a tuple 𝑁 = (𝑃, 𝑇, 𝐹, 𝑆𝐼,Σ, 𝜆,𝑀0,𝑀𝑓 ),
where𝑃 is the set of places, 𝑇 is the set of transitions (with𝑃∩𝑇 = ∅), 𝐹 ⊆ (𝑃×𝑇 )∪(𝑇×𝑃 ) is the flow
relation, 𝑆𝐼 : 𝑇 → (R+)× (R+ ∪ {∞}) is the static interval function, with 𝑆𝐼(𝑡) = (𝐸𝑓𝑡(𝑡), 𝐿𝑓𝑡(𝑡)),
where 𝐸𝑓𝑡 stands for Earliest Firing Time and 𝐿𝑓𝑡 for Latest Firing Time (therefore 𝐸𝑓𝑡(𝑡) ≤ 𝐿𝑓𝑡(𝑡)),
𝜆 : 𝑇 → Σ is the labelling function that labels transitions with actions from the action set Σ, and
𝑀0,𝑀𝑓 : 𝑃 → N are the initial and final markings.

Given a transition 𝑡 ∈ 𝑇 , the pre-set of 𝑡 is ∙ 𝑡 = {𝑝 ∈ 𝑃 |(𝑝, 𝑡) ∈ 𝐹} and its post-set is 𝑡 ∙ = {𝑝 ∈
𝑃 |(𝑡, 𝑝) ∈ 𝐹} (the presets and post-sets of places are defined similarly). A transition 𝑡 of a TPN is
enabled at marking 𝑀 iff ∀𝑝 ∈ ∙ 𝑡 : 𝑀(𝑝) > 0. The set of all enabled transitions at a marking 𝑀 is
denoted by Enabled(M).

A state of a TPN 𝑁 = (𝑃, 𝑇, 𝐹, 𝑆𝐼,Σ, 𝜆,𝑀0,𝑀𝑓 ) is a pair 𝑆 = (𝑀, 𝐼), where 𝑀 is a marking of 𝑁
and 𝐼 : 𝐸𝑛𝑎𝑏𝑙𝑒𝑑(𝑀) → R+ is called the clock function. Every enabled transition hence has an implicit
clock, measuring how long it has been since its most recent enabling. The initial state is (𝑀0,0), where
0 is the zero function.

A transition 𝑡 can fire from state 𝑆 = (𝑀, 𝐼) after a delay of 𝜃 ∈ R+ iff 𝑡 is enabled at 𝑀 , and
𝐼(𝑡) + 𝜃 ∈ [𝐸𝑓𝑡(𝑡), 𝐿𝑓𝑡(𝑡)], and ∀𝑡′ ∈ 𝐸𝑛𝑎𝑏𝑙𝑒𝑑(𝑀), 𝐼(𝑡′) + 𝜃 ≤ 𝐿𝑓𝑡(𝑡′). This firing is denoted
(𝑀, 𝐼)[𝑡⟩(𝑀 ′, 𝐼 ′) with new state (𝑀 ′, 𝐼 ′) defined as follows:

𝑀 ′(𝑝) =

⎧⎪⎨⎪⎩
𝑀(𝑝) + 1 𝑝 ∈ 𝑡 ∙ ∖ ∙ 𝑡

𝑀(𝑝)− 1 𝑝 ∈ ∙ 𝑡∖𝑡 ∙

𝑀(𝑝) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐼 ′(𝑡) =

{︃
𝐼(𝑡) + 𝜃 𝑡 ∈ 𝐸𝑛𝑎𝑏𝑙𝑒𝑑(𝑀 ′)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

A valid execution of the model begins at the initial marking, fires a sequence of transitions and
reaches 𝑀𝑓 , with any clock function 𝐼 . In this paper, we consider TPNs with only one token in every
starting place.



Definition 4 (Language of a Time Petri Net). A timed trace 𝜎 = (𝑎, 𝜏)𝑛 ∈ (Σ × R+)𝑛 is in the
language of (or is accepted by) a TPN, i.e. 𝜎 ∈ ℒ(𝑁), if there is a fireable sequence of transitions
(𝑡0, 𝑡1, ..., 𝑡𝑛) ∈ 𝑇𝑛 such that ⟨(𝜆(𝑡0), 𝜏0), (𝜆(𝑡1), 𝜏1), ..., (𝜆(𝑡𝑛), 𝜏𝑛)⟩ = 𝜎 and they transform the initial
marking into the final one, that is, for some clock function 𝐼 on 𝑀𝑓 , (𝑀0,0)[𝑡0, 𝑡1, . . . 𝑡𝑛⟩(𝑀𝑓 , 𝐼).

Example 2. The TPN in Figure 2 (adapted from [21]) models the refunding process of an airline. An
acceptable timed trace for it is ⟨(𝑟𝑒𝑔, 1), (𝑒𝑥, 1.5), (𝑐𝑖𝑑, 3), (𝑐𝑡, 3), (𝑑𝑒𝑐, 5)⟩. Initially, actions reg and
cid are enabled: the request is registered at time 1, so the marking is updated by removing the token
from reg’s pre-place and filling its two post-places, thus enabling ex and ct. After 0.5 time units, at time
1.5, the action ex is triggered, fulfilling the constraint and populating one pre-place of dec. Later, the
actions cid and ct fire in parallel after being enabled for 3 and 2 units of time respectively, at time 3: as
dec is now enabled, it is executed after at time 5, after two time units, and the final marking is reached.

Figure 2: Example of an ATMG. The labels assigned are: Register request (reg), Examine request (et), Check
ticket (ct), Check ID (cid), Decide (dec).

As in this paper we will mostly consider timestamp sequences, we also define some functions that
will be necessary to operate directly on sequences of timestamps.

Definition 5 (Timing function). Given a TPN N and a trace 𝜎 = ⟨(𝑎1, 𝜏1), ..., (𝑎𝑛, 𝜏𝑛)⟩ ∈ ℒ(𝑁), we
define the timing function for 𝜎 as 𝛾𝜎 : {1, 2, ..., 𝑛} → R+ s.t. 𝛾𝜎(𝑖) = 𝜏𝑖. The set of all acceptable
timing functions for the TPN N will be denoted as Γ𝑁 , i.e. Γ𝑁 = {𝛾𝜎|𝜎 ∈ ℒ(𝑁)}.

Definition 6 (Timing sequence). Given a TPN N and a timing function 𝛾 ∈ Γ𝑁 , we define the timing
sequence obtained from 𝛾 using the bijective function 𝜏 : Γ𝑁 → ℛ𝑛 s.t. 𝜏(𝛾) = (𝛾(1), . . . , 𝛾(𝑛)). In
other words, 𝜏(𝛾𝜎) = 𝜋2(𝜎), i.e. the projection of the timestamps of the trace 𝜎.

Example 3. Given the TPN and the trace 𝜎 in Example 2, the corresponding timing function is 𝛾𝜎(1) =
1, 𝛾𝜎(2) = 1.5, 𝛾𝜎(3) = 3, 𝛾𝜎(4) = 3, 𝛾𝜎(5) = 5. Consequently, the timing sequence is 𝜏(𝛾𝜎) =
(1, 1.5, 3, 3, 5).

In order to retrieve the relationships between transitions, i.e. retrieve all the transitions that contribute
to enabling a transition 𝑡 and all the transitions that are, at least partly, enabled by the firing of a transition
𝑡, we define:

Definition 7 (Parent and Children Transitions). Given a TPN N and one of its transitions 𝑡, we define
its parent transitions, i.e. set of transitions that, when firing, contribute to enabling 𝑡, and its children
transitions, i.e. the set of transitions that, when 𝑡 fires, become at least partly enabled, respectively as:

𝑝𝑟𝑒𝑇 (𝑡) =
⋃︁
𝑝∈∙ 𝑡

∙ 𝑝 𝑝𝑜𝑠𝑡𝑇 (𝑡) =
⋃︁
𝑝∈𝑡 ∙

𝑝 ∙

To ease notation and improve readability, we will denote these two functions also as ∙
𝑇 𝑡 and 𝑡 ∙𝑇

respectively. We also define the recursive counterparts of these functions as:

𝑝𝑟𝑒*𝑇 (𝑡) =
∙
𝑇
𝑡 ∪

⋃︁
𝑡𝑗∈∙

𝑇 𝑡

𝑝𝑟𝑒*𝑇 (𝑡𝑗) 𝑝𝑜𝑠𝑡*𝑇 (𝑡) = 𝑡 ∙
𝑇
∪

⋃︁
𝑡𝑗∈𝑡 ∙𝑇

𝑝𝑜𝑠𝑡*𝑇 (𝑡𝑗)



In this paper we use a sub-class of TPNs, Acyclic Time Marked Graphs (ATMGs), i.e. an acyclic TPN
where each place has no more than one input and one output transition.

Example 4. Two examples of ATMG are in Examples 1 and 2. While the first ATMG allows only for
sequential behaviour, the second one introduces parallelism at the level of the transition 𝑐𝑖𝑑, executable
in every moment before the execution of 𝑑𝑒𝑐, and at the level of transitions 𝑒𝑥 and 𝑐𝑡, that can be
executed in different orders or at the same time.

As we are mainly interested in the timestamp information of timed traces, it is useful to map them
to points in a n-dimensional space. Since the traces produced by ATMGs contain always the same
activities, but possibly with a different execution order , we want to define a unique index for every
transition to identify the related timestamp in a timing sequence (n-dimensional point). This implies
that, when considering only timing sequences, the execution order of the events will not influence how
we map activities to the sequence of timestamps. We will call this function the ordering function. We
assume that each ATMG comes with a bijective ordering function 𝑜𝑟𝑑 : 𝑇 → {1, ...|𝑇 |}, so that the
timestamp for the event originated by transition 𝑡, with 𝑜𝑟𝑑(𝑡) = 𝑖, is the value of the i-th dimension of
the mapped point. To improve readability, we refer to specific transitions using the index assigned, i.e.
𝑡𝑖 is the transition related to the event in the 𝑖-th position of an ordered trace.

Example 5. Given the ATMG in Example 2, a possible ordering is: 𝑜𝑟𝑑(𝑟𝑒𝑔) = 1, 𝑜𝑟𝑑(𝑒𝑥) =
2, 𝑜𝑟𝑑(𝑐𝑡) = 3, 𝑜𝑟𝑑(𝑐𝑖𝑑) = 4, 𝑜𝑟𝑑(𝑑𝑒𝑐) = 5. Given a point 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ R5, each
value 𝑥𝑖 is the timestamp of the action generated by the transition with index 𝑖. An example trace
𝜎 = ⟨(𝑟𝑒𝑔, 2), (𝑒𝑥, 3), (𝑐𝑡, 4), (𝑐𝑖𝑑, 2), (𝑑𝑒𝑐, 4)⟩ is then mapped to the point (2, 3, 4, 2, 4). The ordering
of the indexes assigned to transitions might not reflect the ordering of transition executions: as such
ordering is not the same for all traces, it has to be agreed beforehand.

To further simplify notation, some functions defined over transitions will equivalently be defined
over indexes, and vice versa (this is possible when a bijective ordering function is defined for a TPN, i.e.
when neither choice nor loops are allowed, which is the case for ATMGs). For example, the function
𝑝𝑟𝑒𝑇 , previously defined over transitions, can be applied to indexes to return the indexes of resulting
transitions: ∙

𝑇 𝑖 = {𝑗 ∈ 1, ..., 𝑑 | 𝑡𝑗 ∈ ∙
𝑇 𝑡𝑖}.

2.2. Distances on Timing Functions

As the Anti-Alignment problem in this paper is restricted to the time relationships, we hereby describe
the two types of distances that we will consider, defined by Rino and Chatain in [19]. To define them,
we make use of the definition of moves, i.e. functions that map one time sequence to another. In [19],
two types of moves are described:

• Stamp Move: changes the timestamp for one event in a trace, i.e. edits one value 𝜏 of a timestamp
sequence.

• Delay Move: changes the timestamp for one event in the trace and potentially shifts the timestamps
of the following actions, i.e. edits one or more values 𝜏 of a timestamp sequence.

Definition 8 (Stamp Move). Given an ATMG timing function 𝛾 : 𝐾 = {1, 2, ..., 𝑑} → R+, ∀𝑥 ∈
R,∀𝑖 ∈ 𝐾 , a Stamp Move is a function 𝑠𝑡𝑎𝑚𝑝𝛾(𝑥, 𝑖) = 𝛾′ where,

∀𝑗 ∈ 𝐾, 𝛾′(𝑗) =

{︃
𝛾(𝑗) + 𝑥 𝑗 = 𝑖

𝛾(𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example 6. Given the ATMG N and the timing function 𝛾 related to the trace 𝜎 of Example 5, a Stamp
Move can be 𝑠𝑡𝑎𝑚𝑝𝛾(4, 2) = 𝛾′ 𝑠.𝑡. 𝜏(𝛾′) = (2, 7, 4, 2, 4). The resulting trace is not accepted by 𝑁 , as
the timestamp of activity 𝑒𝑥 goes outside the interval of values that it can take.

While a Stamp Move is purely local (when it is applied for the i-th activity in a trace it does not imply
a derailment of the rest of the system), a Delay Move will instead preserve relative relationships in the



future, potentially shifting the timestamp of every causal descendent of the action on which it is applied.
However, the cost of a Delay Move is not necessarily propagated equally to all the following activities.
In fact, it depends on the Flow Function, an alternative representation of timing function that, instead of
assigning timestamps to a transition, labels each transition with the duration since it was enabled.

Definition 9 (Flow function). Given an ATMG timing function 𝛾 : 𝐾 = {1, . . . , 𝑑} → R+, the flow
function of 𝛾 is defined as 𝑓𝛾 : 𝐾 → R+ s.t.

𝑓𝛾(𝑖) =

{︃
𝛾(𝑖) ∙

𝑇 𝑡𝑖 = ∅
𝛾(𝑖)−max𝑘∈∙

𝑇 𝑖 𝛾(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition 10 (Delay Move). Given an ATMG timing function 𝛾 : 𝐾 = {1, 2, ..., 𝑑} → R+, ∀𝑥 ∈
R,∀𝑖 ∈ 𝐾 , a Delay Move is a function 𝑑𝑒𝑙𝑎𝑦𝛾(𝑥, 𝑖) = 𝛾′, where

∀𝑗 ∈ 𝐾, 𝛾′(𝑗) =

⎧⎪⎨⎪⎩
max𝑘∈∙

𝑇 𝑗 𝛾
′(𝑘) + 𝑓𝛾(𝑗) 𝑗 ∈ 𝑝𝑜𝑠𝑡*𝑇 (𝑖)

𝛾(𝑖) + 𝑥 𝑗 = 𝑖

𝛾(𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example 7. Given the ATMG and the timing function 𝛾 related to the trace 𝜎 of Example 5, the
corresponding Flow Function would be 𝑓𝛾(1) = 2, 𝑓𝛾(2) = 1, 𝑓𝛾(3) = 2, 𝑓𝛾(4) = 2, 𝑓𝛾(5) = 0.
Examples of Delay Moves (results are written as timing sequences instead of timing functions) are:

1. 𝑑𝑒𝑙𝑎𝑦𝛾(1, 1) = (3, 4, 5, 2, 5)

2. 𝑑𝑒𝑙𝑎𝑦𝛾(0.5, 2) = (2, 3.5, 4, 2, 4)

3. 𝑑𝑒𝑙𝑎𝑦𝛾(2, 2) = (2, 5, 4, 2, 5)

In the first move, the most straightforward, the same delay is passed on to all the following actions.
In the second move, the delay applied to action 𝑒𝑥 does not affect the rest of the trace. This is because,
even after the delay, the maximum timestamp of the parents of transition 𝑑𝑒𝑐 remains that of transition
𝑐𝑡 (𝛾′(2) = 3.5 < 4 = 𝛾′(3)).
In the third move, the delay applied to action 𝑒𝑥 affects the rest of the trace because the maximum
timestamp of the parents of transition 𝑑𝑒𝑐 changes. However, action 𝑑𝑒𝑐 is not delayed by the same
amount as 𝑒𝑥. Its new value is the new maximum previous timestamp, 5, plus the value of the flow
function for 𝑑𝑒𝑐, which is 0.

Distance functions for time-aware scenarios can be considered as a cost minimisation problem over
the set of all moves between two traces. Specifically, given two ATMG timing functions 𝛾1, 𝛾2 over the
same set 𝐾 = {1, 2, ..., 𝑑}, we consider two distance functions:

• Stamp-Only distance: the minimum cost for a sequence of Stamp Moves that transforms 𝛾1 into
𝛾2.

• Delay-Only distance: the minimum cost for a sequence of Delay Moves that transforms 𝛾1 into
𝛾2.

However, formulating these distances as optimization problems is impractical. A more feasible way
to compute them for ATMGs has been presented in [19].

Lemma 1 (Stamp-Only distance : 𝑑𝑡). Given two ATMG timing functions 𝛾1, 𝛾2 for the same ATMG 𝑁 ,
with |𝑇 | = 𝑑, the Stamp-Only distance 𝑑𝑡(𝛾1, 𝛾2) is the Manhattan distance or L1 Norm between the two
timing sequences, i.e.:

𝑑𝑡(𝛾1, 𝛾2) =
𝑑∑︁

𝑖=1

|𝛾1(𝑖)− 𝛾2(𝑖)| = ||𝜏(𝛾1)− 𝜏(𝛾2)||1



Lemma 2 (Delay-Only distance : 𝑑𝜃). Given two ATMG timing functions 𝛾1, 𝛾2 for the same ATMG 𝑁 ,
with |𝑇 | = 𝑑, the Delay-Only distance 𝑑𝜃(𝛾1, 𝛾2) is the Manhattan distance or L1 Norm between the two
timing sequences, modified by applying the flow function to them, i.e.:

𝑑𝜃(𝛾1, 𝛾2) =
𝑑∑︁

𝑖=1

|𝑓𝛾1(𝑖)− 𝑓𝛾2(𝑖)|

Example 8. Given two timing functions accepted by the ATMG in Example 5, expressed as timing
sequences and with the same ordering of the example, 𝜏(𝛾1) = (1, 2, 1, 0, 3) and 𝜏(𝛾2) = (2, 2, 3, 3, 5),
it results that

• 𝑑𝑡(𝛾1, 𝛾2) = |1− 2|+ |2− 2|+ |1− 3|+ |0− 3|+ |3− 5| = 8

• 𝑑𝜃(𝛾1, 𝛾2) = |1− 2|+ |1− 0|+ |0− 1|+ |0− 3|+ |1− 2| = 7

The fact that both distances can be represented as Manhattan distances is a significant finding that
makes the solution to the PTAAP similar for both.

3. The Anti-Alignment Problem in Timed Settings

The Anti-Alignment Problem, given a log and a TPN, involves finding the valid run(s) of the model that
are the farthest from the log for a given distance metric.

Definition 11 (The General Timed Anti-Alignment Problem (GTAAP)). Given a Time Petri Net 𝑁 and
a timed log 𝐿 ⊆ ℒ(𝑁), find a timed trace 𝛼 ∈ ℒ(𝑁) such that 𝑑(𝛼,𝐿) = max𝛼∈ℒ(𝑁) 𝑑(𝛼,𝐿), where
𝑑(𝛼,𝐿) = min𝜎∈𝐿 𝑑(𝛼, 𝜎) for some distance function 𝑑 on timed traces.

In untimed settings, the problem involves identifying the model run(s) that maximize the cost over
the log, i.e. identifying series of moves (insertions or deletions) with the highest cost. This untimed
version of the problem has been explored in [22]. However, the problem becomes more complex with
timed traces, as the challenge lies in finding model runs that deviate significantly from the observed
traces in both action labels and timestamps, necessitating a distance metric that covers both aspects. To
eventually approach the GTAAP, one crucial yet unexplored step is to find anti-alignments only for
the timed part of a trace. Consequently, the distance functions we consider to find anti-alignments are
initially solely based on the timestamps of the traces (e.g. Stamp-Only 𝑑𝑡 and Delay-Only 𝑑𝜃 distances
as defined previously). Thus, the problem is reduced as follows.

Definition 12 (Purely Timed Anti-Alignment Problem (PTAAP)). Given a Time Petri Net 𝑁 and a
timed log 𝐿 ⊆ ℒ(𝑁), where the timing function for a timed trace 𝜎 ∈ 𝐿 is denoted as 𝛾𝜎 , find the
valid timing function(s) 𝛾 ∈ Γ𝑁 s.t. 𝑑(𝛾, 𝐿) = max𝛾∈Γ𝑁

𝑑(𝛾, 𝐿), where 𝑑(𝛾, 𝐿) = min𝜎∈𝐿 𝑑(𝛾𝜎, 𝛾)
for some distance 𝑑 on timing functions.

In this paper, we solve the PTAAP, considering the Stamp-Only 𝑑𝑡 and Delay-Only 𝑑𝜃 distances,
specifically for ATMGs. These restictions are motivated by two main factors.
First, solving the GTAAP would need an approach that incorporates additional constraints to ensure
mutual coherence between Untimed Anti-Alignments (UAAs) and Purely Timed Anti-Alignments
(PTAAs) while maximizing a combined distance metric (e.g. weighted sum of activity-based and
timestamp-based distances). In fact, the GTAAP cannot be effectively decomposed into two independent
sub-problems (finding the furthest UAA and PTAA separately), because the two solutions may not be
consistent with each other. For example, the UAA may not follow the temporal constraints derived
from the PTAA in models that allow for parallelism. A naive approach, such as first determining
the UAA and then assigning a compliant timestamp sequence that maximizes the distance from the
log, risks overemphasizing one aspect (e.g., activities) at the expense of the other (e.g., timestamps),
resulting in biased or suboptimal outcomes. In previous attempts to define edit distances between timed
words, e.g. in [23], the edit distance is indeed computed by first identifying an optimal sequence of edit



operations that aligns the untimed parts of the words and then by minimizing the distance between the
corresponding timestamp sequences.
Secondly, in [19], the Stamp-Only and Delay-Only distances were defined only for timing functions over
the same causal process, i.e., for identical untimed runs on the untimed version of a TPN. This ensures
meaningful comparisons of timestamps, i.e. by computing their distances only if related to the same
activities. While this constraint does not pose issues when searching for Purely Timed Alignments,
where the search space is confined to the timing functions allowed by a single trace’s constraints,
searching for Purely Timed Anti-Alignments instead requires exploring all timing functions allowed by
the model. Consequently, it is necessary to restrict the class of models to those that only produce traces
with the same activity information.

We now provide examples of problem instances and their solutions to illustrate the problem and
expected behaviors.

Example 9. Suppose we have the simple ATMG 𝑁 below, which models a simple sequential process.
Note that traces will be considered just for their timestamp information, i.e. as points in a space, as
described previously.

We hereby present some possible logs accepted by this model and the corresponding solution
to the PTAAP, using the Stamp-Only distance as it is the most intuitive and does not require any
transformation to the traces.

Event Log 1: 𝐿 = {𝜎𝑚} = {(0, 0, 0)}
Suppose we have a log with only one point 𝜎𝑚, the minimal point of the model, obtained by executing
every transition at the earliest possible time (𝜎𝑚 s.t. ∀𝑡𝑖 ∈ 𝑇, 𝑓𝛾𝜎𝑚 (𝑖) = 𝐸𝑓𝑡(𝑡𝑖)). As we seek a point
accepted by N that is farthest from the log (i.e., from 𝜎𝑚), it is clear that the solution to the PTAAP is
the maximal point 𝜎𝑀 = (2, 5, 6), obtained by executing every transition at the latest possible time
(𝜎𝑀 such that ∀𝑡𝑖 ∈ 𝑇, 𝑓𝛾𝜎𝑀 (𝑖) = 𝐿𝑓𝑡(𝑡𝑖)).

Event Log 2: 𝐿 = {𝜎𝑚, 𝜎𝑀} = {(0, 0, 0), (2, 5, 6)}
Suppose we have a log with two points, the minimal and maximal points. We seek a point accepted by
N that is most distant from the log, i.e. from both points simultaneously. This point will be "between"
the two, with half the maximal distance in the space. For example, a solution is 𝜎𝑠 = (1, 2.5, 3), where
𝑑𝑡(𝜎𝑠, 𝜎𝑚) = 𝑑𝑡(𝜎𝑠, 𝜎𝑀 ) = 𝑑𝑡(𝜎𝑚,𝜎𝑀 )

2 = 6.5. Any point accepted by N that is farther from one log
point will be closer to the other, reducing the distance from the whole log and therefore non-optimal.

Event Log 3: 𝐿 = {𝜎1, 𝜎2, 𝜎3} = {(0, 0, 0), (0, 1, 2), (1, 4, 5)}
Suppose we have a log consisting of the three points above. The optimal solution could be in the set
of equidistant points for each pair of neighboring log points, or on the edges of the search space, i.e.
either "between" 𝜎1 and 𝜎2, "between" 𝜎2 and 𝜎3, or at the maximal point 𝜎𝑀 = (2, 5, 6). The latter is
the furthest point from 𝜎3 without getting closer to 𝜎2.

Given that 𝑑𝑡(𝜎1, 𝜎2) = 3 is smaller than 𝑑𝑡(𝜎2, 𝜎3) = 7, we can discard the first option. Since
𝑑𝑡(𝜎3, 𝜎𝑀 ) = 3 is less than half the distance between 𝜎2 and 𝜎3, the optimal point is the one equidistant
from 𝜎2 and 𝜎3, i.e. the point 𝜎𝑠 = (2, 2.75, 2.75), with 𝑑𝑡(𝜎𝑠, 𝜎2) = 𝑑𝑡(𝜎𝑠, 𝜎3) = 4.5. Notably, for the
first dimension (activity), the optimal timestamp is greater than those for both 𝜎2 and 𝜎3 (2 > 1 > 0),
as it maximizes the distance from both traces but still within the constraints of the model. However,
decisions of this kind are not always as straightforward, as the timestamp taken by a transition executed
early then influences the timestamps of the following events. Therefore, a dimension-wise optimization
does not necessarily guarantee the best (farthest) timestamp sequence.



For ATMGs allowing for parallelism, the timestamps taken by parallel activities will not influence
each other, and only their maximal timestamp will have an impact on the timestamps of the rest of the
trace.

For the Delay-Only distance, instead, dimension-wise optimization is possible since timestamp
sequences are considered as their flow function form, i.e. the value taken for an activity does not
influence the search space for the following.

3.1. Complexity Considerations

The PTAAP can be seen as a version of the Largest Empty Sphere problem [24], where the question is
to find a hypersphere of largest radius whose interior does not contain any of a finite set of points (in a
𝑑-dimensional space) given as input; or equivalently, to find a point (the center of the sphere) which
maximizes its distance to the set of input points, where the distance to the set of points is understood
as the distance to the closest point of the set. The search space is usually delimited by bounds, e.g. the
convex hull of the input points.

In our case, the input points are the time sequences in the log, their dimension is the length of the
traces, and the distance is Manhattan (or 𝐿1) distance.

The Largest Empty Sphere problem has been studied, specially in small dimensions where it can
be solved with good complexity (typically 𝑛 log(𝑛) in dimension 2 with the Euclidian distance) using
techniques based on Voronoi diagrams. The complexity grows exponentially with the dimension [25].
In higher dimensions, the Largest Empty Sphere becomes indeed a non-convex optimization problem
(for our case, with the Manhattan distance, one sees easily the non-convexity coming from the absolute
values in the definition of the distance).

For these reasons, we propose to encode our problem as a non-convex optimization problem and rely
on the performances of the solvers.

4. Solving the Purely Timed Anti-Alignment Problem

The Purely Timed Anti-Alignment Problem can be viewed as an optimization problem, maximizing
the chosen distance from a fixed set of observed traces 𝐿, over the set of valid timestamp series 𝑆(𝑁)
for the model 𝑁 . The characteristics of such a search space 𝑆(𝑁) change depending on whether the
chosen ATMG allows for parallelism or not.

Therefore, the optimization problem at hand, given an ATMG 𝑁 , with |𝑇 | = 𝑑, a timed log 𝐿 ⊆ ℒ(𝑁)
and using the Stamp-Only distance function, is the following:

maximize min
𝜎∈𝐿

𝑑∑︁
𝑖=1

|𝛾𝜎(𝑖)− 𝑥𝑖|

subject to 𝑥 ∈ 𝑆(𝑁)

As for the search space 𝑆(𝑁), it results that, given an ATMG N with |𝑇 | = 𝑑 equipped with a
certain ordering function 𝑜𝑟𝑑, each component 𝑥𝑖 of a 𝑑-dimensional point (timestamp sequence)
𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝑆(𝑁) ⊂ R𝑑

+ can take values in the intervals defined by the bounding function:

𝐵(𝑖) =

{︃
𝑆𝐼(𝑡𝑖)

∙
𝑇 𝑡𝑖 = ∅

max𝑗∈∙
𝑇 𝑖 𝑥𝑗 + 𝑆𝐼(𝑡(𝑖)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where the operation+ between an interval and a number is defined here as [𝑎1, 𝑎2]+𝛼 = [𝑎1+𝛼, 𝑎2+𝛼].
As the function returns an interval, for readability we will express its lower bound and upper bound
as 𝐵𝑙(𝑖) and 𝐵𝑢(𝑖) respectively. In practice, this constraint ensures that the execution of transition 𝑡𝑖
occurs after the completion of its latest parent transition, if any, by an interval specified by the lower
bound 𝐸𝑓𝑡(𝑡) and upper bound 𝐿𝑓𝑡(𝑡).



When considering the Delay-Only distance instead, there are two differences. First, timestamp
sequences are mapped to their flow function values (so that the distance 𝑑𝜃 can be represented in the
form of the Manhattan distance) and the search space 𝑆(𝑁) will be much simpler, as the boundaries
for each dimension can now only range within the interval defined for the corresponding transition.

Therefore, the problem becomes the following:

maximize min
𝜎∈𝐿

𝑑∑︁
𝑖=1

|𝑓𝛾𝜎(𝑖)− 𝑥𝑖|

subject to 𝐸𝑓𝑡(𝑡𝑖) ≤ 𝑥𝑖 ≤ 𝐿𝑓𝑡(𝑡𝑖), ∀𝑖 ∈ {1, ..., 𝑑}

The approach used to solve such optimization problem involves Linear Programming (LP). Linear
Programming is the process of minimizing/maximizing a linear objective function subject to a finite
number of linear equality and inequality constraints [26]. However, to describe the characteristics of
many optimization problems it is sometimes necessary to adopt a set of non-linear terms. Finding an
optimal solution for a non-linear problem in acceptable computational time is still a big challenge in the
optimization theory [27]: instead, in comparison, linear forms require significantly less computational
time [28]. Therefore, one of the techniques often used to solve optimization problems with non-linear
terms consists in replacing the latter with equivalent linear formulations, at the cost of often increasing
the size of the problem [29]. This is the case also for the Purely Timed Anti-Alignment Problem.
Specifically, equivalent linear formulations are needed to express:

• the fact that this is a max-min problem, i.e. a problem where the goal is to maximize the minimum
of the objective function for all potential scenarios;

• the absolute value contained in the objective function;
• the maximum function contained in the definition of the search space 𝑆(𝑁) for the distance 𝑑𝑡.

We use established techniques [29] to retrieve linear formulations for these functions. As the structure
of an ATMG can differ, we also found a simpler reformulation (in terms of number of variables and
constraints) for models that allow only for sequential events (no parallelism). An in-depth explanation
of the different linear reformulations obtained is contained in the Appendix.

5. Implementation and Experimental Analysis

We implemented the Linear Programming solution in Python1 using PuLP [30], a modeling library that
uses Python syntax for constraints and supports various solvers, including the default CBC solver [31]
that we used. The experiments were executed on Google Colaboratory [32], using a virtual environment
with an Intel Xeon CPU @ 2.20GHz and 12 GB of available RAM.

To assess our implementation’s practicality, we generated various problem examples, varying both
the model dimension (𝑑 transitions) and log cardinality (𝑛 traces). The chosen parameter values are:

• Cardinality |𝐿|: {10, 100, 1000}
• Dimension |𝑇 |: {5, 15, 30}

These values reflect realistic scenarios, as process models typically do not reach extremely high com-
plexity in the number of transitions, but logs often contain many traces and events.

As we found different linear formulations depending on whether parallelism is allowed or not in the
model, we tested them separately to study the difference in efficiency. We therefore considered two
types of models, sequential ATMGs (as in Example 9) and ATMGs with parallelism: since for the second
type different structures are allowed, the chosen one is shown in Figure 3.

We automatically generated models and logs of increasing complexity as follows:

1Available at: github.com/StefanoBavaro/TimedAntiAlignments

https://github.com/StefanoBavaro/TimedAntiAlignments


Figure 3: Structure of ATMGs with parallelism used in experiments: given 𝑑 dimensions, 𝑑− 2 transitions are in
parallel.

• Given a model dimension 𝑑, an ATMG with 𝑑 transitions is generated, following the structures
mentioned above. For each transition 𝑡, the timestamp interval 𝑆𝐼(𝑡) is set using a random
process. The lower bound is a random number between 0 and 5, rounded to two decimal places
(𝐸𝑓𝑡(𝑡𝑖) ∼ Uniform(0, 5)). The upper bound is calculated by adding another random number
between 0 and 5, also rounded, to the lower bound (𝐿𝑓𝑡(𝑡𝑖) = 𝐸𝑓𝑡(𝑡𝑖) + 𝛼, 𝛼 ∼ Uniform(0, 5)).
This creates intervals with variable ranges, better representing real time relationships.

• Given the generated model 𝑁 and some cardinality 𝑛, a log with 𝑛 points is created by randomly
assigning valid values (rounded to two decimal places) for each dimension, ensuring each point
is accepted by 𝑁 .

For every combination of dimension, cardinality and type of ATMGs, we compute the time needed
for the solver to find the optimal point, the number of variables (#V) and the number of constraints
(#C). As for the last two measures, we can identify three cases by observing the linear formulations:

1. Sequential ATMGs for both distances and ATMGs allowing parallelism and with the structure in
Fig 3 for distance 𝑑𝜃 , that share the number of constraints and variables, i.e. #𝑉 = 1+3(𝑛×𝑑)+𝑑
and #𝐶 = 𝑛+ 3(𝑛× 𝑑) + 2𝑑.

2. ATMGs allowing parallelism with the structure in Fig 3 with distance 𝑑𝑡, for which #𝑉 =
1 + 3(𝑛× 𝑑) + 4𝑑− 5 and #𝐶 = 1 + 3(𝑛× 𝑑) + 8𝑑− 12.

3. ATMGs allowing parallelism with no specific structure. In this case, the determining factors
are the amount of non-starting transitions |𝐼𝑃 | (with 𝐼𝑃 = {𝑖 ∈ {1, ..., 𝑑} | ∙𝑇 𝑡𝑖 ̸= ∅}) and the
number of parent transitions for each of them. We computed the lower and upper bounds for
such metrics in this case, as the exact value depends on these variable factors, obtaining that
1+3(𝑛× 𝑑)+ 𝑑 ≤ #𝑉 ≤ 1+3(𝑛× 𝑑)+ 𝑑+ |𝐼𝑃 |+ |𝐼𝑃 |2 and that 𝑛+3(𝑛× 𝑑)+ 2𝑑 ≤ #𝐶 ≤
𝑛+ 3(𝑛× 𝑑) + 2𝑑+ 3|𝐼𝑃 |2.

Note that, for the metric #𝐶 , the amounts reported are the ones computed by our implementation,
that do not consider variables being binary or positive as constraints as they can just be declared as
such.

Results (the elapsed time is expressed in seconds, rounded to the nearest integer) for the two structures
of models are reported in Tables 1 and 2.

As expected, time requirements significantly increase with the growth of variables and constraints.
More time is usually needed to solve the problem when considering the Delay-Only distance for
Sequential ATMGs: as the amount of variables and constraints do not change for the two distances,
a possible factor might be the change in magnitude of the search space. Instead, for the second type
of ATMGs, it usually takes less time to solve the problem when considering the Delay-Only distance:
this can be explained by the lower amount of variables and constraints for the two distance settings.
However, to interpet these results, it is necessary to consider the high variability in the performance of
MIP solvers [33], influenced by factors like variable declaration order and search space shape. Hence, the
reported time needed to solve different instances of the PTAAP offers insights into the solver behavior



Table 1
Elapsed time (in seconds), #V and #C for Sequential ATMGs

Card. |𝐿| Dist.
Dimension |𝑇 |

5 15 30
Time #V #C Time #V #C Time #V #C

10
𝑑𝑡 1

156 170
7

466 490
7

931 970
𝑑𝜃 1 5 4

100
𝑑𝑡 54

1506 1610
69

4516 4630
449

9031 9160
𝑑𝜃 52 575 >6h

1000
𝑑𝑡 2459

15006 16010
5833

45016 46030
>6h

90031 91060
𝑑𝜃 7605 >6h >6h

Table 2
Elapsed time (in seconds), #V and #C for ATMGs as Figure 3

Card. |𝐿| Dist.
Dimension |𝑇 |

5 15 30
Time #V #C Time #V #C Time #V #C

10
𝑑𝑡 1 166 188 20 506 568 164 1116 1138
𝑑𝜃 1 156 170 4 466 490 4 931 970

100
𝑑𝑡 41 1516 1628 2639 4556 4708 >6h 9116 9229
𝑑𝜃 35 1506 1610 1177 4516 4630 >6h 9031 9160

1000
𝑑𝑡 10492 15016 16028 >6h 45056 45109 >6h 90116 90229
𝑑𝜃 10264 15006 16010 >6h 45016 46030 >6h 90031 91060

across different problem settings, but cannot precisely indicate solve times for further similar instances
with the same controlled parameters, as also the specific time constraints and the log provided can have
an impact.

To provide a baseline for comparison, we also implemented a Brute-Force solver and tested it against
the LP solver. The brute force approach builds the search space recursively by splitting the range of
possible timestamps into evenly spaced values for each dimension. Each value is then used to compute
the timestamps for the following dimensions in the point, until the final dimension is reached and the
complete point is added to the search space. The computational complexity, both in time and space,
increases with the granularity of the timestamp intervals: finer splits improve accuracy but require more
computational resources. Every point in such search space is a possible solution: the solver computes
the distance from the log for each point and selects the maximum as the optimal distance. The results
(execution time in seconds, rounded to the nearest integer) of both solvers for both types of ATMGs are
presented in Tables 3. The interval subdivision value for the brute-force search space is 5.

Table 3
Comparison of execution times (in seconds) between LP and Brute-Force (BF) Solvers for Sequential ATMGs
(left) and ATMGs as Figure 3 (right).

Card. |𝐿| 𝑑
Dimension |𝑇 |

5 10 11
LP BF LP BF LP BF

10
𝑑𝑡 1 0 2 234 4 1185
𝑑𝜃 1 0 1 191 2 1024

100
𝑑𝑡 25 0 288 306 190 1659
𝑑𝜃 54 0 289 267 197 1412

Card. |𝐿| 𝑑
Dimension |𝑇 |

5 10 11
LP BF LP BF LP BF

10
𝑑𝑡 2 0 13 364 6 1856
𝑑𝜃 1 0 2 185 1 759

100
𝑑𝑡 60 0 1266 425 2084 2192
𝑑𝜃 50 0 480 205 515 1060

The brute-force approach performs significantly worse for increasing dimensions, as evidenced by
the steep growth in execution time in the models with 10 and 11 dimensions. In fact, such explosion,
also in terms of RAM requirements, prevented the exploration of the BF solver beyond 11 dimensions. It
can also be noticed that execution time doesn’t scale as drastically with cardinality as with dimensions:
this is because computing distances is not as computationally intensive as building the search space.
Finally, it is worth noticing that in some cases (in bold), the distance found by the LP solver was greater



(therefore better) by some decimals than the one found through the BF approach: this might be due to
insufficient discretization of the BF search space, which, if increased, would require even more time and
space resources.

6. Conclusion and Future Work

In this paper, we introduced time-aware anti-alignments and solved the Purely Timed Anti-Alignment
Problem for Acyclic Time Marked Graphs using the Stamp-Only and Delay-Only distances. Our
LP implementation of the problem, reformulated as a Mixed-Integer Programming problem, notably
outperformed a brute-force solver as model complexity increased. Alongside [19] and [20], our work
contributes to advancing conformance checking in time-aware process mining. Solving the Purely
Timed Anti-Alignment Problem is key to potentially defining new time-aware metrics using timed
anti-alignments, e.g. for precision or generalization as done in untimed settings. Future research could
explore solving the problem for other distance functions, such as the Mixed-Moves distance [19]. The
work can also be extended to models that include loops or choice: this would probably require new
ways of computing the Stamp-Only and Delay-Only distances, so that to compare timestamps related
to different sequences of activities. Finally, this is another step towards tackling the General Timed
Anti-Alignment Problem, which would require additional strategies to balance the contributions of
activity-based and timestamp-based distances while ensuring coherence between the purely-timed and
untimed optimal anti-alignments.
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A. Appendix

We start by presenting the reformulation for the Stamp-Only distance, which is the most straightforward
case as no transformation has to be performed on traces. We later present how to adapt the solution to
the Delay-Only Distance. The initial form of the problem is then:

maximize min
𝜎∈𝐿

𝑑∑︁
𝑖=1

|𝛾𝜎(𝑖)− 𝑥𝑖|

subject to 𝑥 ∈ 𝑆(𝑁)

Note that in the further formulations, to ease notation, we will identify the timing function related to
a trace 𝜎𝑘 as 𝛾𝑘 rather than 𝛾𝜎𝑘

.
In the following sections, we detail every reformulation needed, showing how each non-linear constraint
can be transformed into a linear form.

A.1. Maximin reformulation

The problem at hand is a Maximin problem, i.e. a problem where the goal is to maximize the minimum
of the objective function for all potential scenarios. In fact, we aim at maximizing the distance with
the timed log, which by definition is the minimum distance from any point in the log. We therefore
introduce a new objective function, represented by the only variable 𝑧. The decision variables 𝑥𝑖 are
now used to set 𝑧, through multiple linear inequalities, as lower than the distance from any point in the
log 𝐿. This way, an upper bound is set for 𝑧 so that, by maximizing it, the minimum distance from any
point in the log is necessarily obtained. The first transformation is therefore the following:

maximize 𝑧

subject to 𝑧 ≤
𝑑∑︁

𝑖=1

|𝛾𝑘(𝑖)− 𝑥𝑖|, ∀𝑘 ∈ {1, ..., 𝑛}

𝑥 ∈ 𝑆(𝑁)

where 𝑛 is the cardinality of the log 𝐿.

A.2. Absolute Values Reformulation

To reformulate the absolute value function, it is needed to express the values of every absolute difference
|𝛾𝑘(𝑖) − 𝑥𝑖|. To do so, we introduce new positive variables diff +

𝑘,𝑖 and diff −
𝑘,𝑖 for each element of the

log and each dimension of the solution space, i.e. ∀𝑖 ∈ 𝐼𝐷 = {1, ..., 𝑑} and ∀𝑘 ∈ 𝐼𝐿 = {1, ..., 𝑛}. By
using binary variables 𝑏𝑘,𝑖, we also set one of the two variables diff +

𝑘,𝑖 and diff −
𝑘,𝑖 to be 0 (Constraints 3

and 4). The constant 𝑀 is used to prevent any of these variables from becoming infinite: we set it as
the maximum possible distance between two points in the search space, i.e. the distance between the
minimal trace 𝜎𝑚 and the maximal trace 𝜎𝑀 , 𝑑𝑡(𝜎𝑚, 𝜎𝑀 ). With these constraints, we split 𝛾𝑘(𝑖)− 𝑥𝑖
into the possibly positive and negative results (Constraint 2). If 𝛾𝑘(𝑖)− 𝑥𝑖 is positive, its value will be
taken by diff+

𝑘,𝑖; vice versa, if 𝛾𝑘(𝑖)−𝑥𝑖 is negative, the absolute value will be taken by diff−
𝑘,𝑖. Therefore,

it follows that |𝛾𝑘(𝑖)− 𝑥𝑖| = diff+
𝑘,𝑖 + diff−

𝑘,𝑖, which is indeed substituted in Constraint 1.
The reformulated linear programming problem incorporating these transformations is then:

maximize 𝑧

subject to

𝑧 ≤
𝑑∑︁

𝑖=1

diff+
𝑘,𝑖 + diff−

𝑘,𝑖, ∀𝑘 ∈ 𝐼𝐿 (1)

diff+
𝑘,𝑖 − diff−

𝑘,𝑖 = 𝛾𝑘(𝑖)− 𝑥𝑖, ∀𝑖 ∈ 𝐼𝐷,∀𝑘 ∈ 𝐼𝐿 (2)



0 ≤ diff+
𝑘,𝑖 ≤ 𝑀 · 𝑏𝑘,𝑖, ∀𝑖 ∈ 𝐼𝐷,∀𝑘 ∈ 𝐼𝐿 (3)

0 ≤ diff−
𝑘,𝑖 ≤ 𝑀 · (1− 𝑏𝑘,𝑖), ∀𝑖 ∈ 𝐼𝐷,∀𝑘 ∈ 𝐼𝐿 (4)

𝑏𝑘,𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼𝐷, ∀𝑘 ∈ 𝐼𝐿 (5)

𝑥 ∈ 𝑆(𝑁) (6)

This reformulation transforms the original problem with absolute value functions into a Mixed
Integer Programming (MIP) problem (due to the presence of binary variables, considered as integers)
that can be efficiently solved using linear programming solvers.

A.3. Formulation of Search Spaces

Finally, we specify the constraints of the search space 𝑆(𝑁), i.e. the constraints for each decision
variable 𝑥𝑖. For sequential ATMGs, the search space can be further simplified than the one presented in
the paper. Given a sequential ATMG N with |𝑇 | = 𝑑 equipped with a standard ordering function 𝑜𝑟𝑑
that trivially follows the causal relationships of the transitions, each component 𝑥𝑖 of a d-dimensional
point (timestamp sequence) 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝑆(𝑁) ⊂ R𝑑

+ can take values in the intervals defined
by the bounding function:

𝐵(𝑖) =

{︃
𝑆𝐼(𝑡𝑖)

∙
𝑇 𝑡𝑖 = ∅

𝑥𝑖−1 + 𝑆𝐼(𝑡𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where the operation+ between an interval and a number is defined here as [𝑎1, 𝑎2]+𝛼 = [𝑎1+𝛼, 𝑎2+𝛼].
As the function returns an interval, for readability we will express its lower bound and upper bound as
𝐵𝑙(𝑖) and 𝐵𝑢(𝑖) respectively. In practice, these constraints ensure that the execution of transition 𝑡𝑖
occurs after the completion of the preceding transition, if any, by an interval specified by the lower
bound 𝐸𝑓𝑡(𝑡) and upper bound 𝐿𝑓𝑡(𝑡).

With this function, we can now explict (for sequential ATMGs) the constraint 𝑥 ∈ 𝑆(𝑁) that we
momentarily left out in the previous formulations in the form of the new Constraint 6. Therefore, the
problem will now be:

maximize 𝑧

subject to

𝑧 ≤
𝑑∑︁

𝑖=1

diff+
𝑘,𝑖 + diff−

𝑘,𝑖, ∀𝑘 ∈ 𝐼𝐿 (1)

diff+
𝑘,𝑖 − diff−

𝑘,𝑖 = 𝛾𝑘(𝑖)− 𝑥𝑖, ∀𝑖 ∈ 𝐼𝐷,∀𝑘 ∈ 𝐼𝐿 (2)

0 ≤ diff+
𝑘,𝑖 ≤ 𝑀 · 𝑏𝑘,𝑖, ∀𝑖 ∈ 𝐼𝐷, ∀𝑘 ∈ 𝐼𝐿 (3)

0 ≤ diff−
𝑘,𝑖 ≤ 𝑀 · (1− 𝑏𝑘,𝑖), ∀𝑖 ∈ 𝐼𝐷,∀𝑘 ∈ 𝐼𝐿 (4)

𝑏𝑘,𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼𝐷,∀𝑘 ∈ 𝐼𝐿 (5)

𝐵𝑙(𝑖) ≤ 𝑥𝑖 ≤ 𝐵𝑢(𝑖), ∀𝑖 ∈ {1, ..., 𝑑} (6)

When dealing with ATMGs with paralellism, the search space 𝑆(𝑁) changes as defined previously
(Section 4). Additional complexity arises as now transitions can have multiple parent transitions:
therefore, it is needed to retrieve only the maximum value among their timestamps. For transitions
without parents, no reformulation is needed (Constraint 6) and the constraint is the same as for
sequential ATMGs. Instead, when a transition 𝑡𝑖 has any parent transition (for readability, 𝐼𝑃 =
{𝑖 ∈ {1, ..., 𝑑} | ∙𝑇 𝑡𝑖 ̸= ∅} is the set of indexes of transitions with any parent transition), we need to
reformulate the 𝑚𝑎𝑥 function for both inequalities (i.e. both endpoints of the interval).



The inequality max𝑗∈∙
𝑇 𝑖 𝑥𝑗 + 𝐸𝑓𝑡(𝑡𝑖) ≤ 𝑥𝑖 can be directly modeled by defining the same for each

parent transition 𝑡𝑗 instead of just the maximal (Constraint 7): the inequality with the maximum term
𝑥𝑗 will be a stricter constraint, therefore dictating the lower bound for 𝑥𝑖.

The second inequality 𝑥𝑖 ≤ max𝑗∈∙
𝑇 𝑖 𝑥𝑗 +𝐿𝑓𝑡(𝑡𝑖) requires additional variables to express the 𝑚𝑎𝑥

function[29]. We introduce a variable maxVar𝑖 for every transition 𝑡𝑖 to act as a proxy for the maximum
timestamp of the transition’s parents (Constraint 12). First, the lower bound of every maxVar𝑖 is set as
the maximal timestamp of parent transitions (Constraint 8) as done previously. The upper bound, which
has to be the same as the lower bound, is set using binary variables 𝛽𝑖,𝑗 whose sum is 1 (Constraint
10). Constraint 9 prevent any maxVar𝑖 from becoming infinite and, as the only assignment of binary
variables that make the problem feasible is the one for which only the binary variable related to the
maximum of the parents timestamps is set to 1, maxVar𝑖 will take exactly the maximal value of parents
transactions.

Finally, the problem will now be:

maximize 𝑧

subject to

𝑧 ≤
𝑑∑︁

𝑖=1

diff+
𝑘,𝑖 + diff−

𝑘,𝑖, ∀𝑘 ∈ 𝐼𝐿 (1)

diff+
𝑘,𝑖 − diff−

𝑘,𝑖 = 𝛾𝑘(𝑖)− 𝑥𝑖, ∀𝑖 ∈ 𝐼𝐷, ∀𝑘 ∈ 𝐼𝐿 (2)

0 ≤ diff+
𝑘,𝑖 ≤ 𝑀 · 𝑏𝑘,𝑖, ∀𝑖 ∈ 𝐼𝐷, ∀𝑘 ∈ 𝐼𝐿 (3)

0 ≤ diff−
𝑘,𝑖 ≤ 𝑀 · (1− 𝑏𝑘,𝑖), ∀𝑖 ∈ 𝐼𝐷, ∀𝑘 ∈ 𝐼𝐿 (4)

𝑏𝑘,𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼𝐷,∀𝑘 ∈ 𝐼𝐿 (5)

𝐵𝑙(𝑖) ≤ 𝑥𝑖 ≤ 𝐵𝑢(𝑖), ∀𝑖 ∈ 𝐼𝐷 𝑠.𝑡 ∙
𝑇
𝑡𝑖 = ∅ (6)

𝐸𝑓𝑡(𝑡𝑖) + 𝑥𝑗 ≤ 𝑥𝑖, ∀𝑖 ∈ 𝐼𝑃 , ∀𝑗 ∈ ∙
𝑇
𝑖 (7)

𝑥𝑗 ≤ 𝑚𝑎𝑥𝑉 𝑎𝑟𝑖, ∀𝑖 ∈ 𝐼𝑃 ,∀𝑗 ∈ ∙
𝑇
𝑖 (8)

𝑚𝑎𝑥𝑉 𝑎𝑟𝑖 ≤ 𝑥𝑗 +𝑀 · (1− 𝛽𝑗,𝑖), ∀𝑖 ∈ 𝐼𝑃 ,∀𝑗 ∈ ∙
𝑇
𝑖 (9)∑︁

𝑗∈∙
𝑇 𝑖

𝛽𝑗,𝑖 = 1, ∀𝑖 ∈ 𝐼𝑃 (10)

𝛽𝑗,𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼𝑃 , ∀𝑗 ∈ ∙
𝑇
𝑖 (11)

𝑥𝑖 ≤ 𝐿𝑓𝑡(𝑡𝑖) +𝑚𝑎𝑥𝑉 𝑎𝑟𝑖, ∀𝑖 ∈ 𝐼𝑃 (12)

A.4. Anti-Alignments for Delay-Only distance

We here present the full reformulation of the PTAAP for ATMGs considering the Delay-Only distance
rather than the Stamp-Only distance. The two main main differences are presented already in Section 4,
and correspond to Constraints 2 and 6. Therefore, the formulation of such problem is:

maximize 𝑧

subject to



𝑧 ≤
𝑑∑︁

𝑖=1

diff+
𝑘,𝑖 + diff−

𝑘,𝑖, ∀𝑘 ∈ 𝐼𝐿 (1)

diff+
𝑘,𝑖 − diff−

𝑘,𝑖 = 𝑓𝑘(𝑖)− 𝑥𝑖, ∀𝑖 ∈ 𝐼𝐷, ∀𝑘 ∈ 𝐼𝐿 (2)

0 ≤ diff+
𝑘,𝑖 ≤ 𝑀 · 𝑏𝑘,𝑖, ∀𝑖 ∈ 𝐼𝐷, ∀𝑘 ∈ 𝐼𝐿 (3)

0 ≤ diff−
𝑘,𝑖 ≤ 𝑀 · (1− 𝑏𝑘,𝑖), ∀𝑖 ∈ 𝐼𝐷, ∀𝑘 ∈ 𝐼𝐿 (4)

𝑏𝑘,𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼𝐷,∀𝑘 ∈ 𝐼𝐿 (5)

𝐸𝑓𝑡(𝑡𝑖) ≤ 𝑥𝑖 ≤ 𝐿𝑓𝑡(𝑡𝑖), ∀𝑖 ∈ 𝐼𝐷 (6)

Due to the transformation of the traces given as input, the optimal point obtained in this case needs
to be mapped back to the original timestamp values, i.e. by reverting the effect of the flow function.
To do that, one can simply sum the values of the found optimal point according to the transitions
relationships. Therefore, given the obtained optimal sequence, which can as well be represented as a
timing function 𝛾𝑟𝑒𝑠𝑢𝑙𝑡, the timing function 𝛾𝜎 of the non-transformed trace 𝜎 is:

𝛾𝜎(𝑖) =

{︃
𝛾𝑟𝑒𝑠𝑢𝑙𝑡(𝑖)

∙
𝑇 𝑡𝑖 = ∅

𝛾𝑟𝑒𝑠𝑢𝑙𝑡(𝑖) + max𝑘∈∙
𝑇 𝑡𝑖 𝛾(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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