
Abstraction-Based Deadlock Analysis of Service-Oriented
Systems with Recursive Petri Nets
Erik Jonas Hartnick1,*,†, Mandy Weißbach1,*,†

1Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany

Abstract
Service-oriented systems involve synchronous, asynchronous, and recursive service calls. Existing research has
identified limitations in Petri net-based approaches for deadlock detection, particularly in scenarios involving
recursive calls. This extended abstract establishes a basis for evaluating the suitability of recursive Petri nets for
modeling such interactions and for identifying deadlocks, with an emphasis on recursion-induced cases. The
results are expected to demonstrate that the selected modeling approach substantially influences the accuracy of
deadlock analysis in service-oriented systems.

Keywords
Recursion, Concurrency, Recursive Petri Nets, Deadlocks, Service-Oriented Systems

Introduction

As service-oriented architectures are increasingly adopted in modern software systems, ranging from
intelligent IoT devices in smart homes to complex robotics systems based on open-source frameworks
such as ROS [1], the analysis of such systems is becoming increasingly important. A particular challenge
in this context is deadlock analysis: deadlocks often occur in unpredictable ways and their causes are
difficult to identify. This problem is further intensified in distributed service-oriented systems, where the
source code of individual services is often inaccessible and the services themselves act autonomously.

This extended abstract presents an abstraction-based approach, top-down, to analysing deadlocks in
service-oriented systems with properties such as unbounded concurrency and unbounded recursion.
Starting from implemented services, we generate an abstract representation using the model of recursive
Petri nets. Each service can provide this abstraction without revealing its internal implementation or
source code, thereby enabling deadlock analysis to be performed independently of the actual system
code. Previous studies [2] have demonstrated that classical models, such as regular Petri nets, can
produce false-positive results. Deadlocks may exist within the system yet remain undetected by the
analysis. In contrast, the (G, G)-PRS model [3] has been shown to correctly detect such deadlocks. This
work aims to investigate whether recursive Petri nets can similarly preserve existing deadlocks and
support precise deadlock detection. However, we will, based on the notion of [4], formally introduce
recursive Petri nets (RPNs), present the abstraction and provide a formal definition of deadlocks in
recursive Petri nets. We will then discuss the resulting implications for deadlock analysis.

Deadlocks in recursive Petri nets and service abstraction

The notation and semantics of recursive Petri nets (RPNs) used in this work follow the definitions
and notation established by Haddad and Poitrenaud in [4], including those for extended markings.
In analogy to the language of RPNs [4], a marked recursive Petri net is defined with initial and final
extended markings, whereas in other definitions, final markings and the associated 𝑐𝑢𝑡-step have to be
considered separately [5], [6], [7].

PNSE’25: International Workshop on Petri Nets and Software Engineering, June 23–24, 2025, Paris, France
*Corresponding author.
†
These authors contributed equally.
$ erik.hartnick@student.uni-halle.de (E. J. Hartnick); mandy.weissbach@informatik.uni-halle.de (M. Weißbach)
� 0009-0003-2377-7349 (E. J. Hartnick); 0009-0007-7458-3658 (M. Weißbach)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:erik.hartnick@student.uni-halle.de
mailto:mandy.weissbach@informatik.uni-halle.de
https://orcid.org/0009-0003-2377-7349
https://orcid.org/0009-0007-7458-3658
https://creativecommons.org/licenses/by/4.0/deed.en


Definition 1 (Marked Recursive Petri Net). A marked recursive Petri net (with initial extended marking
and final extended markings) is the quadruple ⟨𝑁, 𝑡𝑟0, 𝑇 𝑟𝑓 , 𝑡𝑟⟩, where

(i) 𝑁 ≜ ⟨𝑃, 𝑇,𝑊−,𝑊+,Ω⟩ is a recursive Petri net
(ii) 𝑡𝑟0 ≜ ⟨𝑉0,𝑀0, 𝐸0, 𝐴0⟩ is an initial extended marking of 𝑁

(iii) 𝑇𝑟𝑓 ≜ {𝑡𝑟𝑓 | 𝑡𝑟𝑓 = ⟨𝑉𝑓 ,𝑀𝑓 , 𝐸𝑓 , 𝐴𝑓 ⟩} is a set of final extended markings of 𝑁 and
(iv) 𝑡𝑟 ≜ ⟨𝑉,𝑀,𝐸,𝐴⟩ is an extended marking of 𝑁 reachable from 𝑡𝑟0 by 𝑡𝑟0

𝜎−→ 𝑡𝑟, 𝜎 = 𝑡1𝑡2 · · · 𝑡𝑛.

The firing of a transition 𝑡 ∈ 𝑇 , 𝑡𝑟 𝑡−→ 𝑡𝑟′ results in a marked recursive Petri net ⟨𝑁, 𝑡𝑟0, 𝑇 𝑟𝑓 , 𝑡𝑟
′⟩,

provided that 𝑡𝑟 ̸∈ 𝑇𝑟𝑓 . If 𝑡𝑟 ∈ 𝑇𝑟𝑓 , execution halts regardless of any enabled transistions. Note that
an initial marking refers to Ω(𝑡𝑎𝑏) for 𝑡𝑎𝑏 ∈ 𝑇𝑎𝑏, whereas an initial extended marking refers to 𝑡𝑟0.

For each vertex 𝑣 ∈ 𝑉 in an extended marking 𝑡𝑟 of 𝑁 , the associated marking 𝑀(𝑣) is referred to
as a thread [4]. A deadlock that is local to a thread 𝑀(𝑣) is therefore termed a threadlock.

Definition 2 (Threadlock). Let ⟨𝑁, 𝑡𝑟0, 𝑇 𝑟𝑓 , 𝑡𝑟⟩ be a marked recursive Petri net with the current
extended marking 𝑡𝑟 ≜ ⟨𝑉,𝑀,𝐸,𝐴⟩ and 𝑡𝑟 ̸∈ 𝑇𝑟𝑓 . A thread 𝑀(𝑣) of vertex 𝑣 ∈ 𝑉 in the extended
marking 𝑡𝑟 is in a threadlock, iff no transitions 𝑡 ∈ 𝑇 are enabled in 𝑀(𝑣), i.e. ∀𝑡 ∈ 𝑇 : ∃𝑝 ∈ 𝑃 :
𝑀(𝑣)(𝑝) < 𝑊−(𝑝, 𝑡).

A threadlock also constitutes a deadlock in the underlying Petri net �̄� ≜ ⟨𝑃, 𝑇,𝑊−,𝑊+⟩, marked
by 𝑀(𝑣). A deadlock in a recursive Petri net can thus be constructed from individual threadlocks.

Definition 3 (Deadlock in a RPN). Let ⟨𝑁, 𝑡𝑟0, 𝑇 𝑟𝑓 , 𝑡𝑟⟩ be a marked recursive Petri net, let 𝑡𝑟 ≜
⟨𝑉,𝑀,𝐸,𝐴⟩. The marked recursive Petri net is in a deadlock for 𝑡𝑟 iff 𝑡𝑟 ̸∈ 𝑇𝑟𝑓 and for all 𝑣 ∈ 𝑉 ,
𝑀(𝑣) is in a threadlock.

Based on these two types of deadlocks, the abstraction from the service-oriented language 𝒳𝒴𝒵 is
described, as illustrated in Tables Table 1a and Table 1b. For each control flow element shown in the left
column, the corresponding recursive Petri net fragment is depicted in the upper part of the right column,
while a sequence of extended markings is presented in the lower part. To simplify the notation, threads
𝑀(𝑣) are expressed using process-algebraic expressions of class 𝑃 according to Mayr’s hierarchy [3],
where place names are separated by the commutative and associative operator ‖.

The number of occurrences of a place in a process-algebraic expression corresponds to the number of
tokens in that place, representing asynchronous execution in a (𝑃, 𝑃 )− 𝑃𝑅𝑆. The places 𝑠𝑡𝑎𝑟𝑡𝑝 and
𝑒𝑛𝑑𝑝 are introduced to ensure that not all tokens from previous places are held until a final transition in
the child thread fires. As a result, an asynchronous procedure call cannot be modeled using an abstract
transition alone. Since recursive Petri nets are bipartite graphs, direct edges between transitions are not
permitted; places 𝑠𝑡𝑎𝑟𝑡𝑝 and 𝑒𝑛𝑑𝑝 must be inserted accordingly.

Conclusions

This extended abstract presented an abstraction-based approach to enable deadlock analysis in service-
oriented architectures. The approach builds on an established programming model introduced in prior
work [2]. A formal definition of deadlocks in recursive Petri nets (RPNs) was developed within the
context of this abstraction. Existing counterexamples must be examined more thoroughly to support the
validation of the proposed method. This will help assess whether the approach extends the expressive
power of existing techniques, even in cases where certain deadlock scenarios—such as threadlocks—may
remain undetected. Future work includes the identification and analysis of additional deadlock types
in RPNs. Moreover, the ability of RPNs to model error handling is to be investigated. Prior studies
have shown that correct modeling of exception handling is only achievable through (G,G)-PRSs [8]. It
remains to be examined whether RPNs exhibit similar capabilities, potentially positioning them between
PANs and (G,G)-PRSs within the Mayr hierarchy [3]. In addition, the backward inclusion relation
between PANs and RPNs will be formally analysed to determine whether PANs form a proper subset
of RPNs. Parallel to these theoretical investigations, tooling support for deadlock analysis in RPNs is
under development, aiming to bridge the gap between theoretical insights and practical application.



Control flow Representation as RPN

𝑞 ∶ 𝑥 ∶= 𝑒;
𝑞′ ∶ …

𝑞 𝑞′
𝑡𝑒𝑙

(𝑞) (𝑞′)⟶
𝑡𝑒𝑙

𝑞1 ∶ if 𝑒 {
𝑞2 ∶ …

…
𝑞3 ∶ } else {
𝑞4 ∶ …

…
𝑞5 ∶ }
𝑞6 ∶ …

𝑞1

𝑞2 𝑞3

𝑞4 𝑞5

𝑞6

⋯

⋯

𝑡𝑒𝑙1

𝑡𝑒𝑙2

𝑡𝑒𝑙3

𝑡𝑒𝑙4

(𝑞1) (𝑞2) ⋯
⋯ (𝑞3) (𝑞6)

⟶
𝑡𝑒𝑙1 ⟶𝑡

⟶𝑡 ⟶
𝑡𝑒𝑙3

xor:
(𝑞1) (𝑞4) ……

(𝑞5) (𝑞6)
⟶
𝑡𝑒𝑙2 ⟶𝑡

⟶𝑡 ⟶
𝑡𝑒𝑙4

Synchronous
Procedure 𝑝:
𝑞 ∶ 𝑝();
𝑞′ ∶ …

𝑝() {
𝑖𝑝 ∶ …
𝑟𝑝 ∶ return;

}

𝑞 𝑞′
𝑡𝑎𝑏

𝑖𝑝

𝑖𝑝 𝑟𝑝

⋯
𝑡𝑓 𝑖

(𝑞) (𝜀)

(𝑖𝑝)
…

…
(𝜀)

(𝑟𝑝)

(𝑞′)

⟶
𝑡𝑎𝑏 ⟶𝑡

⟶𝑡 ⟶
𝑡𝑓 𝑖

𝑡𝑎𝑏

𝑡𝑎𝑏

(1a) Abstraction of assignment, if-else and syn-
chronous procedure call control flows to re-
cursive Petri nets.

Control flow Representation as RPN

Asynchronous
Procedure 𝑝:

𝑎() {
future 𝑓;

𝑞 ∶ 𝑓 ∶= 𝑝();
𝑞′ ∶ …
𝑟𝑎 ∶ return;

}

async 𝑝() {
𝑖𝑝 ∶ …
𝑟𝑝 ∶ return;

}

𝑞

𝑠𝑡𝑎𝑟 𝑡𝑝

𝑞′

𝑒𝑛𝑑𝑝

𝑟𝑎

⋯
𝑡𝑒𝑙1

𝑡𝑒𝑙2

𝑡𝑓 𝑖,𝑎

𝑡𝑎𝑏

𝑖𝑝

𝑖𝑝 𝑟𝑝

⋯
𝑡𝑓 𝑖,𝑝

(𝑞) (𝑞′ ∥ 𝑠𝑡𝑎𝑟 𝑡𝑝) (𝑞′)

(𝑖𝑝)
…

…
(𝑟𝑎)

(𝑟𝑝)

(𝑟𝑎 ∥ 𝑒𝑛𝑑𝑝) (𝑟𝑎)

⟶
𝑡𝑒𝑙1 ⟶

𝑡𝑎𝑏 ⟶𝑡

⟶𝑡 ⟶
𝑡𝑓 𝑖

⟶
𝑡𝑒𝑙2

𝑡𝑎𝑏

𝑡𝑎𝑏

Synchronisation:
𝑎() {

future 𝑓;
𝑞1 ∶ 𝑓 ∶= 𝑝();
𝑞2 ∶ …
𝑞3 ∶ sync 𝑓;
𝑞4 ∶ …
𝑟𝑎 ∶ return;

}

async 𝑝() {
𝑖𝑝 ∶ …
𝑟𝑝 ∶ return;

}

𝑞3 𝑞4 𝑟𝑎

𝑒𝑛𝑑𝑝
⋯

⋯

⋯

𝑡𝑒𝑙2

𝑡𝑒𝑙3

𝑡𝑎𝑏

𝑡𝑓 𝑖,𝑎

𝑖𝑝

𝑖𝑝 𝑟𝑝

⋯
𝑡𝑓 𝑖,𝑝

… (𝑞3)

(𝑟𝑝)

(𝑞3 ∥ 𝑒𝑛𝑑𝑝) (𝑞4)
⟶𝑡 ⟶

𝑡𝑓 𝑖
⟶
𝑡𝑒𝑙3𝑡𝑎𝑏

(1b) Abstraction of asynchronous procedure call
control flows to recursive Petri nets.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al., Ros: an
open-source robot operating system, in: ICRA workshop on open source software, volume 3, Kobe,
2009, p. 5.

[2] M. Weißbach, W. Zimmermann, On Limitations of Abstraction-Based Deadlock-Analysis of
Service-Oriented Systems, Springer International Publishing, 2020, pp. 79–90. doi:10.1007/
978-3-030-63161-1_6.

[3] R. Mayr, Process rewrite systems, Information and Computation 156 (2000) 264–286. URL: https:
//www.sciencedirect.com/science/article/pii/S0890540199928262. doi:10.1006/inco.1999.2826.

[4] S. Haddad, D. Poitrenaud, Theoretical Aspects of Recursive Petri Nets, Springer Berlin Heidelberg,
1999, pp. 228–247. doi:10.1007/3-540-48745-x_14.

[5] S. Haddad, D. Poitrenaud, Modelling and Analyzing Systems with Recursive Petri Nets, Springer
US, 2000, pp. 449–458. doi:10.1007/978-1-4615-4493-7_48.

[6] S. Haddad, D. Poitrenaud, Recursive petri nets, Acta Informatica 44 (2007) 463–508. doi:https:
//doi.org/10.1007/s00236-007-0055-y.

[7] A. Finkel, S. Haddad, I. Khmelnitsky, Coverability and Termination in Recursive Petri Nets, Springer
International Publishing, 2019, pp. 429–448. doi:10.1007/978-3-030-21571-2_23.

[8] C. Heike, W. Zimmermann, A. Both, On expanding protocol conformance checking to excep-
tion handling, Service Oriented Computing and Applications 8 (2014) 299–322. doi:10.1007/
s11761-013-0146-2.

http://dx.doi.org/10.1007/978-3-030-63161-1_6
http://dx.doi.org/10.1007/978-3-030-63161-1_6
https://www.sciencedirect.com/science/article/pii/S0890540199928262
https://www.sciencedirect.com/science/article/pii/S0890540199928262
http://dx.doi.org/10.1006/inco.1999.2826
http://dx.doi.org/10.1007/3-540-48745-x_14
http://dx.doi.org/10.1007/978-1-4615-4493-7_48
http://dx.doi.org/https://doi.org/10.1007/s00236-007-0055-y
http://dx.doi.org/https://doi.org/10.1007/s00236-007-0055-y
http://dx.doi.org/10.1007/978-3-030-21571-2_23
http://dx.doi.org/10.1007/s11761-013-0146-2
http://dx.doi.org/10.1007/s11761-013-0146-2

