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Abstract
In this work, we investigate a variant of the Four Glasses Puzzle (FGP) through the lens of formal verification.
Although the puzzle appears to be unsolvable at first glance, formal verification enables the discovery of a correct
solution. We demonstrate how the model can be constructed and reduced through progressive abstractions,
ultimately yielding a concise and comprehensible model that captures all possible puzzle configurations. This last
model is easy to understand, even for non-specialists. Finally, by analysing the strategic capabilities of the player,
we present a solution to the puzzle.

1. Introduction

As software and hardware systems grow in complexity, ensuring that they behave as intended has
become a central concern. Formal verification addresses this by providing precise tools to describe what
a system should do, and to check—exhaustively—whether it does it. Unlike testing, which considers
selected scenarios, verification explores all possible behaviours based on a model of the system.

The rise of autonomous and distributed systems—such as robots, trading agents, and self-driving
cars—has made this need even more urgent. These systems act independently, interact with one another,
and adapt to changing environments. Verifying them requires reasoning not only about sequences
of events, but also about goals, knowledge, and strategies. The tools involved draw from logic, game
theory, and automata theory, adapted to the challenges of interaction and decentralization.

In this paper, we use a variant of the Four Glasses Puzzle (FGP) [1] — also known as the Blind
Bartender Problem — to illustrate some core techniques in the formal verification of multi-agent systems
[2, 3, 4]. The puzzle provides a minimal yet expressive setting to present three typical steps of the
method: modelling, abstraction, and strategy synthesis. Modelling involves giving a precise structure to
the system, specifying states, actions, and their transitions. Abstraction reduces the system to what is
relevant for verification, omitting unnecessary details. Strategy synthesis is the automatic construction
of a plan that ensures a given goal is achieved, when possible. Our aim is to make these concepts
tangible through a simple yet non-trivial example.

The Four Glasses Problem The Four Glasses Puzzle, also known as the Blind Bartender’s Problem,
gained widespread attention when it was popularized by Martin Gardner in his “Mathematical Games”
column in the February 1979 issue of Scientific American. This deceptively simple logic puzzle challenges
participants to devise a foolproof strategy under strict constraints, making it a classic example of
recreational mathematics.

The problem can be presented as follows: four glasses are placed at the corners of a square tray. Each
glass is either upright or upside down. A blindfolded person must manipulate the glasses to make them
all face the same direction (either all up or all down), subject to the following rules:

• On each turn, the person may inspect two adjacent glasses and choose to flip either, both, or
neither.
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• After each turn, the tray is randomly rotated, eliminating any positional reference.

• The solution must guarantee success in a finite number of steps, without relying on luck.

The puzzle can be analyzed through the lens of game theory and theoretical computer science. The
problem can be reinterpreted as a two-player game where Player 1 (the agent) attempts to align the
glasses using limited actions, and Player 2 (the environment) introduces uncertainty by randomly
rotating the tray after each move. The agent’s lack of positional knowledge creates a scenario of
imperfect information, akin to games like poker or robotics under sensor noise.

The puzzle’s elegance has inspired numerous generalizations. In this paper, we focus on a particularly
devilish variant of the original one in which the blindfolded person additionnally wears boxing gloves
and cannot sense glass orientations—only flip them blindly. This removes tactile feedback, transforming
the problem into a purely combinatorial game.

Purpose of this work In this paper, we model the aforementioned devilish variant of the Four Glasses
Puzzle through the lens of formal verification of multi-agent systems.

This approach highlights how abstract logical frameworks can be grounded in tangible, intuitive
problems. By distilling complex ideas like strategy invariance and partial observability into the bar-
tender’s challenge, we bridge recreational mathematics and formal verification, offering a concrete
entry point to explore theoretical computer science principles. What makes the bartender problem
interesting from a verification perspective is that the bartender has no information about the current
state of the system. Whatever action they choose must work regardless of how the glasses are actually
arranged. This means the strategy cannot depend on the state—it must be the same for all situations that
are indistinguishable from the agent’s point of view. In technical terms, the strategy must be uniform.

This idea has a clear analogue in distributed and autonomous systems. In many real-world cases,
agents operate with limited or no access to the global state. A robot, a sensor, or a protocol—all must
follow a fixed plan that works in all the situations they cannot tell apart. In this sense, finding a uniform
winning strategy is like designing a local, deterministic algorithm that guarantees the right outcome
under uncertainty.

The bartender puzzle, in this version, becomes a small but sharp illustration of this challenge. It
shows how strategy synthesis under partial information connects logic, games, and system design.

2. Formal Models at Work

We start with introducing a variant of of the Four Glasses Problem.

2.1. A Devilish Variant of the Four Glasses Problem

We consider a variant of the Blind Bartender with Boxing Gloves problem [1]. The setup is as follows:
four glasses are placed at the corners of a square tray, and each glass is either upright or upside down.
A blindfolded person wearing boxing gloves aims to make all the glasses face the same direction.

On each turn, the person may choose one of three actions: flip a single random glass, flip two adjacent
random glasses, or flip two random glasses located on opposite corners (i.e. along a diagonal). After
declaring the desired action, the corresponding glasses are flipped—but the person receives no feedback
and does not know which glasses were affected. If the goal has not been achieved after the move, the
tray is rotated by an unknown angle.

2.2. Formal modelling

Given this problem description, we can provide a precise mathematical model in the form of a directed
graph with labelled edges. The states of the graph will represent one of the 16 possible configurations
of the glasses (each glass can be either up or down, yielding 24 possible combinations). Each edge



between two states will be labelled with an action. The input state represents the state from which a
given action can be performed, while the output state represents one possible result of applying that
action to the given input.

Definition 1 (Game). Given a finite set 𝒜 of actions, we define a game 𝒢 = (𝑆, { 𝑎−→}𝑎∈𝒜, 𝑆𝐼 , 𝑆𝐹 ) as a
directed graph, where 𝑆 is a set of nodes (states), { 𝑎−→}𝑎∈𝒜 is a set of edges (arcs) labelled by actions, and
𝑆𝐼 ⊆ 𝑆 is a set of initial states and 𝑆𝐹 ⊆ 𝑆 is a set of final (winning) states. We say that a game is a
turn-based two player game if the set 𝑆 is the union of two disjoints set 𝑆1 and 𝑆2 and for each 𝑠, 𝑠′ ∈ 𝑆
if 𝑠 𝑎−→ 𝑠′, then 𝑠 ∈ 𝑆1 ∧ 𝑠′ ∈ 𝑆2 or 𝑠 ∈ 𝑆2 ∧ 𝑠′ ∈ 𝑆1.

A play 𝜋 in a game is any non-empty alternated sequence 𝑠0, 𝑎0, 𝑠1, . . . of states and actions such
that 𝑠0 ∈ 𝑆𝐼 , and 𝑠𝑖

𝑎𝑖−→ 𝑠𝑖+1 for each index 𝑖 ≥ 0 of the play. Moreover, we require that any play ends
in a state if the play is finite, and we call histories finite plays.

A strategy for a player 𝑖 is a function 𝒮 that takes as input a history ending in a state 𝑠 ∈ 𝑆𝑖 and
outputs an action 𝑎 that labels an edge leaving 𝑠. A play 𝜋 = 𝑠0, 𝑎0, 𝑠1, . . . is compatible with a
strategy 𝒮 iff for every index 𝑘 of the play, if 𝑠𝑘 ∈ 𝑆𝑖 then 𝒮(𝑠0, 𝑎0, . . . , 𝑎𝑘−1, 𝑠𝑘) = 𝑎𝑘 . For each state
𝑠, by 𝑂𝑢𝑡(𝑠,𝒮) we denote the set of all maximal (w.r.t. the prefix order) plays starting in 𝑠 that are
compatible with the strategy 𝒮 .

We say that a strategy for a player is uniform if it returns the same output for plays that are
indistinguishable to the given player. We say that a uniform strategy is winning if the paths compatible
with it, starting from any initial state, are all finite.

Our bartender acts without having any information about the current state of the game. Therefore,
his strategy should not depend on the current configuration of the game: in other words, the strategy
must return the same output for all plays that it cannot distinguish. Remark that in our context two
plays are indistinguishable for the bartender if they have the same length, and that all actions are
enabled in all three indistinguishable states (see the final attempt), and no action is enabled in the
winning states.

First attempt. Now that we have defined the mathematical model for representing the game, let us
proceed to its concrete representation. Given that the bartender problem involves two players, it is
natural to model it as a turn-based two-player game. To do so, we need to define two disjoint sets of
states, each representing the possible configurations of the glasses on the tray. A natural choice is to
consider for each of the two sets, the 2×2 matrices over a two-elements set.

Thus we define the first version of the bartender game, 𝒢1
𝐵 , as follows. The set of states 𝑆 is defined

as the union of the set 𝑆1 of 2 × 2 matrices over {0, 1} and the set 𝑆2 of 2 × 2 matrices over {𝑢, 𝑣}.
The set of actions 𝒜 consists of two main types:

𝒜 = {t1, t2a, t2d} ∪ {ri | 𝑖 ∈ {0, 90, 180, 270}},

where t1 corresponds to flipping a single glass, t2a to flipping two adjacent glasses, and t2d to flipping
two diagonal glasses. Each ri element represents the rotation of the tray by 𝑖 degrees, with 𝑖 ∈
{0, 90, 180, 270}.

To model the transitions between these configurations, we define the edges, which describe how the
game state changes due to the actions of the bartender and of the other player. Consider a map 𝑓 that
maps 0 to 𝑢 and 1 to 𝑣, we define the following rules for the transitions, for any matrix 𝑀 different
from the unit and the zero one:

• 𝑀
t1−→ 𝑀 ′ with 𝑀 ∈ 𝑆1 iff there exists exactly one position (𝑖, 𝑗) such that 𝑓(𝑀𝑖𝑗) ̸= 𝑀 ′

𝑖𝑗 , and
for all other positions (𝑘, 𝑙) ̸= (𝑖, 𝑗), we have 𝑓(𝑀𝑘𝑙) = 𝑀 ′

𝑘𝑙. In other words, a single glass is
flipped, and all other glasses remain untouched.

• 𝑀
t2d−−→ 𝑀 ′ with 𝑀 ∈ 𝑆1 iff there exists a diagonal 𝐷 ∈ {{(1, 1), (2, 2)}, {(1, 2), (2, 1)}}

such that 𝑓(𝑀𝑖𝑗) ̸= 𝑀 ′
𝑖𝑗 for all (𝑖, 𝑗) ∈ 𝐷, and for all other positions (𝑘, 𝑙) /∈ 𝐷, we have

𝑓(𝑀𝑘𝑙) = 𝑀 ′
𝑘𝑙. This means that two glasses on a diagonal are flipped.



• 𝑀
t2a−−→ 𝑀 ′ with 𝑀 ∈ 𝑆1 iff there exists a pair of adjacent positions 𝐴 ∈

{{(1, 1), (1, 2)}, {(2, 1), (2, 2)}, {(1, 1), (2, 1)}, {(1, 2), (2, 2)}} such that 𝑓(𝑀𝑖𝑗) ̸= 𝑀 ′
𝑖𝑗 for all

(𝑖, 𝑗) ∈ 𝐴, and for all other positions (𝑘, 𝑙) /∈ 𝐴, we have 𝑓(𝑀𝑘𝑙) = 𝑀 ′
𝑘𝑙. This corresponds to

flipping two adjacent glasses, either horizontally or vertically.

• 𝑀
ri−→ 𝑀 ′ with 𝑀 ∈ 𝑆2 iff 𝑀 ′ is the result of rotating the matrix 𝑀 by 𝑖 degrees, modulo the

function 𝑓 .

For example:
(︂
0 0
1 1

)︂
t1−→

(︂
𝑢 𝑣
𝑣 𝑣

)︂
;
(︂
𝑢 𝑣
𝑣 𝑣

)︂
r180−−→

(︂
1 1
1 0

)︂
.

The set of initial states of 𝒢1
𝐵 is 𝑆1 without the zero and the unit matrices. The set of final states

contains exactly the zero and the unit matrices.
Remark: The only states with no outgoing transitions are the final states, corresponding to the

bartender’s tray with all glasses upside-down (the zero matrix) and the one with all glasses upright (the
unit matrix), i.e. those states where the bartender wins. Given this, asking for a solution to the blind
bartender problem with boxing gloves is equivalent to asking the following:

Question: is there a uniform strategy 𝒮 for player 1 such that for any initial state 𝑠 of 𝒢1
𝐵

we have that each 𝜋 ∈ 𝑂𝑢𝑡(𝑠,𝒮) is finite?

Note that this solution has lots of states and transitions, therefore, we do not visualize it.

Second attempt Although 𝒢1
𝐵 faithfully represents the turn-based structure of the original game, it

is somewhat forced. We had to artificially duplicate the number of states in order to have one set of
states from which the bartender can make a move and another set of states from which the other player
can act. Fortunately, we can easily address this modeling issue. For any triple of states in the model

described above, 𝑥, 𝑦, and 𝑧, if 𝑥 ∈ 𝑆1 and 𝑥
𝑎−→ 𝑦

𝑏−→ 𝑧, then 𝑧 ∈ 𝑆1, and if 𝑥 ∈ 𝑆2 and 𝑥
𝑎−→ 𝑦

𝑏−→ 𝑧,
then 𝑧 ∈ 𝑆2, since the game is turn-based.

Thus, we can consider a simpler model, which we will call 𝒢2
𝐵 , where the set of states is simply 𝑆1,

the set of actions consists of the three actions of the bartender, the set of initial states is equal to the set

of initial states in 𝒢1
𝐵 and 𝑥

𝑎−→ 𝑧 in 𝒢2
𝐵 if and only if 𝑥 ∈ 𝑆1 and 𝑥

𝑎−→ 𝑦
𝑏−→ 𝑧 in 𝒢1

𝐵 for some 𝑦 ∈ 𝑆2

and some action 𝑏.
Given a play 𝜋 on 𝒢1

𝐵 , let 𝜋𝐵 denote its subsequence containing only states in 𝑆1 and actions of the
bartender. We have that for every play 𝜋 in 𝒢1

𝐵 , 𝜋𝐵 is a play in 𝒢2
𝐵 , and conversely, for any play 𝜌 in 𝒢2

𝐵 ,
there exists a play 𝜋 in 𝒢1

𝐵 such that 𝜌 = 𝜋𝐵 . Furthermore, note that any strategy 𝒮 for the bartender
on 𝒢1

𝐵 can be applied to 𝒢2
𝐵 . From the observations above, we immediately obtain the following:

Proposition 1. There is a winning strategy on 𝒢1
𝐵 if and only if there is a winning strategy on 𝒢2

𝐵 .

Even if 𝒢2
𝐵 is smaller than 𝒢1

𝐵 , as it shows only the bartender, it is still huge (16 states and many
transitions), so we do not show it.

Third (and final) attempt The model just described is certainly more efficient than the first one. In
this model, we did not have to unnecessarily multiply the number of states, and we simply modelled
the second player by introducing greater non-determinism in the transition relation: given an action
and a state, the set of possible outcomes consists of all possible rotations of the tray after the action
is performed. However, this model is still not optimal, and we can do better. From the bartender’s
perspective, the two configurations where all glasses are either up or down are equivalent: in both
cases, the bartender wins. Similarly, the two configurations with two glasses facing one way along a
diagonal and two facing the other way are equivalent for the bartender, and so on. To be short, in the
Four Glasses with Boxing Gloves Problem, the equivalence between configurations is determined by the
symmetry of the 2x2 grid of glasses. This includes rotations (0°, 90°, 180°, 270°) and flipping (inverting
the positions of all glasses). The bartender’s goal is to move the glasses in a way that either all are



facing up or all are facing down, regardless of their initial orientation. Rotating or flipping the grid does
not fundamentally change the problem because the relative positions of the glasses and the actions
needed to achieve the goal remain the same. As such, configurations that are rotations or reflections
(flips) of each other are considered equivalent, meaning that they require the same strategy to solve.

To sum up:

(≡𝐵) From the bartender’s point of view, two tray configurations M and M’ (with four
glasses on the tray) are equivalent if M’ can be obtained by rotating M by 0°, 90°, 180°, or
270°, and flipping all the glasses (changing each glass from up to down, or the other way
around).

The equivalence classes generated by the relation defined above can be visualized in Table 1.

Class Representatives

All glasses equal

Checkerboard pattern

Two adjacent equal glasses

Three equal glasses, one different

Table 1
Equivalence Classes of Glasses on the Tray

Given this, we can define the third (and final) model of the blind bartender with boxing gloves. Let
us call this model 𝒢3

𝐵 . The set of actions 𝒜 for 𝒢3
𝐵 consists of the three actions of the bartender, the set

of states only counts four states ℓ1, ℓ2, ℓ3, and ℓ4. Each of these states represents an equivalence class
of glasses on the tray modulo the above-defined relation. In particular,

1. ℓ1 represents the class in which three glasses are equal and one different,

2. ℓ2 represents the class of checkerboard patterns,

3. ℓ3 represents the class of configurations with two adjacent equal glasses,

4. ℓ4 represents the class of configurations in which all glasses are equal.

The set of initial states is equal to {ℓ1, ℓ2, ℓ3}. Finally ℓ𝑖
𝑎−→ ℓ𝑗 iff there is a state 𝑠 in the class

represented by ℓ𝑖 and a state 𝑠′ in the class represented by ℓ𝑗 such that 𝑠 𝑎−→ 𝑠′ in 𝒢2
𝐵 . A representation

of 𝒢3
𝐵 is shown in Figure 1. Given the definition of the model, it is fairly immediate to prove the

following:

Proposition 2. There is a winning strategy on 𝒢1
𝐵 if and only if there is a winning strategy on 𝒢3

𝐵 .

So, solving the Blind Bartender with Boxing Gloves Problem comes down to finding a uniform
strategy—a fixed sequence of actions that does not rely on knowing the current state—guaranteeing
that, no matter the starting configuration, the system eventually reaches the goal state ℓ4.

This problem can be formalised in strategic logics (see [5] for an introduction) as ⟨⟨𝑏𝑎𝑟𝑡𝑒𝑛𝑑𝑒𝑟⟩⟩𝐹ℓ4.
This formula states that there exists a strategy (operator ⟨⟨ ⟩⟩) of the 𝑏𝑎𝑟𝑡𝑒𝑛𝑑𝑒𝑟 model which ensures
that ℓ4 is eventually reached (operator 𝐹 ). We consider the following semantics:
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Figure 1: The blind bartender with boxing gloves problem
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Figure 2: The vision of the bartender behaviour

• imperfect information: the bartender does not know the current state, but he is told if winning
(hence ℓ1, ℓ2 and ℓ3 are indistinguishable).

• perfect recall: the bartender remembers the sequence of actions he has played.

Let us analyse the behaviour of the system, starting from ℓ1ℓ2ℓ3 (remember the bartender does not
know the actual starting point). It is pictured in Fig. 2. Starting from this state, all operations are
possible from either ℓ1, or ℓ2, or ℓ3. When taking t1, the bartender can win by getting directly in ℓ4,
which is possible from ℓ1 only. Or it can lead to ℓ1 from ℓ2 and ℓ3 ; or to ℓ2 from ℓ1 ; or to ℓ3 from ℓ1. To
summarise, from the initial state t1 gets either to win of to any of the three states ℓ1, ℓ2 and ℓ3, without
yet any possibility to distinguish them, hence the self-loop on the initial state. Consider now t2d. If in
ℓ1, we stay there. From ℓ2 it leads to the winning state ℓ4. If in ℓ3, we stay there. Hence, either we get
to win, or we know that we are in ℓ1 or ℓ3, thus the state ℓ1ℓ3 in Fig. 2. Repeating such a reasoning
from ℓ1ℓ3 (and so on) allows for constructing the graph in Fig. 2.

The idea here is to find a sequence of actions that necessarily goes to ℓ4. Notice that in the graph
of Fig. 2, the bartender may gain knowledge (e.g. can know that the current state is ℓ1) but due to
non-determinism, may again lose exact information (e.g. ℓ2ℓ3 is a successor of ℓ1). Choosing an action
that may get you to an already visited state in the graph does not help, so we will instead privilege
progress. Thus, initially, the bartender will choose action t2d: either the game is immediately won,



or the state is ℓ1 or ℓ3, but they cannot be distinguished at this stage. From there, choosing t2d does
not help, choosing t1 may win (if the bartender is lucky) or get back to the initial situation. Hence the
bartender chooses to progress with t2a. We continue in a similar manner and obtain the following
strategy for winning:

t2d, t2a, t2d, t1, t2d, t2a, t2d

Note that this strategy is minimal, but other ones exist, including for example a cycle in the graph.
Several semantics exist for strategic abilities (see [5]), some of them being undecidable in general.

Depending on the semantics, a winning strategy could be computed using a tool that supports reasoning
under imperfect information, such as MCMAS [6] or STV [7, 8].

3. Modelling with Petri Nets

Figure 3 presents two Petri nets models for the Four glasses problem. The Petri net in Fig. 3a is a
straightforward adaptation of the automaton in Fig. 1, using the same labels for places and transitions.
The Coloured Petri Net in Fig. 3b features two places: one where the game is won (corresponding to ℓ4
in the previous models), and one where the game is not won (corresponding to the other three states).
There, tokens hold a value, indicating the state of the game, i.e. in {ℓ1, ℓ2, ℓ3, ℓ4}. Functions on the arcs
are such that:

𝑡1(ℓ1) ∈ {ℓ2, ℓ3} 𝑡2𝑎(ℓ1) = ℓ1
𝑡1(ℓ2) = ℓ1 𝑡2𝑎(ℓ2) = ℓ3
𝑡1(ℓ3) = ℓ1 𝑡2𝑎(ℓ3) = ℓ2

and variable domains are : 𝑥 ∈ {ℓ1, ℓ2, ℓ3}, 𝑦 ∈ {ℓ1, ℓ3}.
One could argue that the transition t2d which is not leading to the winning state is useless, but this

is not the case: it represents a permitted action on ℓ1 and ℓ3 which has no effect.
Another possibility would have been to use a single place (with a slight modification of the functions

used on arcs), and winning the game would resume to the reachability of marking ℓ4 in the sole place.

4. Conclusions

In this paper, we have presented progressively abstracted models for the Four Glasses Puzzle and
demonstrated how they can be used to derive a winning strategy for this seemingly unsolvable problem.
The puzzle has been employed with the general public—first as a magic trick, and then as a teaching
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𝑥

𝑡2𝑎(𝑥) t2d

𝑦

𝑦

t1

𝑥 𝑡1(𝑥)

(b) Coloured Petri net

Figure 3: Petri net models for the bartender



tool to illustrate how formal modelling and verification can be leveraged to uncover a solution, thereby
demystifying mathematical approaches.

As possible extensions, this methodology could be adapted to incorporate timing constraints [9, 10, 11],
enabling the discovery of strategies that succeed within a specified time frame. Another interesting
direction would be to generalize the puzzle to accommodate any number of glasses. In such a case,
Coloured Petri Nets would provide a suitable framework for encoding tray configurations as tuples
attached to tokens, similar to what was presented in Section 3.
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