
On Dependencies in Knowledge Graph Construction
Eduard Kamburjan1,2, Romana Pernisch3,4, Oscar Corcho5 and David Chaves-Fraga6,7

1IT University of Copenhagen, Denmark
2University of Oslo, Norway
3Vrije Universiteit Amsterdam, The Netherlands
4Discovery Lab, Elsevier, The Netherlands
5Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
6Department of Electronics and Computing, Universidade de Santiago de Compostela, Spain
7CiTIUS, Universidade de Santiago de Compostela, Spain

Abstract
Knowledge graph construction (KGC) requires numerous assets, such as shapes or mappings, to interact correctly.
However, maintenance and assessment of the quality of the pipeline implementing the construction is difficult, as
software engineering analyses and quality measures do not address the technologies used in KGC. In this paper,
we propose a syntactic, easy to compute notion of dependencies between assets, and show its capability to assess
change propagation. Furthermore, we discuss potential to use it for coupling and impact estimation. We evaluate
our approach using a prototypical implementation and a case study from the literature, where we find two bugs
where missing dependencies indicated an error due to miscommunication during change propagation between
the developers of two different assets.

Keywords
Software Analysis, Knowledge Graph Construction, Change Propagation, Impact Analysis

1. Introduction

Knowledge graph construction (KGC) is concerned with the systematic and disciplined development,
operation and maintenance of software for the construction of knowledge graphs, and, as such, is a
part of software engineering [1]. The field has resulted in methodologies and tools for construction and
has reached a stage of maturity where it looks beyond its immediate purpose. Modern KGC requires a
way to handle the complexity arising from the ever-increasing number of interacting assets employed
in construction: ontologies, shapes, mappings, queries, scripts to run the processes and processing data
etc. In contrast to other parts of software engineering, however, tool support is rare and methodologies
to guide the developer are mostly implicit or ad hoc.

In this work, we investigate dependencies, a central notion of software engineering, from the KGC
perspective. Numerous techniques in software analysis rely on dependencies. For example, coupling [2]
defines how closely related assets are, and impact analysis to track or predict the effect of changes
can be built on dependencies and coupling [3]. Implicit dependencies between assets are a recognized
negative quality measure [4]. Dependencies naturally give rise to modules: A module [5] is a set of
components that provides encapsulation and only allows dependencies to assets in the interface. In its
most general form, a dependency is a relation between two assets 𝐴1 and 𝐴2 that expresses that the
functionality of 𝐴2 depends on some functionality provided by 𝐴1

1. For example, an input-dependency
between asset 𝐴1 and asset 𝐴2 expresses that 𝐴1 relies on the output of 𝐴2, while an import-dependency
expresses that 𝐴1 relies on a function, or a data set, within 𝐴2.

KGCW’25: 6th International Workshop on Knowledge Graph Construction, June 1st, 2025, Portorož, SLO
Envelope-Open eduard.kamburjan@itu.dk (E. Kamburjan); r.pernisch@vu.nl (R. Pernisch); oscar.corcho@upm.es (O. Corcho);
david.chaves@usc.es (D. Chaves-Fraga)
Orcid 0000-0002-0996-2543 (E. Kamburjan); 0000-0001-8590-1817 (R. Pernisch); 0000-0002-9260-0753 (O. Corcho);
0000-0003-3236-2789 (D. Chaves-Fraga)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1This is adapted from the definition of IEEE 24765 [1], “existence dependency: a constraint between two related entities indicating
that no instance of one can exist without being related to an instance of the other.” Our dependencies are existence dependencies
on functionality. To the best of our knowledge, there is no agreed-upon definition of general dependencies.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:eduard.kamburjan@itu.dk
mailto:r.pernisch@vu.nl
mailto:oscar.corcho@upm.es
mailto:david.chaves@usc.es
https://orcid.org/0000-0002-0996-2543
https://orcid.org/0000-0001-8590-1817
https://orcid.org/0000-0002-9260-0753
https://orcid.org/0000-0003-3236-2789
https://creativecommons.org/licenses/by/4.0/deed.en

1 id,name,location
2 1,Server1,Frankfurt
3 2,Server2,Darmstadt
4 ...

1 id,first,last,role
2 1,Peter,Schmitt,Admin
3 2,Pia,Schwarz,Admin
4 ...

1 sysid,userid,dt
2 1,1,11-12-2024
3 1,2,11-12-2024
4 ...

(a) Example CSV Input
OWL

1 Class: dep:Access // A1
2 Class: dep:Role // A2
3 Class: dep:System // A3
4 Class: dep:User // A4
5 ObjectProperty: dep:hasRole
6 Domain: dep:User // A5
7 Range: dep:Role // A6

OWL

8 ObjectProperty: dep:accessedBy
9 Domain: dep:Access // A7

10 Range: dep:User // A8
11

12 ObjectProperty: dep:accesses
13 Domain: dep:Access // A9
14 Range: dep:System // A10

(b) Subset of the ontology, defining OWL classes, domain and range axioms.

Figure 1: Starting point for the example KGC pipeline.

Knowledge graph construction employs numerous different tools and languages, yet no notion of
dependency is available. Thus, it is not possible to automatically assess the possible impact of a change,
track changes throughout a construction pipeline or reason about maintainability. Certainly, ideas
building on dependencies and notions extending them, such as coupling, are used in KGC, but as long
as dependencies remain implicit between different kinds of assets, they cannot be connected to quality
assessment and analysis of a whole pipeline. For example, the RDF Mapping language (RML) [6] is a
domain specific language to describe the transformation of heterogeneous data structures into RDF. Its
mappings have explicit dependencies, as they may refer to other mappings and are grouped in files
according to their references, i.e., they form modules by coupling. However, there is no dependency
relation with further steps in the pipeline.

In this paper, we propose a notion of dependencies in KGC and report on our efforts to link KGC
to software engineering best practices and software analysis to (1) enable tool support and increased
automation for KGC and (b) explore the idiosyncrasies of KGC tools that distinguish it from other
software. In particular, we hope to develop a notion of modularity to increase reusability.

This work is structured as follows. We first illustrate the need for tool support based on explicit
dependencies (Section 2), give a first, purely syntactic notion of dependencies (Section 3) and a pre-
liminary evaluation on two KGC projects (Section 4). We discuss its effects, possible applications and
limitations (Section 5), as well as related work (Section 6) before we conclude (Section 7).

2. Overview

Motivating Example We illustrate the need for tool support in maintaining KGC pipelines, and
applications that build on them, using the following example, pictured in Figure 2. Some system logs
and user information are available in CSV files and must be transformed into a KG to be accessed by two
different programs. One python program, in the following denoted 𝑃1, is part of the user management
and uses a query to show all users and how often they access any system (Figure 4c). Another program,
𝑃2, uses two different queries to find all system accesses made by admins before a certain date and
shows all admins (Figures 4a and 4b). The data is transformed as follows. Four RML mappings (in
YARRRML [7] syntax, extracted from and based on an ontology, Figure 3a) transform three CSV files
(Figure 1a) into RDF, which is subsequently validated using two SHACL shapes (Figure 3b) and accessed
by the aforementioned programs and queries.

Input Development Access

OWL

CSV

RML

RDF

SHACL

RDF

SPARQL Python
generates

generates checks queries

calls

Figure 2: Overview of our example: RMLmappings generate RDF from some CSV files. This RDF is subsequently
first validated using SHACL, and then accessed from python code using SPARQL queries. The RML itself is also
generate, namely from an OWL ontology. The edge between the two RDF nodes is only a virtual transformation.

Challenge A simple impact analysis should answer the following question: Given a change to a CSV
schema, an OWL axiom, or a mapping which other assets (i.e., mappings, shapes, queries, programs) need
to be reconsidered?

It is not easy keeping track of dependencies in the above scenario. For example, a change to a single
axiom in the ontology requires considering changes to any mapping that use terms affected by this
axiom. Similarly, a change to the mapping requires reconsidering all shapes and queries operating on
triples generated by this mapping. However, the shape or query does not refer to the mapping it depends
on. The dependency between mapping and axiom is also implicit — even if the mapping is automatically
derived from the ontology (e.g., using a tool like OWL2YARRRML2): while the dependency is explicit in
the generator tool, it is implicit in the mapping itself. Not having a way to discover and define these
dependencies creates a complex and manual challenge, compromising the evolution of KG development
assets, especially if the assets are managed by different development teams.

3. Dependencies in Knowledge Graph Construction

Intuitively, we require dependencies that express that an asset may not work correctly if another asset is
changed. For example, if a class is renamed in an RML mapping, then a SHACL shape operating on the
data it generates, i.e., refers to the modified class, may also be modified. As discussed, this dependency
from a shape to a mapping is currently implicit.

Before we introduce dependencies formally, we need to distinguish between semantic and syntactic
dependencies. A semantic dependency is a dependency between two assets 𝐴1, 𝐴2, that precisely
characterizes when a change of𝐴1 to𝐴′

1 affects the functionality of𝐴2. It is defined over the functionality
of 𝐴1 and 𝐴2, or the transformations that use them. A syntactic dependency is defined over the syntax
of 𝐴1 and 𝐴2, it may be an approximation of a semantic dependency3, or it may be a useful heuristic,
which indicates that a change of 𝐴1 may in some situations effect the functionality of 𝐴2.

Syntactic dependencies are generally cheap to compute and are sufficient for a first investigation of
dependencies in KGC. Semantic dependencies become expensive quickly: For example, to characterize
the dependency of a query to an ontology we must characterize whether a change can affect any
data consistent with the part of the ontology relevant for the query – this means to employ ontology
extraction [9, 10] – an expensive operation that has also been shown to be too conservative in its fully
expressive form [11, 12].

Syntactic Dependencies. First, we distinguish between external and semantic assets. A semantic
asset is operating on the knowledge graph under construction, while an external asset is either input to
the construction pipeline, or refers to a semantic asset to execute it.

2https://github.com/oeg-upm/owl2yarrrml/
3For example, let us consider graph-based deadlock analysis [8]. A syntactic (or abstract) dependency graph of a program is
an over-approximation over all semantic (or concrete) dependency graphs that may occur when executing the program. If
the abstract dependency graph is cycle-free, then so are all concrete ones occurring during any of its executions.

https://github.com/oeg-upm/owl2yarrrml/

YARRRML

1 roles:
2 sources:
3 - access: 'users.csv'
4 referenceFormulation: csv
5 s: dep:$(role)
6 po:
7 - [a, dep:Role]
8 - [dep:roleName, $(role)]
9

10 accesses:
11 sources:
12 - access: 'accesses.csv'
13 referenceFormulation: csv
14 po:
15 - [a, dep:Access]
16 - p: dep:at
17 o: value: $(dt)
18 datatype: xsd:date
19 - p: dep:accesses
20 o: value: dep:$(sysId), type: iri
21 - p: dep:accessedBy
22 o: value: dep:$(userId), type: iri

YARRRML

23 persons:
24 sources:
25 - access: 'users.csv'
26 referenceFormulation: csv
27 s: dep:$(id)
28 po:
29 - [a, dep:User]
30 - [dep:name, $(first) $(last)]
31 - p: dep:hasRole
32 o:
33 - mapping: roles
34 condition: ...
35

36 systems:
37 sources:
38 - access: 'systems.csv'
39 referenceFormulation: csv
40 s: dep:$(id)
41 po:
42 - [a, dep:System]
43 - [dep:systemName, $(name)]
44 - [dep:location, $(location)]

(a) YARRRML

1 dep:UserShape
2 a sh:NodeShape ;
3 sh:targetClass dep:User ;
4 sh:property [
5 sh:path dep:hasRole ;
6 sh:maxCount 1 ;
7 sh:minCount 1 ;
8] .

1 dep:AccessShape a sh:NodeShape ;
2 sh:targetClass dep:Access ;
3 sh:property [
4 sh:path dep:accessedBy ;
5 sh:maxCount 1 ; sh:minCount 1];
6 sh:property [
7 sh:path dep:accesses ;
8 sh:maxCount 1; sh:minCount 1] .

(b) SHACL

Figure 3: Processing assets for the example pipeline.

Definition 1 (External and Semantic Assets). Ontologies, data files and source code4 are external assets.
Ontologies consist of axioms, which we also consider external assets. Shapes, mappings and queries are
semantic assets.

Based on the different kinds of assets involved, we differ between external and internal dependen-
cies. The reason for this distinction is that external dependencies are based on explicit reference or
modification, not shared vocabulary.

Definition 2 (External Dependencies). A mapping 𝑀 depends on a data file 𝐷, if 𝐷 is input to 𝑀 in the
construction. A mapping 𝑀 depends on an axiom 𝑋 if 𝑀 is generated from 𝑋. A program 𝑃 depends on a
semantic asset 𝐴, if 𝐴 occurs within 𝑃.

For example, an RML mapping depends on the data files that occur in its sources-access clause.
If the mapping is realized by a python function, then that function may depend also on those files
that are loaded at some other place in the program and then passed to it as a parameter. A program
using a query certainly depends on that query, independent of whether the query is syntactically in the
program or loaded from an external file. The dependency of mappings to data is straightforward, but

4Excluding those implementing mappings manually.

SPARQL

1 SELECT * {
2 ?x a dep:User;
3 dep:name ?name;
4 dep:hasRole [dep:roleName ?roleN].
5 FILTER (?roleN = "Admin")
6 }

(a) Query 1
SPARQL

1 SELECT * {
2 ?x dep:accessedBy [dep:hasRole [dep:roleName "Admin"]];
3 dep:at ?date;
4 dep:accesses [dep:systemName ?name].
5 FILTER (YEAR(?date) < 2024)
6 }

(b) Query 2
SPARQL

1 SELECT ?name (COUNT(?x) AS ?nr) {
2 ?x dep:accessedBy [dep:name ?name]
3 } GROUP BY ?name

(c) Query 3

Figure 4: SPARQL Queries

the dependency of mappings on ontology axioms is more intricate, as it requires keeping track of the
generation and the subsequent modification of a mapping from an axiom, as the original axiom is not
necessarily referred to from the template. We deem such tracking realistic.

Internal dependencies are based on explicit references or shared vocabulary but also assume an order
in the construction pipeline. Thus, we assume that in the pipeline, there is a driver that executes all
assets (𝐴𝑖)𝑖∈𝐼 in some order, and we refer to this partial order by ⪯.

Definition 3 (Internal Dependencies). Let L be a set of URIs, which we denote as library. A semantic
asset 𝐴1 depends on another semantic asset 𝐴2 if either (1) 𝐴1 refers to 𝐴2 explicitly, or (2a) 𝐴1 ⪯ 𝐴2, and
(2b) there is some URI from L that occurs in both 𝐴1 and 𝐴2.

The reason why dependencies are defined relative to a library L is that we want to omit trivial
dependencies due to common vocabulary such as rdf∶type. The above definition uses a white-list
approach by making all allowed URIs explicit, an alternative could be a black-list approach that only
records the URIs that do not induce a dependency. Note that if the semantic assets in question are
serialized in RDF, then dependencies can be retrieved using a SPARQL query [13].

Case (1) in definition 3 is straightforward and explicit. The core of our dependencies is case (2). It is
based on the observation that there is no explicit input-output relation between the semantic assets.
A whole graph is produced and then processed—in a strict sense, it is not true that the output of one
mapping is the input to one shape. However, we can approximate the parts of the graph that are relevant
to the functionality of a semantic asset by approximating the part of the graph that it will, in practice,
affect. To do so, we approximate the signature by collecting all URIs (which are also in the library). If
the signatures of the two semantic assets overlap, then they may affect the same part of the graph.

For example, the shape dep:UserShape (Figure 3b) depends on the mapping persons (Figure 3a)
because they both contain the URLs dep:User and dep:hasRole. Similarly, query 2 (Figure 4b) depends
on both dep:UserShape and persons because it contains the URL dep:hasRole. All triples with these

Python

1 def make_role(onto : Ontology):
2 roles = set(df_names['role'])
3 roles.remove(np.nan)
4 with onto:
5 for role in roles:
6 new_role = onto.Role()
7 new_role.roleName = role
8 return onto

Figure 5: Python mapping

elements are created by persons and validated by dep:UserShape, thus the results of the query depend
on these assets.

The order excludes dependencies between assets that do not operate consecutively. For example, both
the query in fig. 4a and the query in fig. 4b contain the URI for dep∶hasRole, but there is no dependency,
because they operate on the same input RDF, and not on each others results.

URIs may occur either directly, or indirectly in an asset. In the RML examples, URIs occur directly.
However, consider the python function in Figure 5, that performs the equivalent of the roles mapping
using owlready2 [14]. It contains the URIs for dep∶Role (implicitly in onto.Role) and dep∶roleName
(implicitly in new_role.roleName). Analysis of assets written in general purpose programming lan-
guages is out of scope for this work, as we focus on assets written in specialized languages, but we
conjecture that our notion of internal dependency naturally fits into dependencies in programming.

Figure 6 shows the dependency graph of our example (w.r.t. to the library of all URIs prefixed with
dep∶). It enables us to estimate change propagations: If the ontology is refactored and dep∶Role is
moved to a new URL or is renamed, then we can now explicitly see that program 𝑃1 that contains a
query that may need to be refactored the next time the KGC pipeline is run.

The dependency graph shows some information that is not visible otherwise without reading the code
of the assets and that fits our intuition: A change in the systems and access log data does not require to
change the HR application, as there is no dependency between systems.csv, accesses.csv and 𝑃1.
It also shows that the mapping of persons is tightly coupled (i.e., has many incoming dependencies),
which fits the intuition that users are relevant for both applications.

Example 1. Let us examine the dependencies of access.rml as pictured in Figure 6. The dependency
on access.csv is an external dependency, as access.csv is explicitly referred to from the mapping. The
dependencies on A1, A7 and A9 are external, but implicitly – the mapping is generated based on these
axioms. The other dependencies are internal due to common URIs.

• Assets access.rml and access.shacl share dep:access, dep:accessedBy and dep:accesses.
• Assets access.rml and q2.sparql share dep:accessedBy and dep:accesses.
• Assets access.rml and q3.sparql share dep:accessedBy.

Semantic Dependencies. The derived dependency graph also illustrates the limitation of the syntac-
tic analysis: Only 𝑞2 has a dependency on system.rml. However, 𝑞3 relies on the OWL concept System
as well, as it is in the range of accessedBy. Thus, the results of 𝑞3 may be different if the mapping for
the system is changed such that this concept is used differently. Due to the lack of reasoning when
computing dependencies, this is not detected. A further case is the following: suppose the ontology
providing context contains the following axiom.

OWL

1 dep:Admin EquivalentTo: dep:hasRole some dep:roleName value "Admin"

A2

A4

users.csv

A9

A7

A1

A3

A5

systems.csv

accesses.csv

roles.rml

accesses.rml

system.rml

persons.rml
users.shacl

access.shacl

q1.sparql

q2.sparql

q3.sparql

P1

P2

Figure 6: Dependency Graph of the Example

Now, the following query is equivalent to 𝑞2 using a suitable entailment regime, but loses two
dependencies (the one to roles.rml and persons.rml).

SPARQL

1 SELECT * {
2 ?x dep:accessedBy [a dep:Admin];
3 dep:at ?date;
4 dep:accesses [dep:systemName ?name].
5 FILTER (YEAR(?date) < 2024)
6 }

It may be necessary to extend L to include further URIs with different degrees of reasoning – as
discussed, in the worst case, L requires computing the deductive module over the signature L. We
conjecture, however, that for applications without reasoning, i.e., for data processing, syntactic depen-
dencies are sufficiently precise. Making precision concrete requires defining semantic dependencies,
which we leave to future work.

4. Evaluation

Implementation A preliminary implementation is available online.5 The tool takes a set of files that
either contain CSV, RML mappings, singular SHACL shapes, SPARQL shapes or python code. The order
is fixed: CSV ⪯ RML ⪯ SHACL ⪯ SPARQL ⪯ Python.

For each semantic asset 𝐴, the tool extracts the contained URIs and then removes those not in the
provided library 𝐿. The result sig(𝐴) is then used in the next step. A dependency between two assets
𝐴1 and 𝐴2 is created if sig(𝐴1) ∩ sig(𝐴2) ≠ ∅ and 𝐴1 ⪯ 𝐴2.

The aim of our validation is to find out whether syntactic dependencies (1) make structures explicit
that are implicitly known before, and (2) can be used to find mistakes.

Case Study 1. Our first case study is a knowledge graph construction pipeline for a teaching ontol-
ogy [15] which follows the structure described above: CSV is translated into RDF using RML mappings,
then validated using SHACL and accessed using SPARQL. The SHACL shapes are generated from the
RML mappings and from the underlying OWL ontology using SCOOP [16].

The pipeline has 3 CSV files, 11 rml:TriplesMap, 19 SHACL sh:NodeShape and 8 SPARQL queries.
Analyzing the pipeline takes 2s on a standard office laptop and results in 269 dependencies. For the

5https://github.com/Edkamb/ConstructionDependencies

https://github.com/Edkamb/ConstructionDependencies

GLOBI

WikiData

interactions.csv

addPlants.py

addCompanions.py

addInteractions.py

getAntiComp.sparql

getComp.sparql

getPlants.sparql

preprocessing.py

Figure 7: Dependency Graph of CoPla

library 𝐿teach (cf. definition 3) we use all URIs outside standard namespaces such as rdf. As expected,
we can recover some structures.

• The shapes generated from a mapping all depend on the mapping. As 3 of the 11 rml:TriplesMap
are for one concept and result in 8 sh:NodeShape, these 11 assets form a tight cluster.

• Some concepts (in our case schema:name) with a very general domain are used in multiple
mappings, which makes it hard to interpret the dependencies. This can be counteracted by
excluding them from the library, or possibly by outputting all terms that can justify a dependency.

During manual analysis of the dependencies, we were indeed able to detect two anomalies:

• One query (q8_no_data.rq in the auxiliary material) has no dependencies. The reason is that
it queries for triples using only one URI from the library 𝐿teach, which is not generated by any
mapping. The corresponding line was commented out in the RML, because no data was available
for it. As the query always returns an empty set, any application using it has a vacuous feature.

• One shape similarly had no dependencies, because it used a different prefix for
(coursesonto:Lecturer vs. a local URI from the developer). Here, it seems a change in the
prefixes was not correctly propagated between two developers.

Both anomalies are exactly corresponding to dependency mismanagement in general software
engineering: A change was not propagated to another party or tool, which in turn had no automatic
way to detect the change, as it was implicit what assets it needs to monitor in the first place.

Case Study 2. Our second case study is the Companion Planting Decision Support system [17]. The
system is a prototype which combines multiple information sources and builds a complex ontology
to make use of reasoning capabilities. In this case study, the original sources were preprocessed
(preprocessing.py) into 2 CSV files that are mapped to OWL axioms using 3 Python functions. One of
these functions (addInteractions.py) calls the SPARQL endpoint of GLOGI to retrieve triples, which
are directly integrated in the ontology. The prototype is then using the OWL API as a Java backend,
from which we extracted 3 SPARQL queries for this case study. Further queries are part of the prototype
but could not be transformed into SPARQL as they make use of complex reasoning capabilities, by first
constructing an Abox from the user input, reasoning, explaining or fixing axioms before returning
explanations rather than triples.

The dependency graph is shown in Figure 7 which we constructed manually. On the on hand, this
highlights the issue from software engineering of tracking dependencies within python functions as
a still unsolved problem. On the other hand, the resulting graph is not big. It shows that for small
pipelines the dependency graph is small enough to be investigated visually. For larger projects with
more python scripts involved a manual investigation of dependencies is not feasible, hence showcasing
the need for further research.

5. Discussion

Best Practices In [18], the authors highlight the need to integrate software engineering methods
and best practices into knowledge graph development, given the complexity, dependencies, and large
number of assets involved in the process. Modularity has been key to software reusability but despite
the declarative nature of many assets used in KG construction, their reusability remains minimal. To
the best of our knowledge, the concepts of modularity and dependencies in this context have not yet
been fully addressed. Exploiting them in KG construction will not only improve the quality of the
generated graphs but also enhance the overall construction process. Additionally, it will reduce manual
effort in developing mapping rules, SHACL shapes, and other components while preventing errors and
facilitating their resolution.

Further Structural Notions Modules are a central notion for composition and reuse, which in turn
are major quality measures both for software [19, 20] and data products [21]. In ontology engineering,
the notion of modularity is highly volatile, and several kinds of definitions corresponding to different
kinds of reuse are used in practice [22].

KGC requires a notion of modularity on the level of all its assets, not merely ontology modules, and
dependencies can be used to compute coupling metrics [23], i.e., measures for how connected a set
of assets are. A potential avenue for further research is to investigate which of the ontology module
notions and underlying metrics [24] are good indicators for modules of the software and pipelines
operating on them.

Based on modules, further notions can be built. For example, reuse can be enabled through variability
on a module level [25], where parts of the systems are exchanged depending on the features required
by the overall application.

Impact Analysis Analysis of the impact of ontology changes is not a novel topic. So far, it has been
addressed from the perspective of impact on downstream applications, where the two (ontology and
application) are looked at in a decoupled way. For example, in the analysis by Gross et al. [26] the
application of functional enrichment analysis over the Gene Ontology is assessed. The authors define
stability metrics and examine the evolution of the Gene Ontology from a macroscopic perspective. A
similar approach is taken by Pernisch et al. [27], where the authors analyse the impact of evolution on
the inference calculation of the same ontology and capture the impact on a large scale. Such studies do
not consider individual change and its direct consequences as such but rather deal with the notion of
ontology evolution.

There are few other studies that take a more detailed approach, such as Gottron and Gottron [28]
or Osborne et al. [29]. In these studies, the authors provide an analysis of changes and their direct
or indirect impact on the downstream application (indexing, predictions). The problem is looked in a
feed-forward way, where the change is applied, the application executed and the impact analysed. The
authors do not take an explicit dependency analysis approach to the problem and this remains an open
research problem.

All these studies lack a detailed look at the kind of ontology changes and their associated direct
and explicit impacts. There is no notion of complexity of the change and what the complexity means
for the downstream application. The closest work which assesses the type of change and its direct
consequences per type of change and how to deal with that is the work by Conde-Herreros et al. [13].
The authors develop a tool for propagating changes to the ontology to RMLmappings for a KG. However,
there is no associated analysis with this tool as they focus on the technical challenge associated with
dealing with changes rather than analysis of complexity and dependency.

6. Related Work

Knowledge Graph Construction. There are several non-technical, high-level proposals that explore
the modularization of the knowledge graph construction process. These range from KG lifecycle
approaches [30, 31], where KG construction is one of the tasks, to more methodological perspectives [32,
33, 34]. In general, these proposals are more focused on the tasks performed by knowledge engineers
rather than on technical and low-level challenges (i.e. dependencies). In [35], the authors propose
a workflow for creating mapping rules, where they structure the process around ontology classes
to facilitate development. However, dependencies between mapping documents and classes remain
implicit. As previously mentioned, the closest related work is presented in [13], where ontology changes
are propagated over RML-defined mapping rules [6] using a fully declarative approach. However, this
method requires changes to be defined as an external resource (a KG of changes, indeed) for propagation,
and dependencies are not explicitly calculated.

Ontology Engineering Tools to describe workflows to construct ontologies, such as the recent
Ontology Development Kit [36] and underlying ontology pipeline tools, such as ROBOT [37], focus on
editing and maintaining ontologies, i.e., on composing and editing sets of OWL axioms. While they
related different kinds of assets (e.g., exporting ontologies from spreadsheets), they are concerned with
a restricted form of knowledge graphs and enforce the whole workflow top-down.

Djedidi and Aufaure [38] look at dependencies in ontology evolution itself. They propose an ontology
change management framework or pipeline that takes the current ontology into account and the change
which needs to be applied. In specific steps, the change is assessed in terms of dependencies within
the ontology (and some external artifacts) itself by checking compatibility in terms of consistency of
the ontology. This framework also suggests the automatic resolution of inconsistencies by adjusting
how the change is to be applied to the ontology. Other works on ontology evolution and ontology
changes take a less technical and detailed approach. For example, Zablith et al. [39] survey existing
frameworks and techniques for the individual steps in the evolution. Two specific steps to be mentioned
here are the Validating Changes and Assessing Impact. In the Validating Changes step, present in all
surveyed frameworks, is used to filter our changes which would introduce incoherence or inconsistency.
Even though this step does not provide automatic resolution strategies like [38], it inherently assesses
potential dependencies within the ontology. In the Assessing Impact step, the focus shifts towards
external artifacts that are dependent on the ontology, so directly related to the problem at hand. However,
most survey framework do not concern themselves with this step and it is only present in, what the
authors refer to as KOAN [40] and Protégé [41]. An example of this assessment is the checking of the
ability to answer a specific query. Unfortunately, all the mentioned works above are more or almost 20
years old and do not easily translate to today’s KG construction pipelines and also miss the theoretical
discussion of dependencies which we could directly adapt here.

Related Fields Other fields have similar challenges when it comes to software engineering for data-
driven pipelines with heterogeneous assets. Idowu et al. [42] discuss asset management in machine
learning projects, where numerous software, data and other assets need to interact to produce value
from a set of source data sets. In machine learning, a larger field compared to KGC, the challenging
management and the need for deeper connections with software engineering practices have been
recognized earlier [43].

Infrastructure-as-Code [44] describes the assets (mostly scripts and configuration files) that configure
and deploy modern software systems in the cloud, a practice arising from DevOps. Due to the similarity
of the assets to standard software and their critical role concerning security, reliability and resources,
static analysis and other software quality measures have been investigated for it [45, 46].

OpenCAESAR [47, 48] is a development environment for ontology development using the Ontology
Modelling Language (OML), which uses Gradle tasks to construct RDF from OML, and run constraints
expressed in SHACL or SPARQL on the resulting data. Gradle enables to manage dependencies between
these tasks, but not between the underlying assets.

7. Conclusion

In this paper we introduce and analyze the idea of KG construction dependencies. To the best of our
knowledge, this is the first work that addresses explicit handling of the interrelationships between the
assets involved in KG development. We have demonstrated that incorporating dependency identification
will not only help create higher-quality knowledge graphs but also enable better management and
utilization of the resources used for this purpose such as mapping rules, pre-processing scripts, SPARQL
queries or SHACL shapes. Thanks to dependency identification, knowledge engineers can work more
efficiently, leading to a broader and more effective adoption of semantic web technologies.

Future Work. To make dependencies practical, the semantics of dependencies must be fixed for each
considered language used in KGC, before a stable tool that can analyse a full pipeline can be developed.
In particular, assets outside the construction itself, for example competency questions [49, 50] that may
change during the overall development, should be considered to enable traceability of changes back to
requirements. Conceptually, the connection to change coupling [51] remains an open question.

Acknowledgments. David Chaves-Fraga is funded by the Agencia Estatal de Investigación (Spain)
(PID2023-149549NB-I00), the Xunta de Galicia - Conselleria de Educación, Ciencia, Universidades e
Formación (Centro de investigación de Galicia accreditation 2024-2027 ED431G-2023/04 and Reference
Competitive Group accreditation 2022-2026, ED431C 2022/19) and the European Union (European
Regional Development Fund - ERDF). Eduard Kamburjan is partially supported by the EU project
SM4RTENANCE (101123490). We thank the organizers of the Dagstuhl Seminar 24061 “Are Knowledge
Graphs Ready for the Real World?”, where the ideas presented here were discussed for the first time.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] ISO/IEC/IEEE 24765-2010(E), Systems and software engineering — Vocabulary, Standard, Interna-
tional Organization for Standardization, 2010.

[2] A. J. Offutt, M. J. Harrold, P. Kolte, A software metric system for module coupling, J. Syst. Softw.
20 (1993) 295–308.

[3] M. Gethers, B. Dit, H. H. Kagdi, D. Poshyvanyk, Integrated impact analysis for managing software
changes, in: ICSE, IEEE Computer Society, 2012, pp. 430–440.

[4] M. Cataldo, A. Mockus, J. A. Roberts, J. D. Herbsleb, Software dependencies, work dependencies,
and their impact on failures, IEEE Trans. Software Eng. 35 (2009) 864–878.

[5] N. Wirth, The module: A system structuring facility in high-level programming languages, in:
Language Design and Programming Methodology, volume 79 of Lecture Notes in Computer Science,
Springer, 1979, pp. 1–24.

[6] A. Iglesias-Molina, D. V. Assche, J. Arenas-Guerrero, B. D. Meester, C. Debruyne, S. Jozashoori,
P. Maria, F. Michel, D. Chaves-Fraga, A. Dimou, The RML ontology: A community-driven modular
redesign after a decade of experience in mapping heterogeneous data to RDF, in: ISWC, volume
14266 of Lecture Notes in Computer Science, Springer, 2023, pp. 152–175.

[7] P. Heyvaert, B. De Meester, A. Dimou, R. Verborgh, Declarative Rules for Linked Data Generation
at your Fingertips!, in: Proceedings of the 15th ESWC: Posters and Demos, 2018.

[8] A. Flores-Montoya, E. Albert, S. Genaim, May-happen-in-parallel based deadlock analysis for
concurrent objects, in: FMOODS/FORTE, volume 7892 of Lecture Notes in Computer Science,
Springer, 2013, pp. 273–288.

[9] U. Sattler, T. Schneider, M. Zakharyaschev, Which kind of module should I extract?, in: Description
Logics, volume 477 of CEUR, 2009.

[10] B. Konev, C. Lutz, D. Walther, F. Wolter, Model-theoretic inseparability and modularity of descrip-
tion logic ontologies, Artificial Intelligence 203 (2013) 66–103.

[11] J. Chen, M. Ludwig, Y. Ma, D. Walther, Zooming in on ontologies: Minimal modules and best
excerpts, in: ISWC, volume 10587 of LNCS, 2017.

[12] P. Koopmann, J. Chen, Deductive module extraction for expressive description logics, in: IJCAI,
ijcai.org, 2020.

[13] D. Conde-Herreros, M. Poveda-Villalón, R. Pernisch, L. Stork, O. Corcho, D. Chaves-Fraga, Prop-
agating Ontology Changes to Declarative Mappings in Construction of Knowledge Graphs, in:
Fifth International Workshop on Knowledge Graph Construction @ ESWC, 2024.

[14] J. Lamy, Owlready: Ontology-oriented programming in python with automatic classification
and high level constructs for biomedical ontologies, Artif. Intell. Medicine 80 (2017) 11–28. URL:
https://doi.org/10.1016/j.artmed.2017.07.002. doi:10.1016/J.ARTMED.2017.07.002.

[15] E. Ilkou, H. Abu-Rasheed, D. Chaves-Fraga, E. Engelbrecht, E. Jiménez-Ruiz, J. E. Labra-Gayo,
Teaching knowledge graph for knowledge graphs education, Semantic Web (Under Review) (2025).

[16] X. Duan, D. Chaves-Fraga, O. Derom, A. Dimou, Scoop all the constraints’ flavours for your
knowledge graph, in: The Semantic Web: 21st International Conference, ESWC 2024, Springer,
2024, p. 217–234. doi:10.1007/978-3-031-60635-9_13.

[17] G. Zamprogno, M. Adamik, R. Roothaert, A. Naghdipour, L. Stork, P. Koopmann, R. Pernisch,
B. Kruit, J. Chen, I. Tiddi, S. Schlobach, Supporting companion planting with the copla ontology,
in: KG4S@ESWC, volume 3753 of CEUR Workshop Proceedings, CEUR-WS.org, 2024, pp. 29–41.

[18] D. Chaves-Fraga, O. Corcho, A. Dimou, M.-E. Vidal, A. Iglesias-Molina, D. Van Assche, Are
knowledge graphs ready for the real world? challenges and perspective (dagstuhl seminar 24061),
Dagstuhl Reports 14 (2024) 1–70.

[19] W. B. Frakes, C. Terry, Software reuse: Metrics and models, ACM Comput. Surv. 28 (1996) 415–435.
[20] G. Bavota, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, A. D. Lucia, An empirical study on the

developers’ perception of software coupling, in: ICSE, IEEE Computer Society, 2013, pp. 692–701.
[21] D. Arribas-Bel, M. Green, F. Rowe, A. Singleton, Open data products-a framework for creating

valuable analysis ready data, J. Geogr. Syst. 23 (2021) 497–514.
[22] S. Borgo, Goals of modularity: A voice from the foundational viewpoint, in: WoMO, volume 230

of Frontiers in Artificial Intelligence and Applications, IOS Press, 2011, pp. 1–6.
[23] S. Oh, H. Y. Yeom, J. Ahn, Cohesion and coupling metrics for ontology modules, Inf. Technol.

Manag. 12 (2011) 81–96.
[24] Z. C. Khan, C. M. Keet, Dependencies between modularity metrics towards improved modules, in:

EKAW, volume 10024 of Lecture Notes in Computer Science, 2016, pp. 400–415.
[25] F. Damiani, R. Hähnle, E. Kamburjan, M. Lienhardt, L. Paolini, Variability modules, J. Syst. Softw.

195 (2023) 111510.
[26] A. Gross, M. Hartung, K. Prüfer, J. Kelso, E. Rahm, Impact of ontology evolution on functional

analyses, Bioinformatics 28 (2012) 2671–2677.
[27] R. Pernisch, D. Dell’Aglio, A. Bernstein, Beware of the hierarchy — An analysis of ontology

evolution and the materialisation impact for biomedical ontologies, Journal of Web Semantics 70
(2021) 100658. URL: https://www.sciencedirect.com/science/article/pii/S1570826821000330. doi:10.
1016/j.websem.2021.100658.

[28] T. Gottron, C. Gottron, Perplexity of Index Models over Evolving Linked Data, in: ESWC, volume
8465, Springer, 2014, pp. 161–175.

[29] F. Osborne, E. Motta, Pragmatic Ontology Evolution: Reconciling User Requirements and Ap-
plication Performance, in: ISWC, volume 11136 of LNCS, Springer, 2018, pp. 495–512. Tex.ids=
osborne_pragmatic_2018.

[30] A. Cimmino, R. García-Castro, Helio: a framework for implementing the life cycle of knowledge
graphs, Semantic Web 15 (2024) 223–249.

[31] U. Simsek, K. Angele, E. Kärle, J. Opdenplatz, D. Sommer, J. Umbrich, D. Fensel, Knowledge graph

https://doi.org/10.1016/j.artmed.2017.07.002
http://dx.doi.org/10.1016/J.ARTMED.2017.07.002
http://dx.doi.org/10.1007/978-3-031-60635-9_13
https://www.sciencedirect.com/science/article/pii/S1570826821000330
http://dx.doi.org/10.1016/j.websem.2021.100658
http://dx.doi.org/10.1016/j.websem.2021.100658

lifecycle: Building and maintaining knowledge graphs., in: KGCW@ ESWC, 2021.
[32] G. Tamašauskaitė, P. Groth, Defining a knowledge graph development process through a systematic

review, ACM Transactions on Software Engineering and Methodology 32 (2023) 1–40.
[33] D. Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O. Panasiuk, I. Toma, J. Umbrich, A. Wahler,

D. Fensel, et al., How to build a knowledge graph, Knowledge Graphs: Methodology, Tools and
Selected Use Cases (2020) 11–68.

[34] R. Pernisch, M. Poveda-Villalón, D. Conde-Herreros, D. Chaves-Fraga, L. Stork, When ontologies
met knowledge graphs: Tale of a methodology, in: European Semantic Web Conference, Springer,
2024, pp. 286–290.

[35] D. Chaves-Fraga, O. Corcho, F. Yedro, R. Moreno, J. Olías, A. De La Azuela, Systematic construction
of knowledge graphs for research-performing organizations, Information 13 (2022) 562.

[36] N. Matentzoglu, D. Goutte-Gattat, S. Z. K. Tan, J. P. Balhoff, S. Carbon, A. R. Caron, W. D. Duncan,
J. E. Flack, M. Haendel, N. L. Harris, W. R. Hogan, C. T. Hoyt, R. C. Jackson, H. Kim, H. Kir,
M. Larralde, J. A. McMurry, J. A. Overton, B. Peters, C. Pilgrim, R. Stefancsik, S. M. Robb, S. Toro,
N. A. Vasilevsky, R. Walls, C. J. Mungall, D. Osumi-Sutherland, Ontology development kit: a toolkit
for building, maintaining and standardizing biomedical ontologies, Database J. Biol. Databases
Curation (2022).

[37] R. C. Jackson, J. P. Balhoff, E. Douglass, N. L. Harris, C. J. Mungall, J. A. Overton, ROBOT: A tool
for automating ontology workflows, BMC Bioinform. 20 (2019) 407:1–407:10.

[38] R. Djedidi, M.-A. Aufaure, Ontology ChangeManagement, in: A. Paschke, H.Weigand,W. Behrendt,
K. Tochtermann, T. Pellegrini (Eds.), 5th International Conference on Semantic Systems, Graz,
Austria, September 2-4, 2009. Proceedings, Verlag der Technischen Universität Graz, 2009, pp.
611–621. URL: http://www.i-semantics.at/2009/papers/ontology_change_management.pdf.

[39] F. Zablith, G. Antoniou, M. d’Aquin, G. Flouris, H. Kondylakis, E. Motta, D. Plexousakis, M. Sabou,
Ontology evolution: a process-centric survey, The Knowledge Engineering Review 30 (2015)
45–75. doi:10.1017/S0269888913000349, publisher: Cambridge University Press.

[40] L. Stojanovic, Methods and tools for ontology evolution, PhD Thesis, Karlsruhe Institute of
Technology, Germany, 2004.

[41] N. F. Noy, A. Chugh, W. Liu, M. A. Musen, A Framework for Ontology Evolution in Collaborative
Environments, in: I. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold,
L. M. Aroyo (Eds.), The Semantic Web - ISWC 2006, Springer, Berlin, Heidelberg, 2006, pp. 544–558.
doi:10.1007/11926078_39.

[42] S. Idowu, D. Strüber, T. Berger, Asset management in machine learning: State-of-research and
state-of-practice, ACM Comput. Surv. 55 (2023) 144:1–144:35.

[43] S. Amershi, A. Begel, C. Bird, R. DeLine, H. C. Gall, E. Kamar, N. Nagappan, B. Nushi, T. Zimmer-
mann, Software engineering for machine learning: a case study, in: ICSE (SEIP), IEEE / ACM,
2019, pp. 291–300.

[44] K. Morris, Infrastructure as Code: Managing Servers in the Cloud, 1st ed., O’Reilly Media, Inc.,
2016.

[45] A. Rahman, R. Mahdavi-Hezaveh, L. A. Williams, A systematic mapping study of infrastructure as
code research, Inf. Softw. Technol. 108 (2019) 65–77.

[46] M. Chiari, M. D. Pascalis, M. Pradella, Static analysis of infrastructure as code: a survey, in: ICSA
Companion, IEEE, 2022, pp. 218–225.

[47] M. Elaasar, N. Rouquette, D. Wagner, B. J. Oakes, A. Hamou-Lhadj, M. Hamdaqa, opencaesar:
Balancing agility and rigor in model-based systems engineering, in: 2023 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), IEEE
Press, 2023, p. 221–230. doi:10.1109/MODELS-C59198.2023.00051.

[48] D. A. Wagner, M. Chodas, M. Elaasar, J. S. Jenkins, N. Rouquette, Ontological Metamodeling
and Analysis Using openCAESAR, Springer International Publishing, Cham, 2023, pp. 925–954.
doi:10.1007/978-3-030-93582-5_78.

[49] C. M. Keet, Z. C. Khan, On the roles of competency questions in ontology engineering, in: EKAW,
volume 15370 of Lecture Notes in Computer Science, Springer, 2024, pp. 123–132.

http://www.i-semantics.at/2009/papers/ontology_change_management.pdf
http://dx.doi.org/10.1017/S0269888913000349
http://dx.doi.org/10.1007/11926078_39
http://dx.doi.org/10.1109/MODELS-C59198.2023.00051
http://dx.doi.org/10.1007/978-3-030-93582-5_78

[50] G. K. da Silva Quirino, J. S. Salamon, M. P. Barcellos, Use of competency questions in ontology
engineering: A survey, in: ER, volume 14320 of Lecture Notes in Computer Science, Springer, 2023,
pp. 45–64.

[51] M. D’Ambros, M. Lanza, R. Robbes, On the relationship between change coupling and software
defects, in: WCRE, IEEE Computer Society, 2009, pp. 135–144.

	1 Introduction
	2 Overview
	3 Dependencies in Knowledge Graph Construction
	4 Evaluation
	5 Discussion
	6 Related Work
	7 Conclusion

