Mapping by Example: Towards an RML Mapping Reverse
Engineering Pipeline
Michael Freund®*, Rene Dorsch!, Sebastian Schmid? and Andreas Harth?

'Fraunhofer Institute for Integrated Circuits IIS, Niirnberg, Germany

2Friedrich-Alexander-Universitit Erlangen-Niirnberg, Niirnberg, Germany

Abstract

We introduce a reverse engineering pipeline to generate an RML mapping document from a given non-RDF
source and an expected RDF graph. We present and discuss the core algorithms required to implement the
reverse engineering pipeline, and demonstrate the algorithms in a prototypical implementation called ReMap.
The proposed reverse engineering approach enables users to convert non-RDF data into RDF by example. Users
provide an example RDF output graph based on non-RDF input, and the pipeline automatically generates an
RML mapping document that transforms the non-RDF input into the desired RDF graph. The ReMap tool is
evaluated for conformance to the specification using the RML core test cases and compared to a similar approach
using a Large Language Model (LLM) for RML mapping document generation. Additionally we evaluated the
performance in terms of execution time and memory consumption using a benchmark dataset. The results show
that the ReMap tool conforms to all applicable test cases, while an LLM-based approach performs 31% worse.
The performance results show that the ReMap tool exhibits a time complexity of O((n - ¢)*) resulting from the
quadratic join detection step, where n represents the total number of non-RDF input elements and g denotes the
total number of RDF terms in the target RDF graph.

Keywords
RDF Mapping Language (RML), Mapping Generation, Knowledge Graph Construction

1. Introduction

The Resource Description Framework (RDF) [1] is the data model used in Knowledge Graphs (KGs) [2].
To integrate structured data (e.g., CSV) or semi-structured data (e.g., JSON) into a KG, users can use the
RDF Mapping Language (RML) [3] to transform the non-RDF data to RDF. The RML ecosystem already
provides several tools that attempt to simplify RML mapping generation, including the RMLEditor [4],
a user-friendly low-code editor for RML mappings, and YARRRML [5], a more human-readable, YAML-
based mapping language, able to be translated into RML. Additionally, YARRRML is supported by
Matey [6], a dedicated editor that simplifies mapping creation and maintenance.

Despite the availability of tools to assist users, creating RML mappings remains a challenge. Users
must consider the available input data and define the desired structure and ontologies of the target
RDF graph. Only after that the users can write RML mappings that describe the necessary data
transformations to bridge structured or semi-structured input data to the desired RDF graph. The
creation of the RML mappings requires familiarity with RDF graph modeling, as well as an understanding
of RML ontology terms [7] and syntax.

Introducing a reverse engineering approach to generate RML mappings based on non-RDF source
data and the expected output RDF graph can simplify the mapping creation process. The approach
eliminates the need to manually write RML mappings after defining the target RDF graph, making
the transformation workflow more efficient. Additionally, the reverse engineering approach allows
users to map non-RDF source data by example, meaning that users provide the input source data and an
example of the desired target RDF graph. The example serves to illustrate the target structure, including

CEUR-WS.org/Vol-3999/paper5.pdf

KGCW’25: 6th International Workshop on Knowledge Graph Construction, June 1, 2025, Portoroz, SLO
*Corresponding author.

& michael freund@iis.fraunhofer.de (M. Freund)

@ 0000-0003-1601-9331 (M Freund); 0000-0001-6857-7314 (R. Dorsch); 0000-0002-5836-3029 (S. SChmid);
0000-0002-0702-510X (A. Harth)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings

mailto:michael.freund@iis.fraunhofer.de
https://orcid.org/0000-0003-1601-9331
https://orcid.org/0000-0001-6857-7314
https://orcid.org/0000-0002-5836-3029
https://orcid.org/0000-0002-0702-510X
https://creativecommons.org/licenses/by/4.0/deed.en

the desired RDF classes, properties, and how specific source data values should be transformed or
represented in the RDF graph, and let the system reverse engineer the required RML mapping document.

The reverse engineering approach can be difficult because different RML mapping documents using
different RML language constructs can transform the same non-RDF source data into an equivalent
output RDF graph, requiring identification of the most general triple maps. That is, triple maps in
the reverse engineered RML mapping document that generate duplicate RDF output triples must be
identified and filtered out to generate a minimal and comprehensive RML mapping document.

Previous work has focused on either generating RML mappings by identifying common concepts
between non-RDF source data and a given ontology [8], or performing the inverse transformation of
converting RDF data to a non-RDF format using its corresponding RML mapping [9]. In contrast, we
aim to reverse engineer and generate RML mapping documents directly from non-RDF input and the
expected RDF output.

In our approach, we introduce a reverse engineering pipeline that generates a normalized RML
mapping document containing RML triple maps that describe the transformation of a given non-RDF
input data into a corresponding RDF output. The pipeline first identifies the term types, term map types,
and term maps of all RDF terms in the output RDF graph by performing string comparison operations
on the input data. Based on the extracted information, a search space of RML triple maps describing
the generation of each triple in the output RDF graph is generated. In the second step, the pipeline
extends this search space by grouping RML triple maps that describe potential joins. In the third and
final step, the pipeline processes the search space and identifies the most general triple maps to generate
a minimal mapping document by aggregating RML triple maps that generate identical RDF triples, thus
avoiding redundant generation. The final RML triple maps are then written to disk and stored in the
resulting RML mapping document. Because the approach is based solely on deterministic operations,
such as string comparisons, the generation of RML mappings is transparent.

The key contributions of this work are:

+ The introduction of a reverse engineering pipeline to generate RML mapping documents based
on non-RDF source data and expected RDF output.

+ The introduction of algorithms to derive the term map, the term map type and the term type.

+ The empirical conformance and performance evaluation of a proof-of-concept implementation
using the RML core test cases and a benchmark dataset, with a comparison to an LLM-based
approach.

2. Related Work

Transforming non-RDF data to RDF using RML typically involves two files, the input source data and
the RML mapping document, and generates a third file containing the RDF graph. This workflow is im-
plemented by various RML interpreters such as Morph-KGC [10], SDM-RDFizer [11], RMLStreamer [12],
or FlexRML [13]. Previous work has explored the inversion of the typical process where the two given
files are instead the RML mapping document and a RDF graph and the aim is to generate the non-RDF
data as output [9], showing results with limitations. The latest research in converting RDF data to
non-RDF formats has instead focused on defining new mapping languages and techniques [14]. In
contrast to these approaches we want to focus on the generation of a RML mapping document, with
the given files being the non-RDF source data and the RDF output graph.

The automatic generation of RML mappings is only explored by a limited number of publications.
Previous work has mainly investigated how RML mapping documents can be generated based on a
given non-RDF source data and a target ontology.

On the one hand are approaches, such as [8], which use the TBox of a target ontology to match
concepts in the ontology to the given non-RDF data [8]. The method is related to approaches used in
semantic table annotation, where tabular data is annotated based on information in KGs [15, 16]. In
contrast, we generate mappings using ABox examples to infer mapping rules.

On the other hand, since the rise of Large Language Models (LLMs) such as the Gemma family of
models [17] or the GPT series [18] with their ability to process natural language text [19], research
has been exploring the use of LLMs in RML mapping generation. In [20] a LLM-based pipeline for
ontology development is introduced. The pipeline consists of a mapping component for RML generation
to describe the transformation between the developed ontology and the source dataset. In [21], an
LLM-based RML mapping document generation pipeline is introduced that uses a target ontology and
non-RDF source data as input, generates an RML mapping document in Turtle syntax, and validates and
repairs the generated Turtle files. These approaches are either machine learning based or use different
similarity metrics to fully automate the generation process, requiring only the target ontology and the
non-RDF data. In contrast we want to introduce a deterministic approach that reliably generates RML
mapping documents using string comparison operators, so we require the non-RDF data and the target
RDF graph as input. Furthermore, our goal is not to fully automate the generation of RML mappings,
but rather to provide a pipeline that can help users generate mappings based on a given set of non-RDF
source data and a comprehensive example of the target RDF graph.

The concept closest related to our approach is query reverse engineering [22] from the field of
relational databases. The aim of query reverse engineering is to generate an SQL query given a database
and a result table. The generated SQL query must be instance-equivalent to the original unknown query
used to generate the result table. The approach allows for the identification of alternative queries over
the data and the identification of unknown data connections. Additionally, query reverse engineering
allows users to query the data by example, where users provide examples of the desired data and let the
system reverse engineer the query [23]. In our approach, we want to transfer the concepts of query
reverse engineering to the domain of KG construction, in order to allow users to map non-RDF data to
RDF by example.

3. Preliminaries

Typical RML interpreters transform the set of non-RDF input data, I = {i, iy, ..., i,}, to RDF output, G,
by interpreting the operations described by the set of triple maps {t1,%,, ..., t,} contained in the RML
mapping document M and applying it to I The interpreter therefore processes multiple input files
using triple maps in an RML mapping document to produce an RDF output. The transformation can be
formalized as a function fsuch that f(M,I) = G. The function fis implemented by RML interpreters and
essentially applies string replacement operations, such as filling in string templates, directly inserting
data using references, and performing string formatting. The string formatting operations ensure that
the output is a valid IRI (enclosed in <>), a valid blank node (starting with _:), or a literal (enclosed in
") with an appropriate data type or language tag.

Fig. 1 shows the entire mapping process. The non-RDF source data is in CSV format, and the
corresponding RML mapping document® uses the latest RML vocabulary. Both are used as input to
an RML interpreter, which generates the output RDF graph in N-Triple format. The non-RDF source
data, the RML mapping document, and the RDF output will be used throughout this paper as a running
example.

4. Approach

In our approach we aim to invert the function f(M, I) = G typically implemented by RML interpreters,
as introduced in the previous section. Instead of starting with an RML mapping document M to produce
the RDF output G from the non-RDF source data I, we reverse the process. Given the set of non-RDF
input data I and the RDF output G, our goal is to generate a minimal RML mapping document M’
that is equivalent to the original and unknown mapping document M. This means that the RML
mapping documents M and M’ produce identical RDF output graphs, i.e., f(M,I) = f(M’,I) = G,

'Well-known prefixes are omitted, but can be looked up on http://prefix.cc/.

http://prefix.cc/

RML mapping document (M)

1. @base <http://ex.com/base/> .
2.
3. <#TriplesMapl> a rr:TriplesMap ;
non'RDF data (I) 4. rml:logicalSource [rml:source [rml:path "filel.csv"];
5. rml:predicateObjectMap [
file1.csv 6. rml:objectMap [
1D Department Name 7. rml:joinCondition|[
8. rml:child "Department";
10 835 John Doe 9. rml:parent "ID"] ;
20 Jane Roe 10 rml:predicate <http://example.com/worksAt];
11 rml:subjectMap [
) 12. rml:template "http://ex.com/{user}";
file2.csv 13. rml:class <http://ex.com/employee>].
ID Name 14. _ i
15. <#TriplesMap2> a rr:TriplesMap;
835 Iegal 16. rml:logicalSource [rml:source [rml:path "file2.csv"];
935 finance 17. rml:subjectMap [rml:template "http://ex.com/{Name}"].

v

RML Interpreter

v

<http://ex.com/user_20> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://ex.com/employee> .
<http://ex.com/user_10> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://ex.com/employee> .
<http://ex.com/user_10> <http://ex.com/worksAt> <http://ex.com/legal> .

RDF output graph (G)

Figure 1: Running example with input data I = {filel.csv, file2.csv}, RML mapping document M, and output
RDF graph G.

while potentially using different RML mapping constructs. M” and M are both possible RML mapping
documents within the set of all equivalent RML mapping documents, denoted as V, that is M’, M € V.
In some cases, M’ and M may also represent the same element, i.e., M’ = M. Our approach aims to
identify the M’ € V that contains the minimal number of RML triple maps.

Given the non-RDF input and the RDF output we need to determine the three components term type,
with possible values of IR, blank node, and literal, term map type with values of template, reference,
and constant, and term map which consists of strings to be processed based on all output RDF triples.
The information is necessary to generate all potential RML triple maps, thereby creating a search space
of triple maps. By evaluating this search space, we aim to identify the minimal RML mapping document
M’ by selecting the best-fitting RML triple maps. Specifically, we prefer triple maps that use a term map
type of template or reference over constants, as they typically generate more RDF triples in the output.
The identified best-fitting RML triple maps are then included in the final RML mapping document M’,
ensuring that the final result contains the minimal necessary number of triple maps.

RML Mapping Reverse Engineering Pipeline $j
non-RDF
Data N Triple Map E Join E Triplg Map EI
Generator Detector Filter
RML
* * * Mapping
Set Set Set Document
; Triple Maps Unique Triple Maps
Triple M) A
RDF ripie Haps Including Joins Including Joins
Data > Y

Figure 2: Overview of core components in the RML mapping document reverse engineering pipeline.

The overall reverse engineering pipeline is depicted in Fig. 2. The pipeline generally consists of three
processing components. The first component, the Triple Map Generator, is used to identify term types,
term map types, and term maps. The information is used to generate all possible triple maps, which
creates the initial search space, represented as a set of triple maps. The second component, the Join
Detector component, takes the set of triple maps as input and identifies potential joins by combining
related triple maps into a single join triple map. The component therefore extends the initial search
space and produces a new set of triple maps that includes the identified joins as output. The final
component, the Triple Map Filter, processes the created search space and identifies and filters all triple
maps that produce a subset of RDF triples from other triple maps, with the goal of identifying all triple
maps required to generate a minimal RML mapping document M’. Finally, all valid triple maps are
combined into the generated RML mapping document and saved to disk. All three components and
their computational complexity are discussed in more detail in the following subsections.

4.1. Triple Map Generator

The Triple Map Generator component takes the set of non-RDF source data I and the target RDF graph
G as input. Using the following three algorithms, the component extracts all term types, term map
types, and term maps. Using the extracted information and predefined triple map templates that define
the basic RML structure, the component generates a set of potential RML triple maps, which represent
the initial search space.

Identifying Term Types The first step in the Triple Map Generator component of the reverse
engineering pipeline is to determine the term types of the subject, predicate, object, and optional graph
terms of the output RDF graph. The term types are identified based on the formatting of RDF terms in
different RDF serializations. We assume that the serialization format is N-Triple, since this is the format
generated and supported by most RML interpreters [10, 11, 12, 13]. If a target RDF graph is available
in another format, such as Turtle, the serialization can be adjusted and reserialized to N-Triples. In
N-Triples, blank nodes are prefixed with _:, IRIs are enclosed in < >, and literals are enclosed in " ".
Algorithm 1 describes the identification process in pseudocode and assumes well-formed RDF terms as
input. The algorithm is relatively simple but must be executed for each term in the RDF graph.

Algorithm 1: Term Type Identification
Input: RDF term T (string)
Output: Identified RDF term type (string)
// Remove language tag or datatype

1 if '22" in Tthen

2 L T « Tsplit(* 22 ")[0];

3 elseif '@ ' in Tthen

4 L T « Tsplit(' @")[0];

// Identify term type

5 if T[0] == '<' and T[-1] == '>' then

6 L return 'iri';

7 else if T[0] == '_' and T[1] == ':' then
8 L return 'blanknode’;

9 elseif T[0] == '"' and T[-1] == '"' then

10 L return 'literal';

11 else
12 Lerror

For instance, when Algorithm 1 processes all RDF terms in the output RDF graph of the running

example introduced in Section 3, it determines that all RDF terms are of term type IRI.

Identifying Term Map Types The next step is the identification of the term map type in the output
RDF data. The term map type of an RDF term is determined based on how the data is generated.
Specifically:

« If the RDF term does not contain values from the non-RDF source data, its term map type is
constant.

o If the RDF term contains only values from the non-RDF source data, its term map type is
reference.

o If the RDF term contains some values from the non-RDF source data, its term map type is
template.

To avoid identifying template values within well-known IRIs, we introduce protected IRIs. Protected
IRIs are a predefined list of common vocabulary namespaces (e.g., RDF, RDFS, OWL, RML) that are
considered protected, meaning that no replacement operations are performed on them. Furthermore,
the list of protected namespaces or specific IRIs can be customized for a specific domain, and relevant
protected IRIs can be added.

Additional processing is required if the term type is an IR], since the algorithm must first decode the
IR], i.e. remove percent encoded characters, before it can perform data matching. Algorithm 2 shows
an implementation in pseudocode. The algorithm must be run for each entry in the non-RDF data and
compared to each RDF term in the output RDF graph, and each RDF term must be compared to all
protected IRIs.

Algorithm 2: Term Map Type Identification
Input: RDF term T (string), non-RDF input element E (string), protected IRIs A (array[string])
Output: The identified term map type (string)
// Remove percent encoded chars
1 T = decode(T);
// Remove protected IRI
for iriin A do
if iri in E then
T « Tremove(iri);
L break;

G W N

// Identify term map type
6 if E notin T then
7 L return 'constant';

8 else if E == T then
9 L return 'reference’';

10 else
11 L return 'template';

When Algorithm 2 processes the first RDF term of the running example, ie. T =
http://example.com/user_10, and the first element of the first row of filel.csv, E = 10, it de-
termines that the term map type is template, since the entry 10 can replace parts of the RDF term
T. However, if the algorithm processes the second element of the first row of filel.csv, E =835, it
determines that the term map type is constant, since the entry 835 cannot replace parts of the RDF
term T and is independent of the input.

Identifying Term Maps The last step is to identify term maps. Term maps come in three variants: a
template string, a reference identifier, and a constant string. In order to generate the correct term map,

an algorithm must perform string substitution operations and check whether parts of the non-RDF
source data are a valid substring of each RDF term in the output RDF graph, indicating a template or a
reference. No match indicates a constant. Identifying the term map type uisng Algorithm 2 in advance
helps to generate the term map. Algorithm 3 demonstrates how term maps can be generated.

Algorithm 3: Term Map Identification
Input: RDF term T (string), non-RDF input element E (string), RDF term type P (string)
Output: The identified term map (string)
// Remove percent encoded chars

1 T = decode(D);

// Generate Term Map

2 if P == 'constant’ then
3 L return T;

4 else if P == ’'reference’ then
5 L return E;

6 else if P == "template’ then
// Get attribute name of E
7 E_Header « attributeNameOf(E);
// Replace E with attribute name of E
T < Treplace(E, E_Header);
return T;

o o

When Algorithm 3 is invoked with the first input from the example in Algorithm 2, ie. T =
http://example.com/user_10, E = 10, P = template, it produces the term map template string
http://example.com/user_{ID}. Similarly, if the algorithm is invoked with the second input from the
example in Algorithm 2, i.e. T = http://example.com/user_10, E = 835, P = constant, it produces
the term map constant string http://example.com/user_10. Both are valid ways to generate the term
map T, depending on the non-RDF input data, but the approach based on the template string is more
general. When all elements of RDF triple, i.e., subject, predicate, and object, have been processed by
algorithm 3, the extracted information can be used to fill a triple map template that generates exactly
the given RDF triple. All triple maps generated in this way are added to the initial search space.

Complexity Analysis The Triple Map Generator component containing the three introduced algo-
rithms is computationally very intensive and the performance depends on five factors, the number
of processed non-RDF files r, the number of entries in each non-RDF file, n (for CSV files, this is the
number of rows), the number of elements in each entry, m (for CSV files, this is the number of columns),
the number of N-Triples in the output RDF graph, g, and the number of protected IRIs, p. The resulting
overall time complexity is therefore O(r-n-m-q- p). Since r, m and p are relatively small compared to
n and g, the time complexity of the component can be simplified to @(n - g). The output of the Triple
Map Generator component is the initial search space, represented in the form of a set of potential triple
maps S.

4.2. Join Detector

Identifying join triple maps and corresponding join attributes, called parent and child in RML, is a
challenging task. The Join Detector component of the reverse engineering pipeline takes the initial
search space, i.e. the set of triple maps, S, generated by the Triple Map Generator component and
identifies potential equi joins by comparing each generated triple map with all other triple maps. Once a
potential join is identified, we use a set similarity overlap metric to heuristically identify join attributes
and rank them by a score. We assume that among all potential join pairs, the pairs with the highest
overlap are the most likely candidates for the join. Based on the extracted information, new join triple

maps are generated and added to the set of all triple maps S, which extends the initial search space.

Join Detection To identify two triple maps that can potentially be combined into a single join
triple map, we use Algorithm 4. The algorithm takes two triple maps, tm1 and tm2, as input, where
tm1,tm2 € T, and determines whether they can be merged into a single join triple map. To do so, the
algorithm compares the term maps, term map types, and term types of tm1 and tm2, as well as relevant
invariants, which are defined as the longest common starting substring of RDF terms [10].

For tm1 to be considered a potential join triple map, its subject term map type must not be of term
map type constant, while its object term map must be of term map type constant. Similarly, for tm2
to be considered a potential join triple map of tm1, the subject term map of tm2 must have a term map
type of constant, while its object term map must not be of term map type constant. Additionally,
both triple maps, tm1 and tm2, must have identical predicate term maps and predicate term types.
Furthermore, the subject term map invariant of tm1 must be contained within the subject term map of
tm2, and the object term map invariant of tm2 must be contained within the object term map of tm1.

If all these conditions are met, the two triple maps can potentially be combined into a single join
triple map. The following Algorithm 4 presents an implementation of the described join triple map
identification.

Algorithm 4: Join Triple Map Identification
Input: Triple Map 1 tm1 (graph), Triple Map 2 tm2 (graph)
Output: combination possible (boolean)

// tml must not be constant in subject and must be constant in object
1 if tml.subject_term_map type == 'constant’ then
2 Lreturn false;

3 if tml.object_term_map_type != 'constant’ then
4 L return false;

// tm2 must be constant in subject and must not be constant in object
5 if tm2.subject_term_type != "constant’ then
6 Lreturn false;

7 if tm2.subject_term_type == ’constant’ then
8 L return false;

// tml and tm2 must have equal predicate term map and term map type
9 if not (tml.predicate_term_map == tm2.predicate_term_map and
tml.predicate_term_type == tm2.prediacte_term_type) then
10 L return false;

// Invariant of tml subject must be in tm2 subject
11 if not(invar(iml.subject_term_map) in tm2.subject_term_map) then
12 Lreturn false;

// Invariant of tm2 object must be in tml object
13 if not(invar(tm?2.object_term_map) in tml.object_term_map) then
14 Lreturn false;

15 return true;

The input to the Join Identification component is the initial search space, represented by the set S.
The set S contains two triple maps, tm1 and tm2, which are depicted in Fig. 3. If both triple maps are
used as input for Algorithm 4, all checks pass, and the output is true, indicating that both triple maps
potentially form a join.

tml
. @base <http://ex.com/base/> .

. <#TriplesMap98> a rml:TriplesMap ;

rml:logicalSource [rml:source [rml:path "filel.csv"];
rml :predicateObjectMap [

rml:object <http://example.com/legal> ;

rml:predicate <http://ex.com/worksAt>] ;
rml:subjectMap [rml:template "http://ex.com/user {ID}"]

0o do Ul WN K

tm2

. @base <http://ex.com/base/> .

. <#TriplesMap89> a rml:TriplesMap ;

rml:logicalSource [rml:source [rml:path "file2.csv"];
rml :predicateObjectMap [

rml:objectMap [rml:template "http://ex.com/{Name}"]
rml:predicate <http://ex.com/worksAt>] ;

rml:subject <http://ex.com/user 10> .

0 dJo Ul WN K

Figure 3: Two triple maps, tm1 and tm2, contained in the initial search space, represented by the set S.

Identifying Join Attributes Once two potential join triple maps representing data sources to be
potentially linked have been identified, the connecting join attributes must be determined. Our approach
employs a heuristic that first scores each possible combination of attributes using the overlap coefficient
(Equation 1), a set similarity measure detailed below. The pairs achieving the highest scores are
considered primary candidates.

To calculate the score, the algorithm evaluates the overlap coefficient, also known as set contain-
ment [24], which measures the similarity between two finite sets (A and B) within the candidate attribute
columns.

|A n B
min(|Al, |B)

The resulting values range from 0 to 1, i.e., 0 < overlap(A, B) < 1, where the value 1 is reached if
A C Bor B C A, suggesting a strong potential join relationship. The method is similar to established
approaches used to identify joinable tables in large-scale data lakes [25].

Following the initial scoring, a validation step is performed on the highest-ranking candidate pairs.
For each candidate pair, a test join is executed on the corresponding source data columns. The attribute
pair that results in the generation of the most RDF triples in the output is selected. The selected
attributes are then used as the parent and child attributes within the RML join condition for the
combined triples map.

The overlap coefficient of the data used in the two triple maps, tm1 and tm2, in the running example
and Fig. 3 is highest for the combination (Department, ID), as all other combinations have no overlap.
Assuming the score is uniquely highest and validation confirms it generates the most joined triples, the
pair is selected. Therefore, both triple maps are combined into a single join triple map with Department
as child and ID as parent. The new join triple map is then added to the search space S.

overlap(A, B) = (1)

Complexity Analysis The Join Detector component consists of two steps, the Join Detection step and
the Join Attribute Identification step. The first step, which is also the most significant in terms of time
complexity, involves Algorithm 4, which must be executed for all generated triple maps in the search
space, comparing each one with all other generated triple maps. Consequently, the Join Detection step
has a quadratic time complexity, dependent on the size of the initial search space, represented by the
generated triple map set, S. In contrast, the Join Attribute Identification step iterates over the content
of the two compared attributes and, therefore, has a linear time complexity. Thus, the overall time
complexity of the Join Identification component depends on the size of S, given by size(S), resulting

in a time complexity of O(size(S)?). Because S = O(n - q) in the worst case, the Join Detector step is
therefore O((n - ¢)%), and dominates the overall pipeline.

4.3. Triple Map Filter

The final component in the reverse engineering pipeline is the Triple Map Filter component, which first
identifies and removes redundant triple maps, i.e., those triple maps that generate only a subset of RDF
triples produced by other triple maps, from the set S. In the second step, the remaining triple maps in S
are verified to ensure they generate the expected RML triples before being written to an output RML
mapping document.

Filter Triple Maps Generating Common Subsets All triple maps in S produce RDF triples that are
contained in the reference RDF output. However, not all triple maps generate unique RDF triples, some
may produce a subset of RDF triples that can already be generated by another triple map. This leads to
the generation of duplicate RDF triples, which increases computational overhead for RML interpreters.
Therefore, the goal of this step is to identify triple maps that generate subsets of RDF triples already
produced by another triple map and to filter out unnecessary triple maps from S. This ensures the
generation of a minimal RML mapping document containing only the required triple maps.

To remove unnecessary triple maps from S, the Triple Map Filter component generates the RDF
triples described by each triple map and compares them with all other RDF triples to identify subsets.
If a triple map produces only a subset of another triple maps RDF triples, the triple map generating
duplicates is removed from S.

For instance, looking back at the example used in combination with Algorithm 3, where two term
maps have been identified. T} = http://example.com/user_{ID} with term map type template and
T, = http://example.com/user_10 with term map type constant. When processing T; and T, in
combination with filel.csv of the running example, we can see, that T; produces two RDF output
triple, one where the placeholder 1D is replaced with 10, i.e., http://example.com/user_10, and one
where the palceholder is replaced with 20, i.e., http://example.com/user_20. On the other hand T,,
only produces a constant output http://example.com/user_10. Therefore, T; is more general, and T,
produces only a subset of RDF triple T; produces, meaning T, will be filtered out and T; will be kept.

Validating Generated RDF Terms In the final step, the remaining triple maps in S are validated to
ensure that all generated RDF terms are included in the output RDF graph. A triple map is considered
correct and added to the resulting RML mapping document only if all the RDF terms it produces are
present in the output RDF graph. Once validation is complete, the final set of triple maps, S, is written
to disk, marking the completion of the generation process.

Complexity Analysis The final step of the reverse engineering pipeline first generates all RDF triples
described in each generated RML triple map by processing all non-RDF input files, iterating over each
entry in the non-RDF files. In a second step, the results are filtered by comparing the generated RDF
triple identification subsets, and validated by comparing the generated RDF triple with the expected
RDF triple in the output graph. However, the important step for the time complexity is the generation
of the RDF triple, which depends on the number of triple maps t, the number of input non-RDF files r,
and the number of entries in the non-RDF files n, resulting in a time complexity of O(t - r - n). Since t
contains in the worst case all triple maps given by n - ¢ and r is constant the time complexity can be
rewritten as O(n - g -n) = 6(n? - q).

Combining all time complexities the entire pipeline results in O(n-q)+0((n-q)*)+0(n*-q) = 6((n-q)%)
in the worst case.

5. Evaluation

To evaluate the functionality of our approach, we implemented all of the introduced algorithms in a
proof-of-concept and used the prototype implementation to generate RML mapping documents based
on the latest version of the RML Core test cases’. The RML test cases were developed to validate the
conformance of different RML interpreters to the RML specification [26].

5.1. Prototypical Implementation

To validate our RML mapping document generation approach, we developed a proof-of-concept imple-
mentation called the Reverse Engineering Mapping tool (ReMap), written in Python. The ReMap tool is
based on the pandas® library for handling non-RDF input data and the RDFLib* library, combined with
a custom N-Triples parser, to process RDF output data.

The ReMap tool is released under an open-source license and is publicly available on GitHub’. Our
prototype implementation currently supports only CSV data as non-RDF input and N-Triple format for
RDF output, as both formats are straightforward to parse. This allowed us to focus on developing the
core reverse engineering functionality.

For easy distribution of the ReMap tool, we compiled the source code using Nuitka® into an executable
to allow execution without a Python interpreter installed.

5.2. Conformance Evaluation of ReMap

To assess the conformance to the RML specification of the automatically generated RML mappings
produced by our approach, we utilized the RML core test case dataset. We generated RML mapping
documents for each test cases using our ReMap tool and analyzed the results.

Dataset We used the RML Core test cases dataset, limited to CSV input data, for our conformance
evaluation. Each test case consists of one or more CSV files representing the non-RDF input data, a
corresponding RML mapping document, and an expected RDF output file in N-Triples format. Out of
the 48 available CSV test cases, we considered 35. The remaining 13 test cases were not applicable, as
they evaluate the handling of errors in either the RML mapping document or the source data.

Execution Process We iterated through all the test cases with ReMap, using the provided CSV files
and the expected RDF graph as input. We then performed the mapping reverse engineering step and
saved the generated RML mapping document for each test case.

Next, we set up BURP [27] v0.1.1, an RML interpreter designed for compliance with the RML
specification [28] rather than execution speed or memory efficiency. We executed our generated RML
mapping documents with BURP and compared the resulting RDF output with the original expected
RDF data to verify that the generated RML mappings produced equivalent RDF data.

Two test cases (RMLTC0024e-CSV and RMLTC0024{-CSV) could not be validated using BURP, as the
required RML constructs are not yet supported. Therefore, we manually compared the generated RML
mapping documents for these cases.

Results The ReMap tool was able to generate an equivalent RML mapping document for all test cases,
demonstrating that our approach is viable.

*https://github.com/kg-construct/rml-core/tree/980ca117443ae61ca6d72c0f2ba38967e4360c32
*https://pandas.pydata.org/

*https://rdflib.dev/

Shttps://github.com/FreuMi/remap

Shttps://nuitka.net/

https://github.com/kg-construct/rml-core/tree/980ca117443ae61ca6d72c0f2ba38967e4360c32
https://pandas.pydata.org/
https://rdflib.dev/
https://github.com/FreuMi/remap
https://nuitka.net/

5.3. Conformance Evaluation using an LLM

The current generation of LLMs can also generate RML mapping documents based on a given non-RDF
input and RDF output. For our evaluation, we used OpenAI’s best available reasoning model, 03-mini-
high. The model has a knowledge cutoff in October 2023 and, therefore, only supports the RMLjo
vocabulary’, part of the older RML-IO module of RML. All prompts used, as well as the generated
mappings, are publicly available on GitHub®.

Dataset We used the same 35 RML core test cases as those in the previous section (see Section 5.2).

Execution Process For each test case, we provided the input CSV data along with the expected
RDF output graph in a simple prompt, instructing the LLM to generate a corresponding RML mapping
document. The model then generated an RML mapping document, which we used to execute the
mapping using RMLMapper v7.3.1%. We need to use RMLMapper here, since BURP currently cannot
execute mappings following the RML;g vocabulary. Finally, we compared the generated RML output
graph to the expected RDF graph.

Results The LLM successfully generated the correct RML mapping document for 22 test cases, but
failed for 13, resulting in a 63% success rate, which is 31% worse than the ReMap. The 13 failed test
cases were primarily the more complex ones, suggesting that LLMs can handle simpler cases effectively,
but struggle with more complicated ones. Additionally, the model required extensive processing time,
ranging from 10 seconds for simpler test cases to up to 70 seconds for more complex ones.

5.4. Performance Evaluation

To empirically assess the RML mapping document generation speed and memory consumption of the
developed ReMap tool we ran experiments on on a virtual machine running on an Intel Xeon Gold 6154
CPU. The virtual machine has access to 8 cores running at 3.0 GHz each, 64 GB of RAM and an 8 GB
swap partition. The system is running Ubuntu 24.04.1 LTS and the Python scripts are executed using
the Python 3.12.3 interpreter. Execution time and peak memory usage were measured using the time
command from the GNU time package'”.

Dataset We reuse the duplicated values dataset from the benchmark used in the KG Construction
Workshop (KGCW) Challenge 2024 [30]. We adapted the included RML mapping document to directly
process the CSV data. The duplicated values dataset contains synthetic data specifically designed to
evaluate RML interpreters and their handling of duplicate values.

Execution Process For our experiments, we reduced the number of rows in the CSV data, n, to 5,
10, 20, and 30 unique rows, which correspond to 100, 200, 400, and 600 N-Triples, g, in the RDF output
graph. All other parameters were kept constant, meaning the number of CSV input files, r, was set to 1,
the number of columns in each CSV file, m, remained at 21, and the number of protected IRIs, p, was
fixed at 3.

We used Morph-KGC [10], along with the original RML;g v1.1.1'!-based mapping document and the
reduced CSV data, to generate the expected RDF graph. Next, we employed ReMap to reverse engineer
an equivalent RML mapping document based on the RDF graph produced by Morph-KGC and the
reduced CSV files. The generated RML mapping document was then processed using BURP [27], and
the resulting RDF output was compared to the original RDF output to validate correctness.

"We reuse the notation for different RML versions and modules introduced in [29].
8https://github.com/FreuMi/remap/tree/main/llm_test_cases
*https://github.com/RMLio/rmlmapper-java/releases/tag/v7.3.1
Whttps://www.gnu.org/software/time/

https://rmlio/specs/rml/v/1.1.1/

https://github.com/FreuMi/remap/tree/main/llm_test_cases
https://github.com/RMLio/rmlmapper-java/releases/tag/v7.3.1
https://www.gnu.org/software/time/
https://rml.io/specs/rml/v/1.1.1/

DB Execution Time [Peak Memory

‘ ‘ o 1,000
2,500 |- 7

1800
— 2,000 |- =
2, =
- =
) <4600 >
% 1,500 |- S
= ;
Ll
2 1,000 |- - 400 E

500 |- 200
: a1 | A A 0

n=>5, q=100 n=10, g=200 n=20, q=400 n=30, q=600
No. of CSV rows (n) and RDF output triples (g)

Figure 4: Average execution time and memory consumption of ReMap generating RML mapping documents
over 3 runs with different input sizes.

Results Fig. 4 plots the benchmark results, showing a quadratic increase in execution time coupled
with a similar increase in memory consumption. The observed results are consistent with expectations,
as the time complexity analysis of the total pipeline predicted such quadratic growth, i.e. (0)((n - g)?).
We also found that all experiments generated RML mapping documents that produced the expected
RDF graph based on the non-RDF input data.

Overall, the results indicate that while the ReMap prototype implementation is not suitable for large
datasets due to long processing times and high memory consumption, it performs reasonably well for
smaller datasets typically used to generate RML mapping documents based on examples. Note, that not
all contained RDF triples are required to generate the correct RML mapping. A small but comprehensive
example of the output RDF graph generates the same RML mapping as the larger example RDF graphs.

The performance of the ReMap tool is limited because it does not utilize multiprocessing and, therefore,
runs on a single core. Additionally, the high number of string replacement and manipulation operations,
currently executed in pure Python, are time-consuming. This is due to the string immutability in
Python'?, which requires the time-consuming creation of a new string object each time a modification
is made.

Additionally the experiment demonstrated, that the ReMap tool can be used to update older mapping
documents using the RMLjg standard to the latest RML standard. Since when older RML mappings are
executed and a RDF output graph is generated, ReMap can use the original non-RDF input data and the
generated RDF ouput, to reverse engineer a RML mapping document based on the newest standard.

6. Conclusion and Future Work

We introduced an RML mapping document reverse engineering approach capable of generating a RML
mapping document based on given non-RDF source data and an output RDF graph. We presented and
described the core algorithms required to implement the pipeline and discussed the time complexity.
Additionally, we introduced a prototype implementation called ReMap. ReMap enables users to define
only the expected output RDF graph and provide the non-RDF source input to automatically generate
an RML mapping document. Additionally, since the reverse engineered RML mapping document does
not rely on the original RML mapping document, ReMap can be used to update older mappings using
for instance the older RMLjg standard to the latest RML standard using the latest vocabulary. We used
the ReMap implementation to evaluate the conformance of the generated RML mapping documents

2https://docs.python.org/3/library/stdtypes.html#text-sequence- type-str

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

using the latest RML core test cases. Furthermore, we assessed the performance of ReMap, measuring
execution time and memory consumption using an established benchmark dataset from the KGCW
Challenge. The evaluation demonstrated that the ReMap tool, implementing our approach, conforms to
all applicable RML core test cases by successfully generating equivalent RDF mapping documents. In
comparison, an LLM-based method achieved correctness on only 22 of 35 applicable test cases. The
empirical performance analysis indicated quadratic time and memory scaling, consistent with the
theoretical complexity of the underlying algorithms of O((n - ¢)?).

For future work, on the theoretical side, we aim to improve the formalization of the RML mapping
reverse engineering approach using set notation. On the application side, we plan to integrate the pro-
posed reverse engineering pipeline into a user-friendly GUI-based application. A GUI-based application
will allow users to define the mapping of non-RDF data to RDF by example, and simplify the updating
of RML mapping documents. By providing a easy-to-use tool for the mapping by example process, the
application will reduce the need to manually write or rewrite RML mapping documents from scratch.

Acknowledgments

This work was partially funded by the German Federal Ministry for Economic Affairs and Climate
Action (BMWK) through the Antrieb 4.0 project (Grant No. 13IK015B).

Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT 4o to check grammar and spelling.

References

[1] R.Cyganiak, D. Wood, M. Lanthaler, RDF 1.1 Concepts and Abstract Syntax, W3C Recommendation,
2014. URL: https://www.w3.org/TR/rdf11-concepts/.

[2] A.Hogan, E. Blomqvist, M. Cochez, et al., Knowledge Graphs, ACM Comput. Surv. 54 (2021).

[3] A.Dimou, M. Vander Sande, P. Colpaert, et al., RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data, Ldow 1184 (2014).

[4] P.Heyvaert, A. Dimou, A.-L. Herregodts, et al., RMLEditor: A Graph-Based Mapping Editor for
Linked Data Mappings, in: Proceedings of the 13th Extended Semantic Web Conference, Springer,
2016, pp. 709-723.

[5] P.Heyvaert, B. De Meester, A. Dimou, R. Verborgh, Declarative rules for linked data generation at
your fingertips!, in: The Semantic Web: ESWC 2018 Satellite Events: ESWC 2018 Satellite Events,
Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers 15, Springer, 2018, pp. 213-217.

[6] D. Van Assche, T. Delva, P. Heyvaert, B. De Meester, A. Dimou, Towards a more human-friendly
knowledge graph generation & publication, in: ISWC2021, The International Semantic Web
Conference, volume 2980, CEUR, 2021.

[7] A.Iglesias-Molina, D. Van Assche, J. Arenas-Guerrero, et al., The RML Ontology: A Community-
Driven Modular Redesign After a Decade of Experience in Mapping Heterogeneous Data to RDF,
in: International Semantic Web Conference, Springer, 2023, pp. 152-175.

[8] P. Grossi Garcia, Automatic generation of RZRML and RML mappings, Master’s thesis, Universidad
Politécnica de Madrid, ETSI Informatica, 2022.

[9] C. Allocca, A. Gougousis, A Preliminary Investigation of Reversing RML: From an RDF dataset to
its Column-Based data source, Biodiversity data journal (2015).

[10] J. Arenas-Guerrero, D. Chaves-Fraga,]J. Toledo, et al., Morph-KGC: Scalable knowledge graph
materialization with mapping partitions, Semantic Web 15 (2024) 1-20.

[11] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, et al., SDM-RDFizer: An RML Interpreter for the
Efficient Creation of RDF Knowledge Graphs, in: Proceedings of the 29th ACM international
conference on Information & Knowledge Management, 2020, pp. 3039-3046.

https://www.w3.org/TR/rdf11-concepts/

[12]

[13]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[28]

S. M. Oo, G. Haesendonck, B. De Meester, et al., RMLStreamer-SISO: An RDF Stream Generator
from Streaming Heterogeneous Data, in: International Semantic Web Conference, Springer, 2022,
pp. 697-713.

M. Freund, S. Schmid, R. Dorsch, et al., FlexRML: A Flexible and Memory Efficient Knowledge
Graph Materializer, in: Proceedings of the 21st Extended Semantic Web Conference, Springer,
2024, pp. 40-56.

M. Scrocca, A. Carenini, M. Grassi, M. Comerio, I. Celino, Not Everybody Speaks RDF: Knowl-
edge Conversion between Different Data Representations, in: Fifth International Workshop on
Knowledge Graph Construction@ ESWC2024, 2024.

Z. Zhang, Effective and efficient semantic table interpretation using tableminer, Semantic Web 8
(2017) 921-957.

U. Khurana, S. Galhotra, Semantic concept annotation for tabular data, in: Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, 2021, pp. 844-853.

T. Mesnard, C. Hardin, R. Dadashi, et al., Gemma: Open models based on gemini research and
technology, arXiv preprint arXiv:2403.08295 (2024).

B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, et al,, Language models are few-shot learners, arXiv preprint
arXiv:2005.14165 1 (2020).

J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S. Zhong, B. Yin, X. Hu, Harnessing the power of
LLMs in practice: A survey on chatgpt and beyond, ACM Transactions on Knowledge Discovery
from Data 18 (2024) 1-32.

M. Val-Calvo, M. E. Aranguren,]J. Mulero-Hernandez, G. Almagro-Hernandez, P. Deshmukh,
J. A. Bernabé-Diaz, P. Espinoza-Arias, J. L. Sanchez-Fernandez, J. Mueller, J. T. Ferndndez-Breis,
OntoGenix: Leveraging Large Language Models for enhanced ontology engineering from datasets,
Information Processing & Management 62 (2025) 104042.

M. Hofer, J. Frey, E. Rahm, Towards self-configuring knowledge graph construction pipelines using
LLMs-a case study with rml, in: Fifth International Workshop on Knowledge Graph Construction@
ESWC2024, 2024.

Q. T. Tran, C.-Y. Chan, S. Parthasarathy, Query reverse engineering, The VLDB Journal 23 (2014)
721-746.

M. Arenas, G. I. Diaz, E. V. Kostylev, Reverse engineering SPARQL queries, in: Proceedings of the
25th international conference on world wide web, 2016, pp. 239-249.

E. Zhu, F. Nargesian, K. Q. Pu, R. J. Miller, LSH ensemble: Internet-scale domain search, arXiv
preprint arXiv:1603.07410 (2016).

E. Zhu, D. Deng, F. Nargesian, R. J. Miller, Josie: Overlap set similarity search for finding joinable
tables in data lakes, in: Proceedings of the 2019 International Conference on Management of Data,
2019, pp. 847-864.

P. Heyvaert, D. Chaves-Fraga, F. Priyatna, et al., Conformance Test Cases for the RDF Mapping
Language (RML), in: Iberoamerican Knowledge Graphs and Semantic Web Conference, Springer,
2019, pp. 162-173.

C. Debruyne, D. Van Assche, A Fresh Start: Implementing an RML Processor from Scratch to
Validate RML Specifications and Test Cases, in: Fifth International Workshop on Knowledge
Graph Construction@ ESWC2024, 2024.

D. Van Assche, C. Debruyne, BURPing Through RML Test Cases, in: Fifth International Workshop
on Knowledge Graph Construction@ ESWC2024, 2024.

D. Van Assche, J. Jankaj, B. De Meester, Backwards or Forwards? [R2]RML Backwards Compat-
ibility in RMLMapper, in: Fifth International Workshop on Knowledge Graph Construction@
ESW(C2024, 2024.

D. Van Assche, D. Chaves-Fraga, A. Dimou, et al., KGCW 2024 Challenge, 2024. URL: https:
//doi.org/10.5281/zenodo.11577087.

https://doi.org/10.5281/zenodo.11577087
https://doi.org/10.5281/zenodo.11577087

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Approach
	4.1 Triple Map Generator
	4.2 Join Detector
	4.3 Triple Map Filter

	5 Evaluation
	5.1 Prototypical Implementation
	5.2 Conformance Evaluation of ReMap
	5.3 Conformance Evaluation using an LLM
	5.4 Performance Evaluation

	6 Conclusion and Future Work

