
Alignments meet Linear Algebra
Christopher T. Schwanen

1
, Wied Pakusa

2
, and Wil M. P. van der Aalst

1

1Chair of Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
2Faculty of Mathematics, Informatics and Technology, Koblenz University of Applied Sciences, Koblenz, Germany

Abstract
An optimal alignment corresponds to the minimal number of insertions and deletions of events to transform an

observed trace into a trace of a process model. For the important class of process trees, we show how we can

express the alignment problem as a system of matrices over a commutative semiring. This system of matrices

only depends on the process tree, but not on the input trace, and the costs of alignments can be computed by

matrix and vector multiplications. Our formulation in terms of linear algebra sheds new light on alignments and

allows us to transfer methods from linear algebra into the field of conformance checking. As an application, we

show that for a subclass of process trees with unique labels, we can efficiently decide alignment properties by

using a symbolic representation of the matrices.

Keywords
Process Mining, Conformance Checking, Alignments, Linear Algebra, Process Trees

1. Introduction

Alignments [1] are the state-of-the-art technique in process mining to measure the deviation of an

observed process execution to a normative process model. To this end, optimal alignments count the

minimum number of insertions and deletions of events that is required to transform an observed trace

into a trace of the reference model. Unfortunately, computing the alignment metric is computationally

intractable. More precisely, it can be shown that for the standard class of process models used in process

mining (so-called sound workflow nets) the alignment problem is PSPACE-complete [13]. At the same

time, alignments play a pivotal role in a large number of applications in process mining. Hence, one of

the most important research goals in conformance checking is to find algorithmic strategies that make

alignment computations applicable on large real-world event logs and, in the best case, even allow for

provable complexity bounds on interesting model classes. Along these lines, we were recently able to

classify the algorithmic complexity of alignments on quite relevant classes of process models, such as

free-choice sound workflow nets, process trees, and process trees with unique labels [13–15].

Here, we continue the quest towards a more thorough understanding of the complexity of alignments.

In our main result Theorem 4.1 we establish a completely new perspective on the alignment problem for

process trees that is rooted in linear algebra. More precisely, we are going to show that every process

tree 𝑇 can effectively be converted into a linear system of matrices (𝑆𝑎)𝑎∈Σ and vectors 𝑣in and 𝑣
fin

with entries in a commutative semiring 𝑅 such that the optimal alignment costs for any given trace

𝑤 = 𝑤1𝑤2 · · ·𝑤𝑛 ∈ Σ*
(with respect to the process tree 𝑇) can be computed as a matrix multiplication

problem as follows:

Costs(𝑤, 𝑇) = 𝑣𝑡
in
· 𝑆𝑤1𝑆𝑤2 · · · 𝑆𝑤𝑛 · 𝑣

fin
∈ 𝑅. (1)

Our work is strongly inspired by the notion of weighted automata [5] known from the field of formal

languages and automata theory. In a nutshell, a weighted automaton can (non-deterministically) process

an input along different computation paths where each single path has certain costs. These costs are

the product of the costs of transitions taken along the path. In the end, the sum over all computation

paths is assigned as the costs of the read input. All arithmetic (sums and products) takes place in some

ATAED’25, International Workshop on Algorithms & Theories for the Analysis of Event Data, 2025
$ schwanen@pads.rwth-aachen.de (C. T. Schwanen); pakusa@hs-koblenz.de (W. Pakusa); wvdaalst@pads.rwth-aachen.de

(W. M. P. van der Aalst)

� 0000-0002-3215-7251 (C. T. Schwanen); 0009-0004-6302-4445 (W. Pakusa); 0000-0002-0955-6940 (W. M. P. van der Aalst)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:schwanen@pads.rwth-aachen.de
mailto:pakusa@hs-koblenz.de
mailto:wvdaalst@pads.rwth-aachen.de
https://orcid.org/0000-0002-3215-7251
https://orcid.org/0009-0004-6302-4445
https://orcid.org/0000-0002-0955-6940
https://creativecommons.org/licenses/by/4.0/deed.en

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

underlying commutative semiring 𝑅 that can vary depending on the modeled situation. In this way, a

weighted automaton does not only define a formal language (i.e., a Boolean function), but specifies a

numeric function of the form 𝑓 : Σ* → 𝑅 which assigns a certain cost to each input string. Somewhat

the key idea of our whole construction is to show that the alignment cost function of every process tree

is regular in the sense that it can be expressed by a weighted automaton.

To benefit from our new construction algorithmically, we have to take into account that process

trees yield a succinct representation of an exponentially large state space. Indeed, while each process

tree defines a regular language, the standard translation from process trees to finite automata results

in an exponential increase in the number of states. Thus, in an explicit representation, the weighted

automata (and matrices (𝑆𝑎)𝑎∈Σ) become excessively large. The operator responsible for this blow-up

is the shuffle operator, which models independent parallel computations. Hence, our second key idea is

to preserve the compact, symbolic representation of process trees by expressing the translation using

linear algebra and standard matrix/vector operations. Remarkably, we find that for all process tree

operators, there exist corresponding standard linear-algebraic operators that accurately capture the

alignment semantics of process trees. In particular, we show that the shuffle operator used in process

trees corresponds to the well-known Kronecker product of matrices. This insight allows us to define our

translation using only symbolic algebraic expressions for the matrices 𝑆𝑎 and vectors 𝑣in and 𝑣
fin

with

the properties described in Equation (1) and such that the sizes of the symbolic expressions coincide

with the size of the process tree 𝑇 itself (up to polynomial factors).

We also showcase first applications. In particular, we prove that for a certain subclass of process

trees with unique labels we can use a symbolic representation of the matrices and vectors to obtain an

efficient alignment algorithm. To this end, we show how to efficiently implement the required matrix

and vector operations in a symbolic way. We also explain how our approach can enable the transfer

of concepts from linear algebra to the field of conformance checking thereby providing new analysis

techniques for the process mining community. These examples highlight the great potential of our new

formulation for future research on the algorithmic structure of alignments.

2. Related Work

Alignments [1] are the state-of-the-art technique for conformance checking, an introduction to the

field is provided in [2, 3]. When restricting the class of process models to process trees with unique
labels, the resulting model of the well-known Inductive Miner family [7–9] and the de-facto standard in

industrial process mining applications, the computation of alignments becomes tractable [14]. But even

for process trees in their general form, alignments can still be computed more efficiently than on other

models, e.g., sound workflow nets [13, 15].

Weighted automata can be traced back to the 1960s where formal power series were studied as a

kind of generalization of formal languages, see e.g. [12]. While classic automata decide if a given word

is accepted or not (a Boolean property), weighted automata define a numerical value for inputs in a

commutative semiring. The semiring can model, e.g. resources, costs, time, access rights, or a probability

for each input. They have manifold applications, for example in the area of model checking [4] or

natural language processing [11]. We refer to [5, 6] for a survey and handbook for more details.

To algorithmically apply our linear-algebraic formulation, we have to represent the matrices and

vectors in some compact, symbolic way (instead of working with the explicit, exponential-size rep-

resentation). A similar approach has been taken, for example, in [10]. Here the authors show that

computational problems for symbolic matrices are provably very hard. However, in our context, the

matrices have a quite restricted form, so we are still able to implement certain operations efficiently

(and, indeed, in Section 5 we prove that this is possible to a certain extent).

2

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

3. Preliminaries

Let N := {0, 1, 2, . . .} be the set of natural numbers. For an 𝑛-tuple 𝑎 ∈ 𝐴1 × · · · ×𝐴𝑛, 𝜋𝑖(𝑎) denotes

the projection on its 𝑖th element, i.e., 𝜋𝑖 : 𝐴1 × · · · ×𝐴𝑛 → 𝐴𝑖, (𝑎1, . . . , 𝑎𝑛) ↦→ 𝑎𝑖.

Definition 3.1 (Alphabet). An alphabet Σ is a finite, non-empty set of labels (also called activities).

Definition 3.2 (Sequence). Sequences with index set 𝐼 over a set 𝐴 are denoted by 𝜎 = ⟨𝑎𝑖⟩𝑖∈𝐼 ∈ 𝐴𝐼
.

The length of a sequence 𝜎 is written as |𝜎| and the set of all finite sequences over 𝐴 is denoted by 𝐴*
.

For a sequence 𝜎 = ⟨𝑎𝑖⟩𝑖∈𝐼 ∈ 𝐴𝐼
,

∑︀
𝜎 is a shorthand for

∑︀
𝑖∈𝐼 𝑎𝑖. Given two sequences 𝜎 and 𝜎′

,

𝜎 · 𝜎′
(or 𝜎𝜎′

in short) denotes the concatenation of the two sequences. For 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝐴, we

also use 𝑎1𝑎2 · · · 𝑎𝑛 to denote a sequence. The restriction of a sequence 𝜎 ∈ 𝐴*
to a set 𝐵 ⊆ 𝐴 is

the subsequence 𝜎|𝐵 of 𝜎 consisting of all elements in 𝐵. A function 𝑓 : 𝐴 → 𝐵 can be applied to

a sequence 𝜎 ∈ 𝐴*
given the recursive definition 𝑓(⟨⟩) := ⟨⟩ and 𝑓(⟨𝑎⟩ · 𝜎) := ⟨𝑓(𝑎)⟩ · 𝑓(𝜎). For

a sequence of tuples 𝜎 ∈ (𝐴𝑛)*, 𝜋*
𝑖 (𝜎) denotes the sequence of every 𝑖th element of its tuples, i.e.,

𝜋*
𝑖 (⟨⟩) := ⟨⟩ and 𝜋*

𝑖 (⟨(𝑎1, . . . , 𝑎𝑛)⟩ · 𝜎) := ⟨𝜋𝑖(𝑎1, . . . , 𝑎𝑛)⟩ · 𝜋*
𝑖 (𝜎) = ⟨𝑎𝑖⟩ · 𝜋*

𝑖 (𝜎). As an important

extension of 𝜋*
𝑖 we write 𝜋𝐵

𝑖 for the composition of 𝜋*
𝑖 with the restriction to 𝐵, i.e., 𝜋𝐵

𝑖 := 𝜋*
𝑖 |𝐵 .

3.1. Process Trees

Languages of traces ℒ ⊆ Σ*
correspond to sets of behaviors of a process. The symbols in one trace

correspond to the events or activities that occurred. Here, we study process trees as a modeling mechanism

for business processes. Each process tree 𝑇 defines a language ℒ(𝑇) ⊆ Σ*
of possible process behaviors.

We recall the shuffle operator� which captures parallel execution within a process. Formally, this is

defined by taking two traces 𝑥, 𝑦 ∈ Σ*
and by defining 𝑥� 𝑦 to be the set of all traces obtained by

interleaving the symbols of 𝑥 and 𝑦 while preserving their relative order. For example, if 𝑥 = 𝑎𝑏 and

𝑦 = 𝑐𝑑, then 𝑥� 𝑦 = {𝑎𝑏𝑐𝑑, 𝑎𝑐𝑏𝑑, 𝑎𝑐𝑑𝑏, 𝑐𝑎𝑏𝑑, 𝑐𝑎𝑑𝑏, 𝑐𝑑𝑎𝑏}.

Definition 3.3 (Shuffle�). For 𝑥, 𝑦 ∈ Σ*
, the shuffle 𝑥� 𝑦 of 𝑥 and 𝑦 is

𝑥� 𝑦 := {𝑣1𝑤1 . . . 𝑣𝑘𝑤𝑘 | 𝑥 = 𝑣1 . . . 𝑣𝑘, 𝑦 = 𝑤1 . . . 𝑤𝑘, 𝑣𝑖, 𝑤𝑖 ∈ Σ*, 1 ≤ 𝑖 ≤ 𝑘}.

Let ℒ1,ℒ2 ⊆ Σ*
. The shuffle of ℒ1 and ℒ2 is defined as ℒ1� ℒ2 :=

⋃︀
{𝑤1� 𝑤2 | 𝑤1 ∈ ℒ1, 𝑤2 ∈ ℒ2}.

Definition 3.4 (Process Tree). Let Σ be an alphabet and let 𝜏 /∈ Σ be the silent activity. Both, the set of

process trees (over Σ) and the language of a process tree 𝑇 , denoted by ℒ(𝑇), are defined recursively:

• the silent activity 𝜏 is a process tree where ℒ(𝜏) = {⟨⟩},

• each activity 𝑎 ∈ Σ is a process tree where ℒ(𝑎) = {⟨𝑎⟩},

• for process trees 𝑇1, . . . , 𝑇𝑛, 𝑛 ∈ N ∖ {0}, the following are also process trees:

– →(𝑇1, . . . , 𝑇𝑛) where ℒ(→(𝑇1, . . . , 𝑇𝑛)) = ℒ(𝑇1) · . . . · ℒ(𝑇𝑛),

– ×(𝑇1, . . . , 𝑇𝑛) where ℒ(×(𝑇1, . . . , 𝑇𝑛)) = ℒ(𝑇1) ∪ . . . ∪ ℒ(𝑇𝑛),

– ∧(𝑇1, . . . , 𝑇𝑛) where ℒ(∧(𝑇1, . . . , 𝑇𝑛)) = ℒ(𝑇1)� . . .� ℒ(𝑇𝑛), and

– ⟲(𝑇1, 𝑇2) where ℒ(⟲(𝑇1, 𝑇2)) = ℒ(𝑇1) · (ℒ(𝑇2) · ℒ(𝑇1))
*
.

The symbols → (sequence), × (exclusive choice), ⟲ (loop), and ∧ (parallel) are process tree operators. A

process tree with unique labels is a process tree where each activity occurs at most once.

We assume that all operators (→,×,∧) are binary (i.e. 𝑛 = 2 in Definition 3.4). This is no restriction,

since a general process tree can efficiently be transformed into an equivalent binary process tree.

3

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

3.2. Alignments

An alignment between a trace 𝑤 = 𝑤1 · · ·𝑤𝑛 ∈ Σ*
and a process tree 𝑇 is a trace 𝛾 = 𝛾1 · · · 𝛾𝑚 which

consists of labels 𝛾𝑖 which are called moves. A move is either a pair of labels (𝑎, 𝑎) for 𝑎 ∈ Σ (which

we call a synchronous move), or a pair (𝑎,≫) for 𝑎 ∈ Σ (which we call a log move), or a pair (≫, 𝑎)
for 𝑎 ∈ Σ (which we call a model move). Here ≫ is a special symbol which indicates that an event is

skipped in the trace or model. The first components of the moves in 𝛾 should yield the trace 𝑤 (when

we remove all skip symbols ≫) and the second components should yield a trace in the language of

the process tree 𝑇 (again without skip symbols). Intuitively, we aim to modify the trace 𝑤 such that

it becomes a trace in the language of the process tree 𝑇 . From this point of view, a log move (𝑎,≫)
deletes the symbol 𝑎 from 𝑤 while a model move (≫, 𝑎) inserts the symbol 𝑎 into the trace 𝑤.

Definition 3.5 (Move, Alignment). Let Σ be an alphabet and let ≫ be a fresh symbol not in Σ. We use

≫ to indicate a skip in the trace or model and define Σ≫ := Σ ∪ {≫} as the alphabet extended by the

skip-symbol ≫. We define LM (Σ) ⊆ Σ≫ × Σ≫ as the set of all legal moves over Σ given by

LM (Σ) := {(𝑎, 𝑎) | 𝑎 ∈ Σ} synchronous moves
∪ {(𝑎,≫) | 𝑎 ∈ Σ} model moves
∪ {(≫, 𝑎) | 𝑎 ∈ Σ} log moves.

An alignment 𝛾 ∈ LM (Σ)* between 𝑤 ∈ Σ*
and a process tree 𝑇 is a sequence of moves 𝛾 =

⟨𝑚1, . . . ,𝑚𝑛⟩ such that 𝜋Σ
1 (𝛾) = 𝑤 and 𝜋Σ

2 (𝛾) ∈ ℒ(𝑇).

As explained, one perspective is that a log move (𝑎,≫) deletes the symbol 𝑎 from 𝑤 while a model

move (≫, 𝑎) inserts the symbol 𝑎 into the trace 𝑤, so alignments resembles classic edit distance without

swaps of characters. We determine the costs 𝑐(𝛾) of an alignment 𝛾 by summing up the costs 𝑐(𝑚)
of the individual moves 𝑚 in 𝛾. In this paper, we use the standard cost function where synchronous

moves have cost 0 and where log and model moves have cost 1 (other cost functions are possible in

principle). The set of all alignments between a trace 𝑤 ∈ Σ*
and a process tree 𝑇 is denoted by Γ(𝑤, 𝑇).

An optimal alignment 𝛾opt ∈ Γ(𝑤, 𝑇) is an alignment with minimal costs 𝑐(𝛾opt) among all alignments

in Γ(𝑤, 𝑇). Let us denote the optimal alignment costs for a trace 𝑤 and a process tree 𝑇 by Costs(𝑤, 𝑇).

3.3. Matrices and Operations

A commutative semiring 𝑅 = (𝑅,+, ·,0,1) is a set 𝑅 with two binary operations + and ·, and two

distinguished elements 0 and 1 such that (𝑅,+,0) is a commutative monoid, (𝑅, ·,1) is a commutative

monoid and the multiplication · distributes over addition +, i.e., 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐 and

(𝑎 + 𝑏) · 𝑐 = 𝑎 · 𝑐 + 𝑏 · 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑅. In this paper, we fix 𝑅 as the so-called tropical semiring
𝑅 = (N ∪ {∞},min,+,∞, 0), where 0 = ∞ is the neutral element for addition (min) and 1 = 0 is

the neutral element for multiplication (+). We stress that addition is min and multiplication is + in the

tropical semiring. To avoid confusion between the symbolic expressions 0 and 1 for the neutral elements

and 0, 1 ∈ N for the natural numbers 0 and 1, we use the boldface notation 0 to denote the neutral

element for the addition in the semiring, and 1 to denote the neutral element for the multiplication. For

the particular semiring we use throughout this article, it holds that 0 = ∞ and 1 = 0 ∈ N.

We consider matrices with row index set 𝐼 and column index set 𝐽 and entries in 𝑅 as mappings

𝑀 : 𝐼 × 𝐽 → 𝑅 and write 𝑚𝑖,𝑗 = 𝑀(𝑖, 𝑗) ∈ 𝑅 for the entry in row 𝑖 and column 𝑗. Here, and in

what follows, we assume that 𝐼 and 𝐽 are non-empty finite sets. We denote by ℳ𝐼×𝐽(𝑅) the set

of all matrices with row index set 𝐼 and column index set 𝐽 and entries in 𝑅. Matrix addition on

ℳ𝐼×𝐽(𝑅) is defined component-wise, as usual. For matrices 𝐴 ∈ ℳ𝐼×𝐽(𝑅) and 𝐵 ∈ ℳ𝐽×𝐾(𝑅),
the matrix product 𝐴 · 𝐵 ∈ ℳ𝐼×𝐾(𝑅) is defined by (𝐴 · 𝐵)(𝑖, 𝑘) =

∑︀
𝑗∈𝐽 𝑎𝑖,𝑗 · 𝑏𝑗,𝑘. The transpose

of a matrix 𝑀 ∈ ℳ𝐼×𝐽(𝑅) is the matrix 𝑀 𝑡 ∈ ℳ𝐽×𝐼(𝑅) with entries 𝑚𝑡
𝑗,𝑖 = 𝑚𝑖,𝑗 . We denote the

𝐼× 𝐼-identity matrix over 𝑅 by 1𝐼×𝐼 ∈ ℳ𝐼×𝐼(𝑅). For this matrix we have 1𝐼×𝐼(𝑖, 𝑗) = 1 = 0 if 𝑖 = 𝑗
and 1𝐼×𝐼(𝑖, 𝑗) = 0 = ∞ otherwise.

4

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

Vectors are special cases of matrices with a row index set 𝐼 and the fixed column index set {⊤}, and

we write ℳ𝐼(𝑅) for the set of all vectors with entries in 𝑅. Hence, by default, vectors are considered

as column vectors. If we want to consider a vector as a row vector, we write 𝑣𝑡 for the transpose of the

vector 𝑣, which is a mapping 𝑣𝑡 : {⊤} × 𝐼 → 𝑅 with 𝑣𝑡(⊤, 𝑖) = 𝑣(𝑖) for all 𝑖 ∈ 𝐼 . For the special case

of {⊤} × {⊤} matrices 𝑀 , we identify them with the element 𝑀(⊤,⊤) ∈ 𝑅. In particular, for two

𝐼-vectors 𝑣, 𝑤 we have ⟨𝑣, 𝑤⟩ = 𝑣𝑡 · 𝑤 ∈ 𝑅 (standard inner product).

Kronecker product. For matrices 𝐴 ∈ ℳ𝐼×𝐽(𝑅) and 𝐵 ∈ ℳ𝐾×𝐿(𝑅), the Kronecker product

𝐴⊗𝐵 ∈ ℳ(𝐼×𝐾)×(𝐽×𝐿)(𝑅) is the matrix with row index set (𝐼 ×𝐾) and column index set (𝐽 × 𝐿)
with entries given by (𝐴⊗𝐵)((𝑖, 𝑘), (𝑗, 𝑙)) = 𝑎𝑖,𝑗 ·𝑏𝑘,𝑙. Note that the sizes of the two index sets become

|𝐼 ×𝐾| = |𝐼| · |𝐾| and |𝐽 × 𝐿| = |𝐽 | · |𝐿|, respectively. For more details on the Kronkecker product,

cf. [16]. Most importantly, we make use of the mixed-product property of the Kronecker product, which

states that for matrices 𝐴,𝐵,𝐶,𝐷 such that the matrix products 𝐴 · 𝐶 and 𝐵 ·𝐷 exist, we have

(𝐴⊗𝐵) · (𝐶 ⊗𝐷) = (𝐴 · 𝐶)⊗ (𝐵 ·𝐷)

Direct sum. For matrices 𝐴 ∈ ℳ𝐼×𝐽(𝑅) and 𝐵 ∈ ℳ𝐾×𝐿(𝑅), the direct sum 𝐴 ⊕ 𝐵 ∈
ℳ(𝐼⊎𝐾)×(𝐽⊎𝐿)(𝑅) is the matrix with row index set (𝐼 ⊎ 𝐾) and column index set (𝐽 ⊎ 𝐿) with

entries given by (𝐴⊕𝐵)(𝑖, 𝑗) = 𝑎𝑖,𝑗 if (𝑖, 𝑗) ∈ 𝐼 × 𝐽 and (𝐴⊕𝐵)(𝑘, 𝑙) = 𝑏𝑘,𝑙 if (𝑘, 𝑙) ∈ 𝐾 ×𝐿, and 0
otherwise. Here, ⊎ denotes the disjoint union of sets. Analogously, we define the direct sum of vectors

𝑣 ∈ ℳ𝐼(𝑅) and 𝑤 ∈ ℳ𝐽(𝑅) as the vector 𝑣⊕𝑤 ∈ ℳ𝐼⊎𝐽(𝑅) with entries given by (𝑣⊕𝑤)(𝑖) = 𝑣(𝑖)
if 𝑖 ∈ 𝐼 and (𝑣 ⊕ 𝑤)(𝑗) = 𝑤(𝑗) if 𝑗 ∈ 𝐽 .

Matrix composition. Let𝐴1 ∈ ℳ𝐼×𝐽(𝑅), 𝐴2 ∈ ℳ𝐼×𝐾(𝑅),𝐴3 ∈ ℳ𝐿×𝐽(𝑅) and𝐴4 ∈ ℳ𝐿×𝐾(𝑅)
be matrices over 𝑅. Then we define a new matrix 𝐴 over the row index set (𝐼 ⊎ 𝐿) and the column

index set (𝐽 ⊎𝐾) given as

𝐴 =

(︂ 𝐽 𝐾

𝐼 𝐴1 𝐴2

𝐿 𝐴3 𝐴4

)︂
,

with entries 𝐴(𝑖, 𝑗) defined according to the four submatrices. We sometimes use the same notation for

vectors 𝑣1 ∈ ℳ𝐼(𝑅) and 𝑣2 ∈ ℳ𝐽(𝑅) to define the new (𝐼 ⊎ 𝐽)-vector 𝑣 given as:

𝑣 =

(︂ ⊤
𝐼 𝑣1
𝐽 𝑣2

)︂
.

Note that 𝑣 corresponds to the direct sum 𝑣1 ⊕ 𝑣2. Moreover, note that, on the contrary, the matrix

composition cannot be expressed as a direct sum if 𝐴2 ̸= 0𝐼×𝐾 or 𝐴3 ̸= 0𝐿×𝐽 .

4. Construction of Matrix Systems for Process Trees

Next, we give our main construction to effectively translate a process tree 𝑇 into a matrix system which

captures the alignment costs for 𝑇 . Let Σ be the alphabet. We construct a family of 𝐼 × 𝐼-matrices

(𝑆𝑎)𝑎∈Σ, an 𝐼-vector 𝑣in ∈ ℳ𝐼(𝑅) and an 𝐼-vector 𝑣
fin

∈ ℳ𝐼(𝑅) such that the optimal alignment

costs for a trace 𝑤 = 𝑤1𝑤2𝑤3 · · ·𝑤𝑛 ∈ Σ*
and 𝑇 can be expressed as a matrix multiplication problem

as follows:

Costs(𝑤, 𝑇) = 𝑣𝑡
in
· 𝑆𝑤1𝑆𝑤2 · · · 𝑆𝑤𝑛 · 𝑣

fin
∈ 𝑅. (2)

In particular, for the empty trace 𝑤 = 𝜀, the optimal alignment costs are given by 𝑣𝑡
in
𝑣

fin
. We

introduce some notation: for a sequence 𝑤 = 𝑤1𝑤2 · · ·𝑤𝑛 we write 𝑆𝑤 to abbreviate the product

𝑆𝑤1𝑆𝑤2 · · · 𝑆𝑤𝑛 . In case 𝑤 = 𝜀, we have 𝑆𝜀 = 1𝐼×𝐼 (the index set 𝐼 × 𝐼 of the matrices will become

clear from the context). With this notation, Equation (2) can be written as Costs(𝑤, 𝑇) = 𝑣𝑡
in
· 𝑆𝑤 · 𝑣

fin
.

For the further algorithmic construction, we proceed by recursion on the structure of 𝑇 :

5

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

Non-occurring activities. First, if an activity 𝑎 ∈ Σ does not occur in 𝑇 , then we can always set

𝑆𝑎 = 1 · 1𝐼×𝐼 (no matter of the process tree operator we are considering), where 1𝐼×𝐼 is the 𝐼 × 𝐼-

identity matrix (and where 𝐼 is the appropriate index set). This step is sound since 1 · 1𝐼×𝐼 naturally

commutes with all 𝐼 × 𝐼-matrices and does not affect the product of the remaining matrices. Also, this

matrix ensures that we charge an extra cost of 1 for the necessary log move (𝑎,≫) to delete the activity

𝑎 from the trace (since this activity does not occur in the process tree, this is the only way to align it).

Labeled leaf. If 𝑇 = 𝑎 ∈ Σ is a leaf with label 𝑎, we set 𝐼 = {𝑞0, 𝑞1} and define:

For 𝑏 ∈ Σ, 𝑏 ̸= 𝑎: 𝑆𝑏 =

(︂
1 0
0 1

)︂
= 1 · 1𝐼×𝐼 , and for 𝑎: 𝑆𝑎 =

(︂
1 1
0 1

)︂
.

Moreover, we set 𝑣in =

(︂
1
0

)︂
and 𝑣

fin
=

(︂
1
1

)︂
(recall: 0 = ∞ ≠ 0 and 1 = 0 ̸= 1 and 1 · 1 = 1).

To verify correctness, first note that 𝑣𝑡
in
𝑣

fin
= 1 which indeed are the alignment costs for 𝑤 = 𝜀

in case 𝑇 = 𝑎. Further, note that since 𝑆𝑏 = 1 · 1𝐼×𝐼 for 𝑏 ̸= 𝑎, the matrix 𝑆𝑏 commutes with all

𝐼 × 𝐼 matrices. Also, it is readily verified that 𝑆𝑘
𝑎 = (𝑘 − 1) · 𝑆𝑎 for 𝑘 ≥ 1. Hence, if the trace

𝑤 = 𝑤1 · · ·𝑤𝑛 contains no 𝑎, we have 𝑆𝑤 = 𝑛 · 1𝐼×𝐼 and if 𝑤 contains 𝑘 ≥ 1 many 𝑎, we have

𝑆𝑤 = (𝑛 − 𝑘) · (𝑘 − 1) · 𝑆𝑎 = (𝑛 − 1) · 𝑆𝑎. Since 𝑣𝑡
in
· 𝑣

fin
= 1 and 𝑣𝑡

in
· 𝑆𝑎 · 𝑣

fin
= 0, we have

𝑣𝑡
in
𝑆𝑤𝑣fin

= 𝑛+ 1 if 𝑤 does not contain 𝑎 and 𝑛− 1 if 𝑤 contains 𝑎 which proves the correctness of

the construction.

Silent leaf. For the case of a silent leaf 𝑇 = 𝜏 , we set 𝐼 = {𝑞0} and define 𝑆𝑎 =
(︀
1
)︀

for all 𝑎 ∈ Σ.

Moreover, we let 𝑣in =
(︀
1
)︀

and 𝑣
fin

=
(︀
1
)︀
. Then, we have 𝑣𝑡

in
· 𝑆𝑤1𝑆𝑤2 · · · 𝑆𝑤𝑛 · 𝑣

fin
= 𝑛. These are

indeed the optimal alignment costs for the trace 𝑤 in the case 𝑇 = 𝜏 .

Exlusive Choice. If 𝑇 = 𝑇1×𝑇2, let 𝑆i
𝑎, 𝑣i

in
, and 𝑣i

fin
for 𝑖 = 1, 2 be such that

Costs(𝑤, 𝑇𝑖) = (𝑣i
in
)𝑡 · 𝑆i

𝑤1
𝑆i
𝑤2

· · · 𝑆i
𝑤𝑛

· 𝑣i
fin
.

Semantically, the exclusive choice operator allows us to choose between the two branches 𝑇1 and 𝑇2.

Hence, we define the matrices 𝑆𝑎 and vectors 𝑣in and 𝑣
fin

as follows:

𝑆𝑎 = 𝑆1
𝑎 ⊕ 𝑆2

𝑎 , 𝑣in = 𝑣1
in
⊕ 𝑣2

in
, 𝑣

fin
= 𝑣1

fin
⊕ 𝑣2

fin
. (3)

Then, we have

𝑣𝑡
in
· 𝑆𝑤1𝑆𝑤2 · · · 𝑆𝑤𝑛 · 𝑣

fin
= (𝑣1

in
⊕ 𝑣2

in
)𝑡 · (𝑆1

𝑤1
⊕ 𝑆2

𝑤1
) · · · (𝑆1

𝑤𝑛
⊕ 𝑆2

𝑤𝑛
) · (𝑣1

fin
⊕ 𝑣2

fin
)

= (𝑣1
in
)𝑡 · 𝑆1

𝑤1
𝑆1
𝑤2

· · · 𝑆1
𝑤𝑛

· 𝑣1
fin

+ (𝑣2
in
)𝑡 · 𝑆2

𝑤1
𝑆2
𝑤2

· · · 𝑆2
𝑤𝑛

· 𝑣2
fin
.

Recalling that + = min, this expression indeed computes Costs(𝑤, 𝑇), since the addition operation in

the semiring chooses the minimum of the two branches.

Sequence. For the sequence operator, i.e., 𝑇 = 𝑇1→𝑇2, let 𝑆i
𝑎, 𝑣i

in
, and 𝑣i

fin
for 𝑖 = 1, 2 be such that

Costs(𝑤, 𝑇𝑖) = (𝑣i
in
)𝑡 · 𝑆i

𝑤1
𝑆i
𝑤2

· · · 𝑆i
𝑤𝑛

· 𝑣i
fin
.

Let 𝐼 be the row and column index set of the matrices 𝑆1
𝑎 and 𝐽 be the row and column index set of

the matrices 𝑆2
𝑎 . Then 𝑣1

in
and 𝑣1

fin
are vectors in ℳ𝐼(𝑅) and 𝑣2

in
and 𝑣2

fin
are vectors in ℳ𝐽(𝑅). We

construct new matrices 𝑆𝑎, for 𝑎 ∈ Σ, for the tree 𝑇 with index sets (𝐼 ⊎ 𝐽)× (𝐼 ⊎ 𝐽) as follows:

𝑆𝑎 =

(︂ 𝐼 𝐽

𝐼 𝑆1
𝑎 𝑆1

𝑎𝑄
𝐽 0𝐽×𝐼 𝑆2

𝑎

)︂
where 𝑄 = 𝑣1

fin
· (𝑣2

in
)𝑡 ∈ ℳ𝐼×𝐽(𝑅). (4)

Moreover, for 𝑖 = 1, 2 we let

𝜆𝑖 = (𝑣i
in
)𝑡 · 𝑣i

fin
∈ 𝑅, and

6

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

𝑣in = 𝑣1
in
⊕ 𝜆1 · 𝑣2in ∈ ℳ𝐼⊎𝐽(𝑅) and 𝑣

fin
= 𝜆2 · 𝑣1fin

⊕ 𝑣2
fin

∈ ℳ𝐼⊎𝐽(𝑅). (5)

Then, we have for a trace 𝑤 = 𝑤1𝑤2 · · ·𝑤𝑛:

𝑆𝑤1 · · · 𝑆𝑤𝑛 =

(︂
𝑆1
𝑤1

· · ·𝑆1
𝑤𝑛

𝑆1
𝑤1

· · ·𝑆1
𝑤𝑛

𝑄+ 𝑆1
𝑤1

· · ·𝑆1
𝑤𝑛−1

𝑄𝑆2
𝑤𝑛

+ · · ·+ 𝑆1
𝑤1
𝑄𝑆2

𝑤2
· · ·𝑆2

𝑤𝑛

0𝐽×𝐼 𝑆2
𝑤1

· · ·𝑆2
𝑤𝑛

)︂
Let 𝐷 = 𝑆1

𝑤1
· · ·𝑆1

𝑤𝑛
𝑄+ 𝑆1

𝑤1
· · ·𝑆1

𝑤𝑛−1
𝑄𝑆2

𝑤𝑛
+ · · ·+ 𝑆1

𝑤1
𝑄𝑆2

𝑤2
· · ·𝑆2

𝑤𝑛
. Note that the 𝐷 corresponds

to all possible decompositions of 𝑤 into two segments which are aligned against the two subtrees 𝑇1

and 𝑇2, where the segment for 𝑇1 must be non-empty. Then we have:

𝑣𝑡
in
· 𝑆𝑤1 · · · 𝑆𝑤𝑛 · 𝑣

fin

= 𝑣𝑡
in
·
(︂
𝑆1
𝑤1

· · ·𝑆1
𝑤𝑛

𝐷
0𝐽×𝐼 𝑆2

𝑤1
· · ·𝑆2

𝑤𝑛

)︂
· 𝑣

fin

=
(︀
(𝑣1

in
)𝑡𝑆1

𝑤1
· · ·𝑆1

𝑤𝑛
⊕ (𝑣1

in
)𝑡𝐷 + 𝜆1 · 𝑣2in · 𝑆2

𝑤1
· · ·𝑆2

𝑤𝑛

)︀
· 𝑣

fin

= (𝑣1
in
)𝑡𝑆1

𝑤1
· · ·𝑆1

𝑤𝑛
·𝑄 · 𝑣2

fin
+ (𝑣1

in
)𝑡𝐷 · 𝑣2

fin
+ 𝜆1 · 𝑣2in · 𝑆2

𝑤1
· · ·𝑆2

𝑤𝑛
· 𝑣2

fin
.

This sum corresponds to all possible ways to decompose 𝑤 into a sequence 𝑤 = 𝑤1𝑤2 of two traces

𝑤1, 𝑤2, and to align the first subtrace 𝑤1 against 𝑇1 and the second subtrace 𝑤2 against 𝑇2. The optimal

alignment costs are correctly taken as the minimum over all such decompositions.

Parallel Operator. For 𝑇 = 𝑇1 ∧𝑇2, let 𝑆i
𝑎, 𝑣i

in
, and 𝑣i

fin
for 𝑖 = 1, 2 be such that for all traces

𝑤 = 𝑤1𝑤2 · · ·𝑤𝑛:

Costs(𝑤, 𝑇) = (𝑣i
in
)𝑡 · 𝑆i

𝑤1
𝑆i
𝑤2

· · · 𝑆i
𝑤𝑛

· 𝑣i
fin
.

Let 𝐼 be the row and column index set of the matrices 𝑆1
𝑎 , and 𝐽 be the row and column index set of

the matrices 𝑆2
𝑎 . Then 𝑣1

in
and 𝑣1

fin
are vectors in ℳ𝐼(𝑅) and 𝑣2

in
and 𝑣2

fin
are vectors in ℳ𝐽(𝑅). We

construct new matrices 𝑆𝑎, for 𝑎 ∈ Σ for 𝑇 with row and column index sets 𝐼 × 𝐽 as follows:

𝑆𝑎 = (𝑆1
𝑎 ⊗ 1𝐽×𝐽) + (1𝐼×𝐼 ⊗ 𝑆2

𝑎).

Moreover, we set

𝑣in = 𝑣1
in
⊗ 𝑣2

in
∈ ℳ𝐼×𝐽(𝑅) and 𝑣

fin
= 𝑣1

fin
⊗ 𝑣2

fin
∈ ℳ𝐼×𝐽(𝑅). (6)

In anticipation of our treatment of process trees with unique labels, let us assume that the sets of

labels in the two subtrees 𝑇1 and 𝑇2 are disjoint, i.e., Σ1 ∩ Σ2 = ∅ (where Σ𝑖 is the set of labels which

occur in 𝑇𝑖). Assume that 𝑎 /∈ Σ1. Then 𝑆1
𝑎 = 1 · 1𝐼×𝐼 and we get:

𝑆𝑎 = (𝑆1
𝑎 ⊗ 1𝐽×𝐽) + (1𝐼×𝐼 ⊗ 𝑆2

𝑎) = (1 · 1𝐼×𝐼 ⊗ 1𝐽×𝐽) + (1𝐼×𝐼 ⊗ 𝑆2
𝑎)

= (1𝐼×𝐼 ⊗ 1 · 1𝐽×𝐽) + (1𝐼×𝐼 ⊗ 𝑆2
𝑎) = 1𝐼×𝐼 ⊗ (1 · 1𝐽×𝐽 + 𝑆2

𝑎) = 1𝐼×𝐼 ⊗ 𝑆2
𝑎 .

Here we used that 1 · 1𝐽×𝐽 + 𝑆2
𝑎 = 𝑆2

𝑎 (easy to verify by induction, since all matrices 𝑆𝑎 have the

elements 0, 1 ∈ N on their diagonal.) This means that for process trees with unique labels, the definition

can be simplified to:

𝑆𝑎 =

{︃
1𝐼×𝐼 ⊗ 𝑆2

𝑎 if 𝑎 ∈ Σ2,

𝑆1
𝑎 ⊗ 1𝐽×𝐽 otherwise.

(7)

Note that we derived this simplification purely algebraically. Let us verify the correctness of the

construction. Using the mixed product property of the Kronecker product, we get:

𝑆𝑤 = 𝑆𝑤1 · · · 𝑆𝑤𝑛 = ((𝑆1
𝑤1

⊗ 1𝐽×𝐽) + (1𝐼×𝐼 ⊗ 𝑆2
𝑤1
)) · · · ((𝑆1

𝑤𝑛
⊗ 1𝐽×𝐽) + (1𝐼×𝐼 ⊗ 𝑆2

𝑤𝑛
))

=
∑︁(︀

𝑆1
𝑥1
𝑆1
𝑥2

· · ·𝑆1
𝑥𝑘

⊗ 𝑆2
𝑦1𝑆

2
𝑦2 · · ·𝑆

2
𝑦𝑘

: 𝑥1𝑦1𝑥2𝑦2 · · ·𝑥𝑘𝑦𝑘 = 𝑤, 𝑥𝑖, 𝑦𝑖 ∈ Σ*)︀ .

7

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

Moreover, for each summand 𝑆1
𝑥1
𝑆1
𝑥2

· · ·𝑆1
𝑥𝑘

⊗ 𝑆2
𝑦1𝑆

2
𝑦2 · · ·𝑆

2
𝑦𝑘

, we have

𝑣𝑡
in
·
(︀
𝑆1
𝑥1
𝑆1
𝑥2

· · ·𝑆1
𝑥𝑘

⊗ 𝑆2
𝑦1𝑆

2
𝑦2 · · ·𝑆

2
𝑦𝑘

)︀
· 𝑣

fin

= (𝑣1
in
)𝑡 · 𝑆1

𝑥1
𝑆1
𝑥2

· · ·𝑆1
𝑥𝑘

· 𝑣1
fin

· (𝑣2
in
)𝑡 · 𝑆2

𝑦1𝑆
2
𝑦2 · · ·𝑆

2
𝑦𝑘

· 𝑣2
fin
.

Hence, this term corresponds to the optimal alignment costs where we split the trace 𝑤 into two

subtraces 𝑥1𝑥2 · · ·𝑥𝑘 and 𝑦1𝑦2 · · · 𝑦𝑘 , for which the shuffle yields 𝑤, and align them against the process

trees 𝑇1 and 𝑇2, respectively. As the sum runs over all possible decompositions of 𝑤, this determines the

optimal alignment costs for the trace 𝑤 and the process tree 𝑇 . Again, in anticipation of the treatment

of process trees with unique labels, note that for the case Σ1 ∩ Σ2 = ∅, the product simplifies to:

𝑆𝑤 =
∏︁

𝑤𝑖 /∈Σ2

𝑆1
𝑤𝑖

⊗
∏︁

𝑤𝑖∈Σ2

𝑆2
𝑤𝑖
. (8)

Hence, instead of an exponential number of summands, we get a single term for the matrix 𝑆𝑤 (this is

the key for tractability of the alignment problem for process trees with unique labels).

Loop. Finally, we consider the case of a loop operator. Let 𝑇 = 𝑇1⟲𝑇2, where, by recursion, we

can assume to have already constructed the matrices 𝑆1
𝑎 , 𝑣1

in
, and 𝑣1

fin
for the process tree 𝑇1 and the

matrices 𝑆2
𝑎 , 𝑣2

in
, and 𝑣2

fin
for the process tree 𝑇2. Then we set

𝑆𝑎 =

(︂
𝑆1
𝑎 𝑄2𝑆

2
𝑎

𝑄1𝑆
1
𝑎 𝑆2

𝑎

)︂
, where 𝑄2 = 𝑣1

fin
· (𝑣2

in
)𝑡 ∈ ℳ𝐼×𝐽(𝑅) and 𝑄1 = 𝑣2

fin
· (𝑣1

in
)𝑡 ∈ ℳ𝐽×𝐼(𝑅).

(9)

Moreover, for 𝜆 = ⟨𝑣1
in
, 𝑣1

fin
⟩, we set

𝑣in = (𝑣1
in
⊕ 𝜆𝑣2

in
) and 𝑣

fin
= (𝑣1

fin
⊕ 𝜆𝑣2

fin
). (10)

It can be verified that

𝑆𝑤 =

(︂
𝐷11 𝐷12

𝐷21 𝐷22

)︂
, with 𝐷𝑖𝑗 =

∑︁(︀
𝑆i
𝑥0
𝑄3−𝑖𝑆

3−i
𝑥1

𝑄𝑖𝑆
i
𝑥2

· · ·𝑄𝑗𝑆
j
𝑥𝑘

:

𝑥0𝑥1𝑥2 · · ·𝑥𝑘 = 𝑤, where 𝑘 ≥ 0, 𝑥0 ∈ Σ*, 𝑥1, . . . , 𝑥𝑘 ∈ Σ+).

Each summand of 𝐷𝑖𝑗 corresponds to a decomposition of the trace 𝑤 into segments 𝑥0𝑥1𝑥2 · · ·𝑥𝑘
where the first segment is aligned against the process tree 𝑇𝑖 and the last segment is aligned against

the process tree 𝑇𝑗 (in between we have strict alternation). Moreover, 𝑣𝑡
in
· 𝑆𝑤 · 𝑣

fin
= 𝑣1

in
·𝐷11𝑣

1
fin

+
𝜆𝑣2

in
·𝐷21𝑣

1
fin

+ 𝑣1
in
·𝐷12𝑣

2
fin
𝜆 + 𝜆𝑣2

in
·𝐷22𝑣

2
fin
𝜆. Note that 𝜆 = 𝑆1

𝜀 , i.e. 𝜆 captures the costs to align

the empty trace 𝜀 against the process tree 𝑇1. Hence, the total sum consists of all possible ways to

decompose the trace 𝑤 into segments 𝑥0𝑥1𝑥2 · · ·𝑥𝑘 which are aligned against the trees 𝑇1 and 𝑇2 in

an alternating fashion. Depending on which tree we start/end with, 𝜆 takes care of the costs of aligning

𝜀 against 𝑇1 (since the semantics of the loop operator demands that we have to start and end with 𝑇1,

recall: for 𝑇 = 𝑇1⟲𝑇2 we have ℒ(𝑇) = ℒ(𝑇1) · (ℒ(𝑇2) · ℒ(𝑇1))
*
). Finally, the sum selects the optimal

decomposition and hence the optimal alignment costs for the trace 𝑤 and the process tree 𝑇 .

We have established the main result of this work:

Theorem 4.1. There exists an algorithm which takes as input a process tree 𝑇 over some alphabet Σ and
computes a family of 𝐼 × 𝐼-matrices (𝑆𝑎)𝑎∈Σ, an 𝐼-vector 𝑣in ∈ ℳ𝐼(𝑅) and an 𝐼-vector 𝑣fin ∈ ℳ𝐼(𝑅),
for some index set 𝐼 , such that the optimal alignment costs for a trace 𝑤 = 𝑤1𝑤2𝑤3 · · ·𝑤𝑛 ∈ Σ* and 𝑇
can be expressed as a matrix multiplication problem as follows:

Costs(𝑤, 𝑇) = 𝑣𝑡in · 𝑆𝑤1𝑆𝑤2 · · · 𝑆𝑤𝑛 · 𝑣fin ∈ 𝑅.

Our construction is not efficient. Consider a process tree of the form 𝑇 = (((𝑎1 ∧ 𝑎2)∧ · · ·)∧ 𝑎𝑛)
with 𝑛 activities 𝑎1, 𝑎2, . . . , 𝑎𝑛 that can occur in any order. For 𝑇 , our construction yields matrices

of size 𝑐𝑛 (where 𝑐 is the size of the base matrices for labels 𝑎 ∈ Σ). This is because the size of the

Kronecker product of two matrices is the product of their sizes. Hence, in general, the only size bound

on 𝑆𝑎 that we can get is exponential, i.e. 2𝒪(‖𝑇‖)
. In the following, we thus discuss how to avoid

constructing the matrices 𝑆𝑎 explicitly and how to work with their symbolic representations instead.

8

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

5. Symbolic Computations with Tree-Structured Matrices and Vectors

Our matrix/vector construction from Section 4 has one drawback: the Kronecker product leads to an

exponential blow-up of the sizes of matrices and vectors. Since the alignment problem on process

trees is NP-complete [13], it is clear that this state explosion cannot be avoided in the general case.

On the other hand, the resulting matrices and vectors have a simple descriptions in form of algebraic

expressions. This suggests that, instead of working with explicit matrices, we could compute with the

symbolic representations of the matrices and vectors instead. In this section, we investigate this idea.

5.1. Tree-structured index sets

We start by defining tree-structured sets (ts-sets, for short) to index the matrices and vectors used by the

construction in Section 4. We use symbolic representations for the sets to which we associate a semantics

as (potentially exponential-sized) standard sets. In the following, we might get mixed-up with the

symbolic representation of a ts-set 𝐼 and its semantics as a standard set. Hence, to avoid confusion, we

also write rset(𝐼) to denote the standard set that is represented by 𝐼 . For the case of base sets we have

𝐼 = rset(𝐼). Also, each ts-set has a representation size ‖𝐼‖ ∈ N which quantifies the encoding length of

the symbolic representation 𝐼 .

Fix a countably infinite set of atoms Atoms = {𝑎0, 𝑎1, 𝑎2, . . .} which are used as base elements. For

simplicity, we assume that we can encode atoms with unit costs. A tree-structured set (ts-set, for short) is

an expression according to the following inductive definition:

Base case. Each standard (finite, non-empty) set 𝐼 ⊆ Atoms is a ts-set which represents the set

rset(𝐼) = 𝐼 . The representation size of the atomic set is ‖𝐼‖ = |𝐼|.

Disjoint union. For ts-sets 𝐼, 𝐽 , we can construct the ts-set 𝐼 ⊎ 𝐽 which represents the (standard) set

rset(𝐼) ⊎ rset(𝐽). The representation size of the set 𝐼 ⊎ 𝐽 is ‖𝐼‖+ ‖𝐽‖+ 1.

Cartesian product. For ts-sets 𝐼, 𝐽 , we can construct the ts-set 𝐼 × 𝐽 which represents the (standard)

set rset(𝐼)× rset(𝐽). The representation size of the set 𝐼 × 𝐽 is ‖𝐼‖+ ‖𝐽‖+ 1.

Note that the representation size ‖𝐼‖ of 𝐼 is linear in the representation sizes of the ts-subsets for all

operations and linear in the cardinality of the set 𝐼 for the base case. This is in contrast to the size of

the represented set, specifically for the case of the Cartesian product operation 𝐼 × 𝐽 . While ‖𝐼 × 𝐽‖ is

‖𝐼‖+ ‖𝐽‖+ 1, the size of the represented standard set is |rset(𝐼 × 𝐽)| = |rset(𝐼)| · |rset(𝐽)|.

5.2. Tree-structured vectors

We proceed by defining tree-structured vectors (ts-vectors, for short). Let 𝐼 be a ts-set. Then a ts-vector 𝑣
with ts-index set 𝐼 has a semantics in form of an rset(𝐼)-vector 𝑣 : rset(𝐼) → 𝑅. To emphasize the

distinction between a ts-vector 𝑣 (as a symbolic expression) and the represented standard vector (its

semantics) we also denote the vector represented by 𝑣 as rvec(𝑣). Again, for simplicity, we assume that

we can encode the ring elements in 𝑅 with unit costs. As a consequence, the encoding length ‖𝑣‖ ∈ N
of a ts-vector 𝑣 with ts-index set 𝐼 corresponds to the representation size of the ts-set 𝐼 , i.e., ‖𝑣‖ = ‖𝐼‖.

5.2.1. Definition of ts-vectors

The definition of ts-vectors is recursively:

Base case. For a standard set 𝐼 , each standard vector 𝑣 : 𝐼 → 𝑅 is also a ts-vector 𝑣 with index set 𝐼 .

The representation size of the vector is ‖𝑣‖ = ‖𝐼‖.

Direct sum. Let 𝑣1 be a ts-vector with ts-index set 𝐼 and 𝑣2 be a ts-vector with ts-index set 𝐽 . Then

we can construct a new ts-vector 𝑣 with ts-index set 𝐼 ⊎ 𝐽 as 𝑣 = 𝑣1 ⊕ 𝑣2. The represented vector is

rvec(𝑣) = rvec(𝑣1)⊕ rvec(𝑣2). The representation size of the new vector is ‖𝑣‖ = ‖𝑣1‖+ ‖𝑣2‖+ 1.

Kronecker product. Let 𝑣1 be a ts-vector with ts-index set 𝐼 and 𝑣2 be a ts-vector with ts-index set 𝐽 .

Then we can construct a new ts-vector 𝑣 with ts-index set 𝐼 × 𝐽 as 𝑣 = 𝑣1⊗ 𝑣2. The represented vector

9

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

rvec(𝑣) is the rset(𝐼)× rset(𝐽)-vector given as rvec(𝑣) = rvec(𝑣1)⊗ rvec(𝑣2). The representation size

of the new vector is ‖𝑣‖ = ‖𝑣1‖+ ‖𝑣2‖+ 1.

5.2.2. Effective Computations with Ts-Vectors

We show that we can efficiently compute the scalar product, the inner product and the vector addition (for
non-Kronecker products) of ts-vectors. This means the following: there are polynomial-time algorithms

which take as input the symbolic representation of ts-vectors and output the symbolic representation of

the result of a vector operation on the represented vectors.

Scalar multiplication. Given a scalar 𝜆 ∈ 𝑅 and a ts-vector 𝑣. To compute a representation of 𝜆𝑣, it

suffices to observe that 𝜆(𝑣1⊕𝑣2) = 𝜆𝑣1⊕𝜆𝑣2 and 𝜆(𝑣1⊗𝑣2) = (𝜆𝑣1)⊗𝑣2 = 𝑣1⊗ (𝜆𝑣2). Using these

identities, a recursive computation of a representation for 𝜆𝑣 can trivially be achieved in time 𝒪(‖𝑣‖).
Also note that scalar multiplication does not change the representation size of 𝑣, i.e., ‖𝜆𝑣‖ = ‖𝑣‖.

Inner product. Let 𝑣, 𝑤 be ts-vectors with the same ts-index set 𝐼 . We explain how to efficiently

compute the inner product ⟨𝑣, 𝑤⟩ = 𝑣𝑡𝑤 = 𝑤𝑡𝑣 ∈ 𝑅 via recursion on the structure of 𝑣, 𝑤 (and 𝐼)

where the case for base sets is trivial:

• If 𝑣 = 𝑣1⊕𝑣2 and 𝑤 = 𝑤1⊕𝑤2 are direct sum vectors, then we have: ⟨𝑣, 𝑤⟩ = ⟨𝑣1, 𝑤1⟩+⟨𝑣2, 𝑤2⟩.
Hence, we can recursively compute the inner products ⟨𝑣1, 𝑤1⟩ and ⟨𝑣2, 𝑤2⟩ and add the results.

• If 𝑣 = 𝑣1 ⊗ 𝑣2 and 𝑤 = 𝑤1 ⊗ 𝑤2 are Kronecker product vectors, then we have:

⟨𝑣, 𝑤⟩ = 𝑣𝑡 · 𝑤 = (𝑣𝑡1 ⊗ 𝑣𝑡2) · (𝑤1 ⊗ 𝑤2) = 𝑣𝑡1 · 𝑤1 · 𝑣𝑡2 · 𝑤2 = ⟨𝑣1, 𝑤1⟩ · ⟨𝑣2, 𝑤2⟩.

Hence, we recursively compute the inner products ⟨𝑣1, 𝑤1⟩ and ⟨𝑣2, 𝑤2⟩ and multiply the results.

In particular, it follows that the inner product of ts-vectors can be computed in linear time 𝒪(‖𝑣‖).

Addition of ts-vectors without Kronecker products A final simple observation is that we can

compute a representation for the sum 𝑣 + 𝑤 of two ts-vectors 𝑣 and 𝑤 over a ts-index set 𝐼 which are

built without the use of Kronecker products in linear time 𝒪(‖𝑣‖+ ‖𝑤‖) as well. We only need to make

use of the identity (𝑣1 ⊕ 𝑣2) + (𝑤1 ⊕ 𝑤2) = (𝑣1 + 𝑤1)⊕ (𝑣2 + 𝑤2) for the case of direct sums.

5.3. Tree-structured matrices

We shift our attention to tree-structured matrices (ts-matrices, for short). Analogously, to ts-vectors, we

consider ts-matrices 𝑀 with ts-index sets 𝐼 × 𝐽 which have a semantics as standard rset(𝐼)× rset(𝐽)-
matrices rmat(𝑀). Also analogously, each ts-matrix has a representation size ‖𝑀‖ ∈ N which

corresponds to its encoding complexity. In contrast to ts-vectors, however, we restrict the application

of one operation (namely, forming matrix compositions) to certain types of input ts-matrices. This

restriction may seem arbitrary, but is required later in order to show that ts-matrices can be efficiently

multiplied. The inductive definition of tree-structures matrices is as follows:

Base case (standard matrices). For standard sets 𝐼 and 𝐽 , each mapping 𝑀 : rset(𝐼)× rset(𝐽) → 𝑅
is a ts-matrix over 𝑅. Of course, we have rmat(𝑀) = 𝑀 for the base case. The representation size is

‖𝑀‖ = |rset(𝐼)| · |rset(𝐽)|.

Kronecker product. Let 𝐴 be an 𝐼 × 𝐽 ts-matrix and 𝐵 be a 𝐾 × 𝐿 ts-matrix (where 𝐼, 𝐽,𝐾,𝐿
are ts-sets). Then we can construct a new ts-matrix 𝐴 ⊗ 𝐵 with ts-index set (𝐼 ×𝐾) × (𝐽 × 𝐿) as

𝐴 ⊗ 𝐵 with the represented matrix being the Kronecker product of the represented matrices, i.e.,

rmat(𝐴⊗𝐵) = rmat(𝐴)⊗ rmat(𝐵). The representation size is ‖𝐴⊗𝐵‖ = ‖𝐴‖+ ‖𝐵‖+ 1.

Direct sum. Let 𝐴 be an 𝐼 × 𝐼 square ts-matrix and 𝐵 be a 𝐽 × 𝐽 square ts-matrix (where 𝐼 and 𝐽
are ts-sets). Then we can construct a new square ts-matrix 𝐴⊕ 𝐵 with index set (𝐼 ⊎ 𝐽)× (𝐼 ⊎ 𝐽).
The represented matrix is just rmat(𝐴⊕𝐵) = rmat(𝐴)⊕ rmat(𝐵). The representation size of the new

matrix is ‖𝐴⊕𝐵‖ = ‖𝐴‖+ ‖𝐵‖+ 1.

10

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

Matrix composition As mentioned above, for this last operation we restrict the type of input matrices:

we only allow ts-matrices as input that do not contain the Kronecker product operator. Let four ts-matrices

𝐴1 with index set 𝐼×𝐽 , 𝐴2 with index set 𝐼×𝐾 , 𝐴3 with index set 𝐿×𝐽 , and 𝐴4 with index set 𝐿×𝐾
(all index sets 𝐼, 𝐽,𝐾,𝐿 are ts-sets and so are 𝐼 × 𝐽 , 𝐼 ×𝐾 , 𝐿× 𝐽 , and 𝐿×𝐾) be given where all of

the matrices 𝐴1, 𝐴2, 𝐴3, and 𝐴4 are built without use of the Kronecker product. Then we can construct a

new ts-matrix 𝐴 with index set (𝐼 ⊎ 𝐿)× (𝐽 ⊎𝐾) (note that this is a ts-set) as follows:

𝐴 =

(︂ 𝐽 𝐾

𝐼 𝐴1 𝐴2

𝐿 𝐴3 𝐴4

)︂
,

The representation size of this new matrix is ‖𝐴‖ = ‖𝐴1‖+‖𝐴2‖+‖𝐴3‖+‖𝐴4‖+1. The represented

matrix rmat(𝐴) has index set rset(𝐼 ⊎ 𝐿)× rset(𝐽 ⊎𝐾) and is obtained by the matrix composition of

the four submatrices rmat(𝐴1), rmat(𝐴2), rmat(𝐴3), and rmat(𝐴4) as indicated.

5.3.1. Addition of Non-Kronecker-Product Ts-matrices

A representation of 𝐴+𝐵 can be computed in time 𝒪(‖𝐴‖+ ‖𝐵‖) for two ts-matrices 𝐴 and 𝐵 with

the same index set 𝐼 × 𝐽 if both matrices 𝐴,𝐵 are built without the use of Kronecker products (this is

analogous to the case of ts-vectors that we considered above). That is clear for base case matrices, so let

us only check the other cases:

Direct sum. For two direct sum matrices 𝐴 = 𝐴1 ⊕ 𝐴2 and 𝐵 = 𝐵1 ⊕ 𝐵2, we have 𝐴 + 𝐵 =
(𝐴1 +𝐵1)⊕ (𝐴2 +𝐵2), so we can reduce this case recursively to simpler types of matrices.

Matrix composition For matrices

𝐴 =

(︂ 𝐽 𝐾

𝐼 𝐴1 𝐴2

𝐿 𝐴3 𝐴4

)︂
and 𝐵 =

(︂ 𝐽 𝐾

𝐼 𝐵1 𝐵2

𝐿 𝐵3 𝐵4

)︂
, we have: 𝐴+𝐵 =

(︂ 𝐽 𝐾

𝐼 𝐴1 +𝐵1 𝐴2 +𝐵2

𝐿 𝐴3 +𝐵3 𝐴4 +𝐵4

)︂
,

so, this case can readily be reduced to simpler types of ts-matrices by recursively computing the sums

of the corresponding submatrices 𝐴1 +𝐵1, 𝐴2 +𝐵2, 𝐴3 +𝐵3, and 𝐴4 +𝐵4.

5.3.2. Matrix-vector multiplication

It is further possible to compute a ts-vector representation of 𝐴𝑣 for a given 𝐼 × 𝐽-ts-matrix 𝐴 and a

ts-vector 𝑣 with index set 𝐼 in time 𝒪(‖𝐴‖). To see this, we, again, recurse on the type of 𝐴.

Base case. If 𝐴 is a base matrix, then 𝐽 is a base set as and thus 𝑣 is a base ts-vector. Hence, the

standard matrix-vector product can be computed in time 𝒪(|𝐼| · |𝐽 |), where |𝐼| and |𝐽 | are the sizes of

the sets 𝐼 and 𝐽 , respectively. Since, ‖𝐴‖ = |𝐼| · |𝐽 |, the claim follows.

Direct sum. If 𝐴 = 𝐴1⊕𝐴2 is a direct sum matrix, then 𝑣 = 𝑣1⊕𝑣2 is a direct sum as well (otherwise,

the index sets would not match). Then we have 𝐴𝑣 = 𝐴1𝑣1 ⊕𝐴2𝑣2 and we can reduce to simpler cases.

The running time is 𝒪(‖𝐴1‖+ ‖𝐴2‖) = 𝒪(‖𝐴‖) as claimed.

Kronecker product. If 𝐴 = 𝐴1 ⊗𝐴2 is a Kronecker product matrix, then 𝑣 = 𝑣1 ⊗ 𝑣2 is a Kronecker

product as well (again, otherwise the index sets would not match). Then 𝐴𝑣 = 𝐴1𝑣1 ⊗𝐴2𝑣2 due to the

mixed-product property, so we just need to compute a representation for 𝐴𝑣1 and 𝐴𝑣2 and obtain a

representation for 𝐴𝑣. The required computation time is 𝒪(‖𝐴1‖+ ‖𝐴2‖) = 𝒪(‖𝐴‖) as claimed.

Matrix composition. If 𝐴 =

(︂ 𝐽 𝐾

𝐼 𝐴1 𝐴2

𝐿 𝐴3 𝐴4

)︂
is a matrix composition, then 𝑣 = 𝑣1⊕𝑣2 is a direct sum

(with index set 𝐽 ⊎𝐾). By our (restricted) definition of the matrix composition operator for ts-matrices,

no submatrix 𝐴1, 𝐴2, 𝐴3, or 𝐴4 contains the Kronecker product operator. We compute 𝐴𝑣 as follows:

𝐴𝑣 = (𝐴1𝑣1 +𝐴2𝑣2)⊕ (𝐴3𝑣1 +𝐴4𝑣2).

11

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

Since 𝐴1, 𝐴2, 𝐴3, and 𝐴4 do not contain the Kronecker product operator, the recursive computation

of 𝐴1𝑣1, 𝐴2𝑣2, 𝐴3𝑣1, and 𝐴4𝑣2 yields ts-vectors without the Kronecker product operator as well. We

can recursively compute representations for these products in time 𝒪(‖𝐴1‖+ ‖𝐴2‖+ ‖𝐴3‖+ ‖𝐴4‖).
Next, we compute the sums 𝐴1𝑣1 +𝐴2𝑣2 and 𝐴3𝑣1 +𝐴4𝑣2, which can also be done in time 𝒪(‖𝐴1‖+
‖𝐴2‖+ ‖𝐴3‖+ ‖𝐴4‖) as shown earlier (since the vectors 𝐴1𝑣1, 𝐴2𝑣2, 𝐴3𝑣1, and 𝐴4𝑣2 do not contain

the Kronecker product operator). In total, we obtain a representation for 𝐴𝑣 in time 𝒪(‖𝐴‖), as claimed.

We remark that, although we have explicitly considered a matrix-vector product of the form 𝐴𝑣, it

should be clear that by a completely symmetric treatment, we can derive an efficient algorithm for a

matrix-vector product of the form 𝑣𝑡𝐴 as well.

5.3.3. Rank-One Matrices

As a special case, we consider matrices which are formed by the multiplication of two ts-vectors 𝑣 and 𝑤.

More precisely, let 𝑣 be a ts-vector with index set 𝐼 and 𝑤 be a ts-vector with index set 𝐽 . Then we can

efficiently construct a new ts-matrix𝐴with index set 𝐼×𝐽 as𝐴 such that rmat(𝐴) = rmat(𝑣)·rmat(𝑤)𝑡.
Since the base case is trivial, we only need to consider the cases for direct sums and Kronecker products.

Here, we can make use of the following identities:

(𝑣1 ⊕ 𝑣2) · (𝑤1 ⊕ 𝑤2)
𝑡 =

(︂
𝑣1 · 𝑤𝑡

1 𝑣1 · 𝑤𝑡
2

𝑣2 · 𝑤𝑡
1 𝑣2 · 𝑤𝑡

2

)︂
, and

(𝑣1 ⊗ 𝑣2) · (𝑤1 ⊗ 𝑤2)
𝑡 = (𝑣1 · 𝑤𝑡

1)⊗ (𝑣2 · 𝑤𝑡
2).

In this way, we can recursively reduce to matrix operations and finally to base case matrices.

5.3.4. Matrix multiplication

Finally, we consider the matrix multiplication of ts-matrices 𝐴 and 𝐵. To this end, let 𝐴 be an 𝐼 × 𝐽
ts-matrix and 𝐵 be a 𝐽×𝐾 ts-matrix. Then we show how we can efficiently compute a representation of

the product 𝐴𝐵 as a ts-matrix with index set 𝐼×𝐾 . The required computation time is 𝒪(‖𝐼‖·‖𝐽‖·‖𝐾‖)
which is polynomial in the representation sizes of 𝐴 and 𝐵. We skip the base case (which is obvious),

and focus on the remaining cases where we distinguish with respect to the structure of 𝐴:

Direct sum. If 𝐴 = 𝐴1 ⊕𝐴2, then 𝐽 = 𝐽1 ⊎ 𝐽2. One possible form of 𝐵 is 𝐵 = 𝐵1 ⊕𝐵2. In this case,

we can reduce the computation recursively to the case of 𝐴1𝐵1 and 𝐴2𝐵2 by using the identity:

(𝐴1 ⊕𝐴2)(𝐵1 ⊕𝐵2) = 𝐴1𝐵1 ⊕𝐴2𝐵2.

The other possibility is that 𝐵 is a matrix composition, i.e., 𝐵 =

(︂
𝐵1 𝐵2

𝐵3 𝐵4

)︂
. Then, we can use:

(𝐴1 ⊕𝐴2)

(︂
𝐵1 𝐵2

𝐵3 𝐵4

)︂
=

(︂
𝐴1𝐵1 𝐴1𝐵2

𝐴2𝐵3 𝐴2𝐵4

)︂
to reduce the computation to the simpler cases 𝐴1𝐵1, 𝐴1𝐵2, 𝐴2𝐵3, and 𝐴2𝐵4.

Kronecker product. If 𝐴 = 𝐴1 ⊗ 𝐴2, then 𝐵 = 𝐵1 ⊗ 𝐵2 is a Kronecker product as well. In this

case, we can use the mixed-product property to reduce the computation to the simpler cases 𝐴1𝐵1 and

𝐴2𝐵2 via 𝐴𝐵 = 𝐴1𝐵1 ⊗𝐴2𝐵2 and recursively obtain a representation of the product 𝐴𝐵.

Matrix composition. As a final case, let 𝐴 =

(︂
𝐴1 𝐴2

𝐴3 𝐴4

)︂
. In this case, 𝐵 can be a direct sum (but we

covered the symmetric case already above) or a matrix composition 𝐵 =

(︂
𝐵1 𝐵2

𝐵3 𝐵4

)︂
as well. In this

case, we observe that:

𝐴𝐵 =

(︂
𝐴1 𝐴2

𝐴3 𝐴4

)︂(︂
𝐵1 𝐵2

𝐵3 𝐵4

)︂
=

(︂
𝐴1𝐵1 +𝐴2𝐵3 𝐴1𝐵2 +𝐴2𝐵4

𝐴3𝐵1 +𝐴4𝐵3 𝐴3𝐵2 +𝐴4𝐵4

)︂
.

12

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

At this point, we crucially make use of our assumption that the matrix composition operator is only

applied to submatrices that do not contain the Kronecker product operator. First, we recursively compute

the relevant products 𝐴𝑖𝐵𝑗 and then, since the resulting matrices do not contain the Kronecker product

operator, we can compute a representation for the sums 𝐴1𝐵1 +𝐴2𝐵3, 𝐴1𝐵2 +𝐴2𝐵4, 𝐴3𝐵1 +𝐴4𝐵3,

and 𝐴3𝐵2 +𝐴4𝐵4. If 𝐼 = 𝐼1 ⊎ 𝐼2, 𝐽 = 𝐽1 ⊎ 𝐽2 and 𝐾 = 𝐾1 ⊎𝐾2, then the subcomputations of the

products 𝐴𝑖𝐵𝑗 can be done in time 𝒪(‖𝐼𝑖‖ · ‖𝐽𝑖‖ · ‖𝐾𝑗‖) for 𝑖, 𝑗 = 1, 2. The total computation time for

the product subcomputations is thus bounded by 𝒪((‖𝐼1‖+ ‖𝐼2‖) · (‖𝐽1‖+ ‖𝐽2‖) · (‖𝐾1‖+ ‖𝐾2‖)) =
𝒪(‖𝐼‖ · ‖𝐽‖ · ‖𝐾‖). Also we saw above, that we can compute the sums of the matrices in linear time.

This yields a total of bound of 𝒪(‖𝐼‖ · ‖𝐽‖ · ‖𝐾‖) as claimed.

6. Applications of the Linear-Algebraic Formulation

The representation of the alignment problem for process trees in terms of matrix/vector products allows

us to apply new algorithmic methods to compute alignments. The obvious ones include the application

of highly optimized matrix multiplication algorithms as implemented in several linear algebra libraries.

We could even adapt the computation to different hardware settings such as GPUs and, of course,

parallelize the computation of the product 𝑣𝑡
in
· 𝑆𝑤1 · · ·𝑆𝑤𝑛 · 𝑣

fin
for long traces 𝑤. Of course, we

might also try to use linear-algebraic structure theory to make the product computation simpler in the

first place. For example, since the matrices are structurally quite similar, it might be possible to find

common transformations that yield (partial) representations with respect to eigenspaces. This could

help to speed up the computation in some cases at least. Another advantage of our approach is that the

precompilation of the ts-matrices 𝑆𝑎 for all 𝑎 ∈ Σ is only required once, i.e., we can save time with

preprocessing if we have a single, fixed process tree and want to align many different traces against it.

Besides such algorithmic considerations, well-established linear-algebraic concepts might yield novel

insights for conformance checking applications. Let us briefly discuss one simple example. Assume we

have constructed the matrix family (𝑆𝑎)𝑎∈Σ and the vectors 𝑣in, 𝑣fin
for a process tree 𝑇 . Then we can

define that two events 𝑎, 𝑏 ∈ Σ are independent in all trace contexts if the product 𝑆𝑎𝑆𝑏 is equal to 𝑆𝑏𝑆𝑎.

This actually means that, with respect to alignments of the given process trees, we can swap the order

of 𝑎 and 𝑏 without changing the alignment costs no matter of what the context is in which the two

events occur. In this way we can relate the notion of commuting matrices from linear algebra with a

novel notion of causal independence. In fact, it would be interesting to study this independence notion

on real-life event logs to see what it can tell us about the underlying process.

Unfortunately, for the algorithmic approaches, we still face the obstacle discussed in Section 5:

the matrices 𝑆𝑎 can become exponentially large (in the size of the underlying process tree) by the

Kronecker product operator. Given the NP-hardness of the alignment problem for process trees this

is not surprising, and the key question is: how far can we push the linear-algebraic technique from

an algorithmic perspective without running into the exponential blow-up of the Kronecker product

operator? Can we even find new classes of process trees which allow polynomial-time alignment

computations via the linear-algebraic formulation? The symbolic representations that we discussed in

Section 5 constitute a first step towards this very question.

A natural class to consider are process trees with unique labels: for those we recently proved

that alignments can be computed in polynomial time via a dynamic programming algorithm [14].

Interestingly enough, we already saw in Section 4 that by a purely linear-algebraic argument we could

strongly simplify the matrix expressions for the shuffle operator in cases of unique labels. This is clear

indication that, indeed, the linear-algebraic approach mirrors the key argument of the polynomial-time

algorithm for process trees with unique labels (cf. Equation (7)) which effectively eliminates choice for

shuffle operators.

Unfortunately, the symbolic approach as given in Section 5 does not fully cover process trees with

unique labels yet. Anyhow, in what follows we explain that it does capture a significant and interesting

subclass. We are going to show that we can efficiently construct the matrices (𝑆𝑎)𝑎∈Σ and vectors

𝑣in, 𝑣fin
and also efficiently compute the product 𝑣𝑡

in
· 𝑆𝑤1 · · ·𝑆𝑤𝑛 · 𝑣

fin
for a given trace 𝑤 = 𝑤1 · · ·𝑤𝑛

13

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

for all process trees 𝑇 with unique labels in which the shuffle operator does not occur within the scope of
a sequence or loop operator. It is allowed, however, that the shuffle operator occurs within the scope of a

choice operator and, of course, within the scope of other shuffle operators.

To show this, it suffices to argue that the matrices (𝑆𝑎)𝑎∈Σ and vectors 𝑣in, 𝑣fin
can efficiently be

constructed as ts-matrices and ts-vectors as introduced in Section 5 since for those we proved that

products can be computed in polynomial time. To be more precise, for our construction we guarantee

that the representation size of the resulting matrices 𝑆𝑎 for a process tree 𝑇 is bounded by 𝒪(‖𝑇‖2)
(and the same holds for the vectors 𝑣in and 𝑣

fin
whose representation size is 𝒪(‖𝑇‖)). Let us go through

the different process tree operators and check that the matrices and vectors can be constructed as

required. Since the base cases (labeled leaf and silent leaf) yield explicit, constant size matrices, we can

trivially encode those as base case ts-matrices and ts-vectors. Let us check the other cases:

Exclusive choice. The matrices and vectors for the exclusive choice operator given in Equation (3)

can obviously be constructed as ts-matrices and ts-vectors using the direct sum operator available for

ts-matrices and ts-vectors.

Sequence. For the sequence operator, it is not as obvious that we can construct the required matrices

(Equation (4)) and vectors (Equation (5)) as ts-matrices and ts-vectors. The reason is that matrix products,

matrix-vector products, inner products, and scalar products occur in Equation (4) and Equation (5).

Hence, for the construction to go through, we need to show that these operations can be computed

efficiently. The results can then easily be assembled by using the matrix composition operator for

matrices as in Equation (4) and the direct sum operator for the vectors as in Equation (5).

To show efficient computability, we need to use our assumption that, within the scope of the sequence

operator, no shuffle operator occurs. With this assumption, we know that none of the involved

submatrices and vectors contains the Kronecker product operator. Luckily, we saw in Section 5 that for

such matrices and vectors all required operations are indeed computable in polynomial time on the

symbolic level.

Loop. The argument for the loop operator is similar to the case of the sequence operator. Again, for

the matrices and vectors in Equation (9) and Equation (10), it is not at all obvious that we can construct

them as ts-matrices and ts-vectors as these involve matrix products and matrix addition. However, with

the assumption that no shuffle operator occurs within the scope of a loop operator, the argument goes

through as in the case of the sequence operator.

Parallel operator. For the parallel operator, we derived a simplified expression valid for process trees

with unique labels in Equation (7). This expression is already in the form of a Kronecker product and

can thus be constructed as a ts-matrix using the Kronecker product operator. The same holds for the

associated vectors as given in Equation (6).

7. Discussion

We have shown that the alignment problem for process trees can be formulated in terms of matrix and

vector products. This sheds new light on the problem, paves the way for new algorithmic techniques,

and enables us to study alignments through the lens of linear algebra. There are several paths to follow

in the future. One open question is if our symbolic approach can be extended to cover all process

trees with unique labels. This would potentially lead to an alternative polynomial-time algorithm for

the alignment problem for process trees with unique labels, a class highly relevant in practice. This

algorithm might be even more efficient if we apply optimized linear algebra libraries to the matrix

products involved or make use of parallelization techniques. Another angle would be to look into other

semirings to verify, for example, that also more general cost functions are covered by our approach. It

is also conceivable to define a semiring which does not only yield optimal alignment costs, but also the

set of optimal alignments. Finally, another question is whether we can generalize the linear-algebraic

approach to other classes of process models such as sound, free-choice workflow nets.

14

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

Declaration on Generative AI

During the preparation of this work, the authors partly used Copilot for grammar and spell checking.

The authors reviewed and edited the content as needed and take full responsibility for the publication’s

content.

References

[1] A. Adriansyah. “Aligning observed and modeled behavior.” PhD thesis. Technische Universiteit

Eindhoven, 2014. doi: 10.6100/IR770080.

[2] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich. Conformance Checking. Relating Processes
and Models. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-99414-7.

[3] J. Carmona, B. F. van Dongen, and M. Weidlich. “Conformance Checking: Foundations, Milestones

and Challenges.” In: Process Mining Handbook. Vol. 448. LNBIP. Cham: Springer International

Publishing, 2022. Chap. 5, pp. 155–190. doi: 10.1007/978-3-031-08848-3_5.

[4] M. Droste and P. Gastin. “Weighted automata and weighted logics.” In: Theor. Comput. Sci. 380.1-2

(2007), pp. 69–86.

[5] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Monographs in Theoretical

Computer Science. An EATCS Series. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. doi:

10.1007/978-3-642-01492-5.

[6] M. Droste and D. Kuske. “Weighted automata.” In: Handbook of Automata Theory (I.) European

Mathematical Society Publishing House, Zürich, Switzerland, 2021, pp. 113–150.

[7] S. J. J. Leemans. Robust Process Mining with Guarantees. Process Discovery, Conformance Checking
and Enhancement. Vol. 440. LNBIP. Cham: Springer International Publishing, 2022. doi: 10.1007/

978-3-030-96655-3.

[8] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. “Discovering Block-Structured Process

Models from Event Logs Containing Infrequent Behaviour.” In: Business Process Management
Workshops. BPM Workshops 2013. Vol. 171. LNBIP. Cham: Springer International Publishing,

2014, pp. 66–78. doi: 10.1007/978-3-319-06257-0_6.

[9] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. “Discovering Block-Structured Process

Models from Incomplete Event Logs.” In: Application and Theory of Petri Nets and Concurrency.

PETRI NETS 2014. Vol. 8489. LNCS. Cham: Springer International Publishing, 2014, pp. 91–110.

doi: 10.1007/978-3-319-07734-5_6.

[10] M. Lohrey and M. Schmidt-Schauß. “Processing Succinct Matrices and Vectors.” In: Theory Comput.
Syst. 61.2 (2017), pp. 322–351.

[11] J. Osterholzer. “Weighted Automata and Logics for Natural Language Processing.” In: Joint
Workshop of the German Research Training Groups in Computer Science. Pro Business GmbH, 2014,

p. 150.

[12] M. P. Schützenberger. “On the Definition of a Family of Automata.” In: Inf. Control. 4.2-3 (1961),

pp. 245–270.

[13] C. T. Schwanen, W. Pakusa, and W. M. P. van der Aalst. “Complexity of Alignments on Sound

Free-Choice Workflow Nets.” In: Application and Theory of Petri Nets and Concurrency. PETRI

NETS 2025. 2025. In press.

[14] C. T. Schwanen, W. Pakusa, and W. M. P. van der Aalst. “A Dynamic Programming Approach for

Alignments on Process Trees.” In: Process Mining Workshops. ICPM 2024. Vol. 533. LNBIP. Cham:

Springer Nature Switzerland, 2025, pp. 84–97. doi: 10.1007/978-3-031-82225-4_7.

15

https://doi.org/10.6100/IR770080
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-031-08848-3_5
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-030-96655-3
https://doi.org/10.1007/978-3-030-96655-3
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-031-82225-4_7

Christopher T. Schwanen et al. CEUR Workshop Proceedings 1–16

[15] C. T. Schwanen, W. Pakusa, and W. M. P. van der Aalst. “Process Tree Alignments.” In: Enterprise
Design, Operations, and Computing. EDOC 2024. Vol. 15409. LNCS. Cham: Springer International

Publishing, 2025. doi: 10.1007/978-3-031-78338-8_16.

[16] H. Zhang and F. Ding. “On the Kronecker Products and Their Applications.” In: Journal of Applied
Mathematics 2013 (2013), pp. 1–8. doi: 10.1155/2013/296185.

16

https://doi.org/10.1007/978-3-031-78338-8_16
https://doi.org/10.1155/2013/296185

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Process Trees
	3.2 Alignments
	3.3 Matrices and Operations

	4 Construction of Matrix Systems for Process Trees
	5 Symbolic Computations with Tree-Structured Matrices and Vectors
	5.1 Tree-structured index sets
	5.2 Tree-structured vectors
	5.2.1 Definition of ts-vectors
	5.2.2 Effective Computations with Ts-Vectors

	5.3 Tree-structured matrices
	5.3.1 Addition of Non-Kronecker-Product Ts-matrices
	5.3.2 Matrix-vector multiplication
	5.3.3 Rank-One Matrices
	5.3.4 Matrix multiplication

	6 Applications of the Linear-Algebraic Formulation
	7 Discussion

