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Abstract
This work presents LISE (Logic-based Interactive Similarity Explainer), a system for explaining the similarity of
clusters of RDF resources, by identifying common characteristics in their RDF descriptions. LISE follows a pipeline
that consists of four main modules: Machine Learning Module, which creates a representation of RDF resources as
vector embeddings and clusters them; Logic-Based Module, which, for each cluster, computes a Knowledge Graph
(with blank nodes) modeling the common characteristics of resources in the cluster; Natural Language Generation
Module, which translates the computed Knowledge Graphs into human-readable descriptions; and User Interaction
and Feedback Loop, which collects user feedback about the relevance of generated explanations. LISE operates in
a closed loop, leveraging user feedback to refine embeddings and subsequently improve clustering. It was tested
on an RDF dataset containing structured drug-related information, demonstrating promising results in terms of
explainability and interpretability of clustering results.
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1. Introduction

Unsupervised learning, particularly clustering, is a fundamental technique for the initial exploration of
unstructured data. Clusterization groups similar data points together, enabling users to identify hidden
patterns and potential classifications by analyzing these groups. However, the notion of "similarity" is
inherently subjective and depends on the users’ objectives and the specific features they prioritize[1].
For instance, in drug-related data, different aspects such as protein interactions or sequence similarity
might be of primary importance[2]. Once a clustering algorithm generates groups, it is essential to
understand the characteristics that define each cluster. This is particularly relevant in interactive
clustering [1], where users iteratively refine the process based on their needs. However, comprehensible
feature extraction is not always straightforward, especially when dealing with purely numerical data
or when items are identified by IRIs, whose features can be inferred from a linked Knowledge Graph
(KG). While KGs can theoretically provide meaningful feature information, the embedding process used
in clustering often obscures the shared characteristics within a cluster. To address this challenge, we
developed LISE (Logic-based Interactive Similarity Explainer), a modular system that clusters groups of
RDF resources, and for each cluster, computes an RDF KG describing the commonalities of resources
and generates an English description from such KG; finally, system users vote on the relevance of every
single part of the description to improve the clustering process in an interactive feedback loop.

The natural language description of cluster commonalities serves as an explanation service for the
clustering method. From the perspective of eXplainable Artificial Intelligence (XAI) [3], LISE can
be classified as text-based, method-agnostic (compatible with any clustering approach), and post-hoc
(providing explanations after clustering is completed).
With respect to previous work, LISE introduces two main innovations: the application of pruning tech-
niques to filter out irrelevant information, detailed in Section 2.3, and the inclusion of user interactivity,
which enables a feedback loop to iteratively refine the clustering process.

SeWebMeDa-2025: 8th International Workshop on Semantic Web solutions for large-scale biomedical data analytics, June 1, 2025,
Portorož, Slovenia
$ simona.colucci@poliba.it (S. Colucci); donini@unitus.it (F. M. Donini); v.schena@phd.poliba.it (V. Schena)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:simona.colucci@poliba.it
mailto:donini@unitus.it
mailto:v.schena@phd.poliba.it
https://creativecommons.org/licenses/by/4.0/deed.en


The paper is organized as follows. In the next section, LISE architecture and main modules are
described, with reference to an extended use case addressing drugs comparison problem. In particular,
Section 2.1 explains how the input KG is extracted and how entities are selected from the reference RDF
dataset: DrugBank1. Sections 2.2–2.5 explain the working mode of each system component. Section 3
closes the paper.

2. System

LISE explains the similarity of RDF resources grouped through clustering by logically computing
commonalities in their RDF descriptions. It implements a pipeline that transforms an RDF dataset into
a KG, generates a representation for KG entities based on vector embeddings, clusters embeddings,
computes a logic-based explanation for clusters, and iterates the process based on user feedback.
LISE architecture is depicted in Figure 1 and structured into four main modules:

• Machine Learning Module: Responsible for representing RDF resources as feature vectors by
training RDF2Vec [4] embedding models and performing clustering to group resources based on
similarity.

• Logic-Based Module: Computes an RDF KG that models the common characteristics of the resulting
clusters while filtering out irrelevant information.

• Natural Language Generation Module: Converts the RDF KG into a human-readable description
by using a template-based approach.

• User Interaction and Feedback Loop: Collects user feedback on each explanation, leveraging this
feedback to refine and retrain the embeddings, thereby improving alignment with user-defined
relevance criteria.

Each module plays a crucial role in enhancing the quality of explanations, contributing to a feedback
loop that iteratively improves the interpretability of clustering results.

The following sections provide a discussion of system functionalities, by introducing the role of each
module. Preliminarily (Section 2.1), the entity selection process is introduced. Then, Section 2.2 details
the generation of embeddings from RDF resources (Section 2.2.1) and the application of clustering
(Section 2.2.2). Section 2.3 describes the logic-based computation process that produces, for each cluster,
an RDF KG modeling characteristics shared by cluster items. Section 2.4 explains how LISE generates
natural language descriptions from the Knowledge Graphs obtained in Section 2.3; additionally, it
explores the integration in LISE of a Large Language Model (LLM) for Natural Language Generation
(NLG). Finally, Section 2.5 illustrates how user feedback is collected and used to iteratively improve the
system.

2.1. Knowledge Graph and Entity Selection

We show LISE capabilities on DrugBank, a dataset containing structured information about drugs and
available in RDF format. The dataset is first converted into a pyRDF2Vec2 KG3, in which the set of drugs
to divide into clusters is selected by choosing entities belonging to the Drug class and characterized as
small molecules. This selection process results in a dataset of 7,391 resources. To enhance the quality
of the graph and eliminate redundant information, all predicates irrelevant to drug comparison are
excluded. In our examples, we identified a preliminary list of so-called "stop-patterns"[5], that we list
in Appendix A, for the sake of reproducibility. For each drug, a subgraph is extracted from the initial
KG, up to a maximum depth of 7. These subgraphs are employed by the Logic-based Module, which is
further analyzed in Section 2.3.

1https://download.bio2rdf.org/files/current/drugbank/drugbank.html
2https://pyrdf2vec.readthedocs.io/en/latest/index.html
3pyRDF2Vec KG is a structure for modeling and managing RDF data in the form of a Knowledge Graph, in which triples are
represented as vertices and edges, enabling the extraction of RDF paths.



Figure 1: Architecture of LISE. Each module is enclosed by a dashed red border. Blue rectangles describe

activities, and captions near arrows describe methods at the basis of the switch from one activity to the next one.

2.2. Machine Learning Module

2.2.1. Embedding generation

To represent entities as numerical feature vectors, we employ RDF2Vec [4], a method that applies the
word embedding principle to KGs. RDF2Vec represents each entity as a point in a continuous vector
space, providing versatile input for various machine learning applications.

Specifically, we use pyRDF2Vec, a Python implementation that extracts walks from KGs to generate
embeddings. Since the number of possible walks can be exponential in the worst case, pyRDF2Vec
samples possible walks, allowing for the selection of different sampling strategies [6]. RDF2Vec operates
by generating sequences of entities and relations (walks) within the KG, treating them as sentences
from a text corpus. These sequences are then used to train a Word2Vec4 model, which learns vector
representations for each entity, capturing both semantic and structural relationships. The embedding
generation process follows these key steps:

• Definition of the walking strategy: A random walking strategy is employed, where each entity in
the KG is explored through paths with a maximum depth of 7. The number of walks generated per
entity is limited to 3310, corresponding to the highest number of triples present in the extracted
subgraphs. The random state parameter is set to 42.

• Definition of the sampling strategy: We build upon the existing Predicate Frequency Weight [7]
strategy, which assigns a weight to each predicate based on its frequency of occurrence in the
KG, but we address a more specific concept of weight — according to the call in the pyRDF2Vec
documentation to develop new walking, sampling, and embedding strategies. In particular,
we introduce a custom sampling strategy, namely Predicate Relevance Weight, which assigns
weights to specific walks based on their relevance for cluster explanation. These scores are
derived from user feedback, where users rate the relevance of explanatory sentences generated
for each cluster (see Figure 9 for a screenshot). LISE learns these weights through an interactive
component, employing a regression model to predict the weights. In the first iteration, the

4https://radimrehurek.com/gensim/models/word2vec.html



weights for each predicate are manually set to 0.01 or 0.02, with the exception of the predicate
http://bio2rdf.org/drugbank_vocabulary:category, which is assigned a weight of
0.99. This is because our goal was to cluster resources based on this specific predicate, and
therefore, we gave it a higher weight.

• Definition of the embedding strategy: The extracted walks are processed as textual sentences and
used as input for the Word2Vec model. The model is configured with the skip-gram architecture
while maintaining default hyperparameters for training.

After applying RDF2Vec to the entire KG, each entity is transformed into a fixed-dimensional vector.
These vector representations enable the application of clustering techniques to group semantically
related entities.

While RDF2Vec provides compact and interpretable embeddings, their effectiveness depends on how
well they preserve entity semantics within the given domain context. Although RDF2Vec generates
embeddings that are computationally efficient in terms of size, their ability to retain the original
semantic content of RDF entities remains disputable [8]. Specifically, previous studies have demonstrated
that the assumption underlying RDF2Vec—that similar entities will have similar embeddings—is not
consistently supported in real-world machine learning applications [9]. Indeed, when analyzing the
common properties of the entities within the clusters using LISE, we find that the explanations are often
uninformative. This indicates that, although clustering groups entities that are close in the embedding
space, they are not necessarily semantically similar. To analyze the distribution of embeddings, we
employ Principal Component Analysis (PCA) from the scikit-learn library [10] to project the original
100-dimensional embeddings into a two-dimensional space for visualization (Figure 2).

2.2.2. Clustering

Clustering is performed using the k-means algorithm via the scikit-learn library [10] with the parameters
in Table 1. Clustering models alternative to k-means were tested, but they did not produce significant
improvements in terms of amount or relevance of common information within each cluster.

Number of Clusters 302

Initialization k-means++

Random State 42

Number of Initializations 5

Table 1
K-means clustering parameters.

Figure 3 shows the complete clustering results visualized in 2D with PCA. To evaluate the quality of
the clustering in terms of both inter-cluster separation and intra-cluster cohesion, the average Silhouette
Score is computed considering all 302 clusters. This results in a value of 0.1415, which is close to 0,
indicating that there is an overlap between the clusters. Since the visualization does not exhibit a
clear spatial separation between clusters, the 10 most cohesive clusters – identified by evaluating the
average Euclidean distance between each cluster’s points and its centroid – each containing at least
two elements, along with their centroids, are shown in Figure 4.

2.3. Logic-Based Module

LISE explains clusters by performing a logic-based processing of RDF KGs, for computing the charac-
teristics shared among clustered resources. A core component of this process is the computation of
the Least Common Subsumer (LCS) [11], an RDF KG which describes the common features of a group
of RDF resources. The LCS is computed on the subgraphs previously extracted for the resources to
compare (Section 2.1).

To ensure meaningful graph comparison, we perform some optimizations:



Figure 2: The scatter plot illustrates the distribution of embeddings, originally represented in a 100-dimensional

space, reduced to two dimensions using Principal Component Analysis. Each point on the plot corresponds to

an individual embedding projected onto the two-dimensional plane defined by the first and second principal

components.

• we exclude from the subgraphs all walks on predicates irrelevant to the comparison, by providing
a list of stop-patterns (Appendix A)

• we filter out explicitly defined uninformative triples (Appendix B) from the LCS, transforming it
into a Common Subsumer (CS) that consequently retains only relevant information.

To provide a general understanding of the dataset commonalities, we first compute the CS to the
entire dataset, identifying information shared across all resources. This CS is a rather uninformative
KG, that is shown in Appendix C and models only one commonality: the fact that all drugs have a type
which is small molecule5.

Subsequently, to explain individual clusters, LISE computes the CS for each cluster. A sample CS of
Cluster no.58, which contains 52 elements, is shown in Appendix D6. In this case, the CS models more
commonalities among the 52 cluster items. First, also drugs in Cluster no.58 are of kind small molecule;
second, they share a target protein, labeled as Tyrosine-protein phosphatase non-receptor
type 1 [drugbank:BE0000623], which is fully described in the CS. In particular, the CS shows that
this target affects a human organism type.

Although the generated explanations are already filtered for irrelevant details, LISE further refines
them by applying two irrelevance definitions taken from previous work[12]. Specifically, LISE prunes:

• information "irrelevant to the context", i.e., the features shared by the entire dataset, because they
5Figure 6 shows this specific CS, verbalized in natural language using the template-based approach described in Section 2.4.
6A verbalization of Cluster no.58, using the template-based approach, is shown in Figure 5.



Figure 3: The scatter plot visualizes the distribution of embeddings, originally represented in a 100-dimensional

space, reduced to two dimensions using Principal Component Analysis. Each point, colored differently to indicate

membership in one of the 302 clusters, represents an embedding projected onto the two-dimensional plane

defined by the first two principal components. The black ’x’ markers denote the centroids of the clusters.

do not discriminate clusters.
• information "irrelevant to the user", i.e., information already known to the user, based on his/her

Personal KG.

In the use case addressed, information irrelevant to the context is the one listed in Appendix C,
stating that all drugs have type small molecule.

Regarding irrelevance to the user, in the use case we assume that user knows that some drug targets
(Pyridoxal kinase, Cyclin-dependent kinase 2, Glutathione S-transferase A1, Tyrosine-protein kinase
JAK2, Tyrosine-protein phosphatase non-receptor type 1) act on human organism. Thus, we model
his/her Personal Knowlwedge Graph in RDF, as shown in Appendix E.

By pruning the CS of Cluster no.58 of both types of irrelevant information, we obtain a new CS,
shown in Appendix F7. This new CS does not include the information that all cluster items have small
molecules (irrelevant to the context) and that protein "Tyrosine-protein phosphatase non-receptor type
1" acts on the human organism (already known to the user).

2.4. Natural Language Generation Module

This component is responsible for translating the relevant commonalities modeled by the Common
Subsumer, as previously computed and refined by the logic-based component (Section 2.3) of LISE, into
human-readable explanations.
7The new CS is also shown in Figure 7 in a human-readable format, by using the template-based verbalization approach.



Figure 4: The scatter plot displays the distribution of embeddings from the 10 most cohesive clusters, originally

represented in a 100-dimensional space and reduced to two dimensions using Principal Component Analysis.

Each colored point represents a data point belonging to one of the selected clusters, while black ’x’ markers

indicate the centroids of these clusters.

To this end, LISE integrates a previously developed template-based Natural Language Generation
tool [13, 14].

In our use case, LISE produces the explanation in Figure 5 for Cluster no.58, before pruning irrelevance.
By pruning information irrelevant both to the context (explained in Figure 6, thanks to the tool) and to
the user, the explanation in Figure 7 is generated.

While effective in producing clear and understandable explanations in specific domains, the NLG tool
requires the manual definition of a context-specific dictionary, a task that is challenging to automate.
To address this limitation, we explored the use of Large Language Models as an alternative to the
template-based tool. Specifically, we achieved promising results by training Google Gemini8 to process
RDF Knowledge Graphs, focusing on CSs, which represent the common characteristics to verbalize in
natural language. With reference to our use case, we achieved the explanation shown in Figure 8 for
Cluster no.58.

Our experiment utilizes the Google Gemini 1.5-Flash9 model. Results are generated via an API call in
Python, which processes the RDF triples in NT format related to a Common Subsumer. The API call,
executed with the request "Verbalize with discursive phrases these RDF NT triples", is defined with the
following system instruction:

8https://ai.google.dev/
9https://ai.google.dev/gemini-api/docs/models/gemini?hl=it#gemini-1.5-flash



Figure 5: Template-based verbalization of the Common Subsumer obtained from Cluster no.58.

Figure 6: Template-based verbalization of the Common Subsumer of the entire dataset. Such an information is

common to all clusters, hence it is irrelevant to the context of describing a single cluster.

For each blank node (identified with ’genid’) in the text you are given, you must
associate a generic variable. Create a dictionary composed of blank nodes with
associated variable. Then verbalize in natural language the triples present in the
text considering the defined vocabulary and when the variables are repeated you must
refer to that one by continuing the same sentence. Starting the sentence with the
verbalized form of root node, create discursive sentences.
Verbalize in natural language the URIs content.
Verbalize in natural language the LITERALS content.
Handle blank nodes with general terms.
Return only verbalization.

Additionally, the root node of the CS is passed to the API call as a variable. Table 2 shows the
parameters of API call.

Temperature 1

Top_p 0.95

Top_k 40

Max_output_tokens 8192

Response_mime_type "text/plain"

Table 2
Parameter employed in the API call to Gemini for the explanation of Common Sumbumers in RDF.



Figure 7: Template-based verbalization of the Common Subsumer obtained from Cluster no.58 pruned of

irrelevant information.

A comparison between the explanations generated by the template-based tool (Figure 5) and Google
Gemini (Figure 8) reveals comparability in terms of clarity and interpretability.

Figure 8: Gemini verbalization of the Common Subsumer obtained from Cluster no.58.

Although both approaches require a degree of customization, Gemini’s APIs enable semi-automated
training, offering greater flexibility and adaptability to different domains. Despite these advantages,
LISE continues to use the template-based tool, primarily due to system modularity. In fact, the output
of the NLG module is processed and passed to the User Interaction and Feedback Loop module, which
collects user feedback on the relevance of the generated explanations. Currently, these module requires
explanations to follow the template structure, limiting the immediate adoption of LLM-based solutions.
We are therefore investigating strategies to make the interactive components independent of the NLG
template, thereby increasing system flexibility.

2.5. User Interaction and Feedback Loop

In this section, we present the human-in-the-loop interactive approach used to let the user evaluate and
refine explanations generated by the Natural Language Generation component (Section 2.4).

LISE collects user feedback through a Graphical User Interface (GUI) developed using the Tkinter10

10https://docs.python.org/3/library/tkinter.html



Python library. This interface enables users to rate explanation sentences derived from a logically
computed CS that abstracts cluster commonalities. The collected ratings are subsequently leveraged to
enhance the system’s ability to predict relevance scores for new explanations.

Figure 9 shows the GUI corresponding to the CS of Cluster no.58, pruned of irrelevant information.

Figure 9: Star-rating user feedback: screenshot of LISE graphical user interface to allow users to evaluate the

relevance of sentences extracted from the generated explanation in the Logic-based Module. The template-based

verbalization ensures that each evaluation is one-one with an RDF pattern in the Common Subsumer.

The interface presents the generated explanation in multiple sentences, each associated with an RDF
pattern in the Common Subsumer. Users provide feedback via a star-rating system ranging from 1 to 5
stars. These ratings are subsequently normalized into numerical values on a scale from 0 (0 stars) to 1
(5 stars) in increments of 0.2.

The user-provided ratings are stored in a structured data model, where each RDF pattern verbalized
in an explanation sentence is assigned a weight. Once feedback is collected, it is used as a dataset for
training a linear regression model to predict relevance scores for RDF patterns. In the current version,
LISE implements the ’LinearRegression’ model from the Scikit-learn Python library [10].

The weights estimated by the regression model are then used to refine the embedding generation
process. In particular, the Predicate Relevance Weight sampling strategy we proposed in Section 2.2
adopts weights learned by the regression model. Consequently, by training RDF2VeC, LISE follows
a relevance-focused sampling strategy that, while computing the embeddings, gives priority to the
patterns more relevant to users.

3. Conclusion and Future Work

LISE introduces an approach for explaining the clustering of RDF resources by combining machine
learning, knowledge-based reasoning, and natural language generation within an interactive feedback
loop. Its characteristics of being text-based, method-agnostic, and post-hoc ensure flexibility and
adaptability, making LISE a valuable tool to enhance the interpretability of clustering models. The
results obtained from an RDF dataset containing structured drug-related information demonstrate the
effectiveness in generating comprehensible and relevant explanations for users. The integration of



human feedback enables the progressive refinement of vector representations, improving the alignment
between the generated explanations and user expectations. However, the current template-based natural
language generation method presents limitations in terms of flexibility. For this reason, as part of our
future work, we plan to replace the template-based approach with one employing Large Language
Models (but still allowing the user to choose what information is considered relevant) to overcome
these constraints and further enhance the quality of generated explanations. Moreover, we intend to
explore the use of different Knowledge Graph embeddings models to more accurately capture semantic
similarities between cluster resources.
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A. Stop Patterns

In the appendices, we use the RDF Turtle syntax [15], and refer to the following prefixes:

@prefix drugbank_vocabulary: <http://bio2rdf.org/drugbank_vocabulary:>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>
@prefix bio2rdf_vocabulary: <http://bio2rdf.org/bio2rdf_vocabulary:>
@prefix dct: <http://purl.org/dc/terms/>
@prefix void: <http://rdfs.org/ns/void#>
@prefix bio2rdf: <http://bio2rdf.org/>

Stop-patterns (determined heuristically) are patterns of RDF triples considered irrelevant for explaining
similarity. They are constituted by all triples <s p o> meeting at least one of the following criteria:

• 𝑝 ∈ {𝑑𝑐𝑡 : 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛,
𝑑𝑐𝑡 : 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟,
𝑑𝑐𝑡 : 𝑡𝑖𝑡𝑙𝑒,
𝑟𝑑𝑓𝑠 : 𝑙𝑎𝑏𝑒𝑙,
𝑟𝑑𝑓𝑠 : 𝑠𝑒𝑒𝐴𝑙𝑠𝑜,
𝑜𝑤𝑙 : 𝑠𝑎𝑚𝑒𝐴𝑠,
𝑣𝑜𝑖𝑑 : 𝑖𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡,
𝑏𝑖𝑜2𝑟𝑑𝑓_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟,

https://www.mdpi.com/2306-5729/9/10/121
https://www.mdpi.com/2306-5729/9/10/121
http://dx.doi.org/10.3390/data9100121
https://doi.org/10.1007/978-3-031-17728-6_5
http://dx.doi.org/10.1007/978-3-031-17728-6_5
https://doi.org/10.1007/978-3-031-62700-2_15
http://dx.doi.org/10.1007/978-3-031-62700-2_15
http://www.w3.org/TeamSubmission/turtle/


𝑏𝑖𝑜2𝑟𝑑𝑓_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒,
𝑏𝑖𝑜2𝑟𝑑𝑓_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑢𝑟𝑖,
𝑏𝑖𝑜2𝑟𝑑𝑓_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠.𝑜𝑟𝑔,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑖𝑑,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑏𝑟𝑎𝑛𝑑,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑐𝑎𝑟𝑟𝑖𝑒𝑟,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑑𝑜𝑠𝑎𝑔𝑒,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑔𝑟𝑜𝑢𝑝,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑝𝑎𝑡𝑒𝑛𝑡,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑝𝑟𝑜𝑑𝑢𝑐𝑡,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑠𝑦𝑛𝑜𝑛𝑦𝑚,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑟,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑣𝑜𝑙𝑢𝑚𝑒− 𝑜𝑓 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑤𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑎ℎ𝑓𝑠,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑎𝑡𝑐,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝑑𝑏,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑐ℎ𝑒𝑏𝑖,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑐ℎ𝑒𝑚𝑠𝑝𝑖𝑑𝑒𝑟,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑔𝑒𝑛𝑏𝑎𝑛𝑘,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑔𝑡𝑝,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑖𝑢𝑝ℎ𝑎𝑟,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑘𝑒𝑔𝑔,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑛𝑑𝑐,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑝𝑑𝑏,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑝ℎ𝑎𝑟𝑚𝑔𝑘𝑏,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑝𝑢𝑏𝑐ℎ𝑒𝑚𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑝𝑢𝑏𝑐ℎ𝑒𝑚𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑥− 𝑢𝑛𝑖𝑝𝑟𝑜𝑡,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑− 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠}

• 𝑝 = 𝑟𝑑𝑓 : 𝑡𝑦𝑝𝑒 and 𝑜 ∈
{𝑜𝑤𝑙 : 𝐶𝑙𝑎𝑠𝑠,
𝑜𝑤𝑙 : 𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦,
𝑜𝑤𝑙 : 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑆𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝐷𝑟𝑢𝑔}

B. Uninformative Triples

Uninformative triples are those <s p o> triples meeting at least one of the conditions listed below,
provided that o has no successors:

• 𝑝 ∈ {𝑟𝑑𝑓 : 𝑡𝑦𝑝𝑒,
𝑟𝑑𝑓𝑠 : 𝑠𝑒𝑒𝐴𝑙𝑠𝑜,
𝑟𝑑𝑓𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓,
𝑟𝑑𝑓𝑠 : 𝑙𝑎𝑏𝑒𝑙,



𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑡𝑦𝑝𝑒,
𝑟𝑑𝑓 : 𝑣𝑎𝑙𝑢𝑒,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑛𝑎𝑚𝑒,
𝑑𝑟𝑢𝑔𝑏𝑎𝑛𝑘_𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚}

• 𝑝 is a blank node

C. Common Subsumer of the entire dataset
The following triple represents the CS of the entire dataset of drugs selected from Drugbank:

_:N469a9065937b4f73a25076fe400b2502 drugbank_vocabulary:type drugbank_vocabulary:Small-molecule .

We recall that all identifiers starting with _: denote a blank node.

D. Common Subsumer of Cluster no.58

In what follows, the complete CS of cluster no.58 is shown. The CS is an RDF knowledge graph rooted
in the blank node _:Nc9029d61afbb426e8559468beee0277f.

_:Nc9029d61afbb426e8559468beee0277f drugbank_vocabulary:target bio2rdf:drugbank:BE0000623 ;
drugbank_vocabulary:type drugbank_vocabulary:Small-molecule .

bio2rdf:drugbank:BE0000623 a drugbank_vocabulary:Target ;
drugbank_vocabulary:cellular-location "Endoplasmic reticulum;
endoplasmic reticulum membrane; peripheral membrane protein; cytoplasmic side" ;
drugbank_vocabulary:gene-name "PTPN1" ;
drugbank_vocabulary:general-function "Involved in protein tyrosine phosphatase activity" ;
drugbank_vocabulary:locus "20q13.1-q13.2" ;
drugbank_vocabulary:molecular-weight "49967.0" ;
drugbank_vocabulary:name "Tyrosine-protein phosphatase non-receptor type 1" ;
drugbank_vocabulary:organism "Human" ;
drugbank_vocabulary:specific-function "May play an important role in CKII- and
p60c-src-induced signal transduction cascades" ;
drugbank_vocabulary:theoretical-pi "6.21" ;
drugbank_vocabulary:transmembrane-regions "409-431" ;
drugbank_vocabulary:x-genatlas bio2rdf:genatlas:PTPN1 ;
drugbank_vocabulary:x-genecards bio2rdf:genecards:PTPN1 ;
drugbank_vocabulary:x-gi bio2rdf:gi:190742 ;
drugbank_vocabulary:x-hgnc bio2rdf:hgnc:H9642 .

bio2rdf:genatlas:PTPN1 a bio2rdf:genatlas_vocabulary:Resource .

bio2rdf:genecards:PTPN1 a bio2rdf:genecards_vocabulary:Resource .

bio2rdf:gi:190742 a bio2rdf:gi_vocabulary:Resource .

bio2rdf:hgnc:H9642 a bio2rdf:hgnc_vocabulary:Resource .

E. Personal Knowledge Graph
The following triples set represents the Personal Knowledge Graph of an hypothetical user of LISE,
used in the addressed use case:



bio2rdf:drugbank:BE0002281 drugbank_vocabulary:organism "Human" .
bio2rdf:drugbank:BE0000042 drugbank_vocabulary:organism "Human" .
bio2rdf:drugbank:BE0001072 drugbank_vocabulary:organism "Human" .
bio2rdf:drugbank:BE0002408 drugbank_vocabulary:organism "Human" .
bio2rdf:drugbank:BE0000623 drugbank_vocabulary:organism "Human" .

F. Common Subsumer of Cluster no.58 pruned of irrelevant
information

In what follows, it is shown the CS of cluster no.58 pruned of irrelevant information. The CS is an RDF
knowledge graph rooted in the blank node _:Nc9029d61afbb426e8559468beee0277f.

_:Nc9029d61afbb426e8559468beee0277f drugbank_vocabulary:target bio2rdf:drugbank:BE0000623 .

bio2rdf:drugbank:BE0000623 a drugbank_vocabulary:Target ;
drugbank_vocabulary:cellular-location "Endoplasmic reticulum; endoplasmic reticulum
membrane; peripheral membrane protein; cytoplasmic side" ;
drugbank_vocabulary:gene-name "PTPN1" ;
drugbank_vocabulary:general-function "Involved in protein tyrosine phosphatase activity" ;
drugbank_vocabulary:locus "20q13.1-q13.2" ;
drugbank_vocabulary:molecular-weight "49967.0" ;
drugbank_vocabulary:name "Tyrosine-protein phosphatase non-receptor type 1" ;

drugbank_vocabulary:specific-function "May play an important role in CKII- and p60c-src-induced
signal transduction cascades" ;
drugbank_vocabulary:theoretical-pi "6.21" ;
drugbank_vocabulary:transmembrane-regions "409-431" ;
drugbank_vocabulary:x-genatlas bio2rdf:genatlas:PTPN1 ;
drugbank_vocabulary:x-genecards bio2rdf:genecards:PTPN1 ;
drugbank_vocabulary:x-gi bio2rdf:gi:190742 ;
drugbank_vocabulary:x-hgnc bio2rdf:hgnc:H9642 .

bio2rdf:genatlas:PTPN1 a bio2rdf:genatlas_vocabulary:Resource .

bio2rdf:genecards:PTPN1 a bio2rdf:genecards_vocabulary:Resource .

bio2rdf:gi:190742 a bio2rdf:gi_vocabulary:Resource .

bio2rdf:hgnc:H9642 a bio2rdf:hgnc_vocabulary:Resource .
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