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Abstract
Aligning biomedical ontologies presents a significant challenge due to their complexity and the highly domain-
specific nature of their vocabulary. Recent advancements in Language Models (LMs) have led to their increasing
application in ontology alignment tasks, offering promising results. However, a systematic evaluation of semantics-
based prompting strategies for leveraging LMs in this context remains unexplored. This study investigates the
effectiveness of different prompting techniques to enhance biomedical ontology alignment performance. We
have developed a framework to support the design of LM-based queries to assess the semantic similarity between
ontology classes. The framework interrogates the ontologies to align to extract relevant contextual information to
inject into the LM prompts allowing the use of Retrieval Augmented Generation (RAG). We conduct preliminary
experiments on selected hard cases from biomedical ontologies that compose the Ontology Alignment Evaluation
Initiative Bio-ML track and provide some insights into the effectiveness, reliability, and limitations of prompt-based
approaches in ontology matching.
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1. Introduction

Ontologies have become increasingly popular in various fields due to their ability to provide structured,
formal representations of knowledge. These knowledge structures are particularly valuable in areas
such as Artificial Intelligence (AI), Natural Language Processing (NLP), and Semantic Web technologies.
An ontology represents a set of concepts within a domain and the relationships between them, allowing
for more effective data sharing, discovery, and reasoning across different systems and applications.

As individual ontologies grow and evolve independently from each other, any given concept will
inevitably display conceptual, linguistic, and structural differences when modelled in different ontologies,
in different contexts and by different creators. These differences often arise from varying domain
perspectives, terminologies and modelling choices across the maintainers and communities that develop
and use the ontologies.

Ontology alignment addresses this issue through the generation of a set of mappings (correspon-
dences) between entities in different ontologies to establish semantic interoperability [1]. However,
automatically identifying these correspondences is a highly complex task. In general, ontologies are
typically designed within a specific context, relying on implicit background knowledge that is not
explicitly captured in their schema definitions [2].

Most ontology alignment techniques perform entity mapping based on leveraging lexical, structural,
semantical, and external information of the entities being matched [1, 3]. Lexical information has
proved to be the more successful source for biomedical ontology alignment [4, 5], with algorithms
based on exploring the lexical component of ontologies outperforming other approaches by a good
margin [6]. Lexical information can be extracted from entity labels, facilitating the exploration of
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word sense disambiguation and the inference of lexical relationships between entities. However, the
lexical component of biomedical ontologies is typically restricted to the labels of concepts, which results
in limitations in capturing mappings that require more contextual information beyond the simple
similarity of labels.

The dawn of Large Language Models (LLMs) marked a turning point in our ability to capture and
understand deep semantic relationships between terms. Traditional NLP techniques were insufficient
at extracting contextual meaning, relying on simpler models that could not fully grasp language
nuances. However, with the advent of LLMs such as GPT [7], BERT [8], and other transformer-based
architectures [9], we currently have the ability to process and model complex relationships between
words, phrases, and even complete documents.

LLMs are trained on massive datasets containing billions of tokens and are capable of understanding
/ representing not just the meaning of individual terms but how they interact in context. This allows us
to capture subtle semantic relationships, such as synonyms, antonyms, hyponyms, and hypernyms,
which are extremely useful for tasks such as translation, summarization, and question-answering. These
capabilities are likely to translate to the ontology alignment scenario provided a suitable formulation
of the problem is achieved. The success of prompt-based strategies in ontology alignment [10] has
motivated us to explore whether LLMs are able to tackle the mapping of classes from biomedical
ontologies and how well they are able to handle the more difficult cases. However, recent works
have highlighted the difficulties in applying prompt-based strategies to real-world ontologies in other
domains [11].

In this paper, we present a preliminary study that focuses on investigating the impact of including
hierarchical relations in the prompt, exploring different design patterns for its verbalisation. We
performed an evaluation of prompt-design strategies using a carefully selected set of challenging
mappings extracted from Bio-ML [12], highlighting the pitfalls and strengths of each strategy.

2. Related Work

Ontology alignment is the process of identifying correspondences between entities in two distinct
ontologies, typically referred to as the source ontology (𝑂𝑠) and the target ontology (𝑂𝑡). The goal of
ontology alignment is to establish meaningful mappings between entities, ensuring interoperability
between heterogeneous data sources. The resulting alignment consists of a set of mappings, often
represented as tuples <𝑒𝑠, 𝑒𝑡, 𝑟, 𝑐>, where 𝑒𝑠 and 𝑒𝑡 are entities from 𝑂𝑠 and 𝑂𝑡 respectively, 𝑟 denotes a
semantic relation (e.g., equivalence, subsumption), and 𝑐 represents the confidence score of the mapping.
These mappings are crucial for tasks such as data integration, Knowledge Graph fusion, and semantic
interoperability in domains like healthcare, biology, and the Semantic Web.

Ontology matching systems are predominantly unsupervised, relying on heuristics and rules instead
of deriving a mapping function through learning. These systems typically include three stages: pre-
processing (the identification and retrieval of entities from the ontologies based on specific criteria);
candidate generation (the use of diverse matching techniques to generate possible correspondences
based on ontology features); and filtering (the refinement of initial matches through discarding of
unlikely mappings).

In recent years, with the advent of language models, more attention has been devoted to Machine
Learning-based ontology alignment, with several systems incorporating it [13, 14, 15, 16] and the
creation of the Bio-ML track at the Ontology Alignment Evaluation Initiative. ML introduces a data-
focused approach to ontology alignment, shifting away from heuristic and rule-based approaches.
Unlike traditional OM systems, ML-based methods aim to learn a mapping function using labelled
reference alignments, enabling more adaptive and scalable matching solutions. In principle, this allows
for improved candidate generation, better matcher combination strategies, and more effective filtering
techniques. Most approaches employ BERT-like methods [8] and typically sacrifice recall in favour of
precision [17].



3. Methodology

3.1. Overview

To investigate the impact of semantic context (in the form of verbalized hierarchical relations) in
prompt-based ontology matching tasks we developed a simple framework to design prompts based
on combinations of relevant elements into meaningful patterns. Prompts built using this framework
were evaluated using different language models with different model sizes. Our approach takes as input
two candidate entities (typically classes) from each ontology to align, designs a prompt to evaluate the
validity of a mapping between them based on different parameters, interrogates the language model
using the prompt, and evaluates its output. In our study, we assume candidates are already selected,
and focus only on prompt design and evaluation.

3.2. Prompt design for matching

We present a two-stage framework for generating context-aware prompts designed for tasks such as
ontology alignment. This framework decomposes prompt generation into a static stage — where invari-
ant templates (static skeletons) are constructed from a base template using task-specific configuration
parameters — and a dynamic stage — where these skeletons are enriched with instance-specific data.
This modular design allows a small number of configurable templates to be efficiently adapted to large
datasets.

3.2.1. Static Stage: Template Construction

The static stage begins with a base template, denoted by 𝒮 , which contains symbolic placeholders
indicating the different elements that compose a prompt, where specific types of information will be
inserted. The elements are listed in Table 1.

Element Tag Description
$TC (Task Context) A description of the task the model should perform.

$I (Instruction) A description of the nature of the question that will be asked and the expected answer format.

$CONF (Confidence) The type of confidence that the model should output (if any).

$S (Source) The main label(s) of the source ontology entity.

$CTX_S (Source Context) Labels of potentially meaningful entities to the source entity.

$T (Target) The main label(s) of the target ontology entity.

$CTX_T (Target Context) Labels of potentially meaningful entities to the target entity.

$TYPE (Equivalence Type) The type of equivalence to be assessed.

Table 1
Description of each base template prompt element

A brief description of each of these elements is presented in Table 1 and their possible values are
presented in Table 2.

Category Type String Value
Task Context — "You are doing an ontology alignment task,"

Instruction — "I am going to ask you a question and you should answer ’yes’ or ’no’."

Confidence float "Followed by confidence as a score from 0 to 1 (e.g., ’yes:0.8’)"

categorical "Followed by confidence as ’Not Confident’, ’Confident’, or ’Very Confident’ (e.g., ’yes:Confident’)"

Context subclass_of "a subclass of $SC", with ’$SC’ being a superclass of either $S or $T

kind_of "a kind of $SC", with ’$SC’ being a superclass of either $S or $T

Equivalence Type Equivalent "equivalent"

Table 2
The possible types of each category of prompt elements and their respective values



You are doing an ontology alignment task. I am going to ask you a question and you should answer ’yes’ or ’no’,
followed by your confidence in your answer as a score from 0 to 1, like this: ’yes:0.8’.
Question: Are ’Neuraminidase Deficiency’ and ’glycoproteinosis’ equivalent?

Figure 1: Example of a prompt without hierarchical context.

A set of configuration parameters 𝑖 ∈ {1, . . . , 𝑁} governs the substitution of these placeholders
with specific verbalizations. We define four vectors:

𝜏 = (𝜏1, 𝜏2, . . . , 𝜏𝑁 ), 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑁 ),

𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑁 ), 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑁 ),

where:

• 𝜏𝑖 ∈ {True, False} indicates whether to include a task context.
• 𝛾𝑖 ∈ Γ specifies the comparison prompt.
• 𝜎𝑖 ∈ Σ represents the semantic context prompt.
• 𝜆𝑖 ∈ ℒ denotes the confidence type (e.g., float or cat).

Then, for each configuration 𝑖 ∈ {1, . . . , 𝑁}, the static base template 𝒮𝑖 corresponds to a unique
pattern combining each of the four elements < 𝜏𝑖, 𝛾𝑖, 𝜎𝑖, 𝜆𝑖 > by replacing each placeholder in 𝒮 by
the appropriate string. The output of this stage is the set {𝒮𝑖}𝑁𝑖=1 of static templates that capture the
invariant, configuration-specific aspects of the prompt.

3.2.2. Dynamic Stage: Instance-Specific Enrichment

Let {(𝑠𝑗 , 𝑡𝑗)}𝑀𝑗=1 be the set of source–target entity pairs in the dataset. In the dynamic stage, each static
template 𝒮𝑖 is enriched with instance-specific information to produce a dynamically-built prompt.

For each entity pair (𝑠𝑗 , 𝑡𝑗) and each static template 𝒮𝑖, a dynamic prompt 𝑃𝑖𝑗 is generated according
to

𝑃𝑖𝑗 = 𝑓dynamic(𝒮𝑖; 𝑠𝑗 , 𝑡𝑗 , 𝑝𝑖, 𝑛𝑖),

where:

1. Label Formatting: The entities 𝑠𝑗 and 𝑡𝑗 provide label sets, which are formatted (e.g., truncated
to a specified cardinality and concatenated with a given delimiter) to yield 𝐿(𝑠𝑗) and 𝐿(𝑡𝑗). These
formatted labels replace the placeholders $S and $T, respectively.

2. Contextual Enrichment: Additional contextual information is extracted from the ontology and
formatted as 𝐶(𝑠𝑗) and 𝐶(𝑡𝑗), replacing the placeholders $CTX_S and $CTX_T. In cases of absent
context, extraneous semantic tokens may be removed. In this work, we focused on subsumption
relations to include hierarchical context.

Thus, the dynamic prompt for each static skeleton and entity pair is obtained via the function 𝑓dynamic,
and for each 𝑗, the complete set of dynamic prompts is given by

𝒫𝑗 = {𝑃𝑖𝑗}𝑁𝑖=1.

These dynamically enriched prompts form the final output features for the dataset.
In summary, the static stage produces a family of invariant templates and the dynamic stage adapts

these templates to each instance (𝑠𝑗 , 𝑡𝑗). Figures 1 and 2 illustrate two prompt examples with and
without hierarchical context.



You are doing an ontology alignment task. I am going to ask you a question and you should answer ’yes’
or ’no’, followed by your confidence in your answer as a score from 0 to 1, like this: ’yes:0.8’. Question: Are
’Neuraminidase Deficiency’ ( a kind of Mucolipidosis) and ’glycoproteinosis’ (a kind of lysosomal storage disease)
equivalent?

Figure 2: Example of a prompt with hierarchical context.

3.3. Models

Our experiments evaluated the prompts in five different language models with varying numbers of
parameters and reasoning capabilities. The Flan-T5-Base model [18] (with 220 million parameters),
is a lightweight transformer model developed by Google, tailored for instruction-based tasks and
without any reasoning capabilities. The Claude 3.7 Sonnet model [19] was developed by Anthropic and
is a significantly larger model than lightweight models such as Flan-T5-base, possessing 137 billion
parameters but also lacking reasoning capabilities. Our experiments also incorporate GPT4 [20], a large-
scale model comprising 1.76 trillion parameters, which represents a significant milestone in enhancing
linguistic fluency and contextual comprehension within generative language models. Additionally, we
also analyse the performance of two state-of-the-art reasoning models: GPT4o [21], a multimodal model
with 200 billion parameters and OpenAIo1 [22], another multimodal model with 175 billion parameters.

Model Number of Parameters Reasoning
Source

Flan-t5-base 220 million No
Claude 3.7 Sonnet 137 billion No
OpenAIo1 175 billion Yes
GPT4o 200 billion Yes
GPT4 1.76 trillion No

Table 3
Number of parameters in the language models employed in the experiments, ordered by ascending size.

3.4. Parsing Model Responses

Let 𝐹 denote a parsing function that maps a textual response 𝑦, generated by a predictive model, into a
numerical confidence score 𝑐 ∈ [−1, 1]. This confidence score quantifies the certainty associated with a
binary classification decision, indicating either a positive or negative outcome.

Parsing Process: The function 𝐹 is defined through the sequential application of the following
procedures:

1. Text Normalization:
• Transform the textual response 𝑦 into lowercase form: 𝑦 ← lowercase(𝑦).
• Remove leading and trailing white space: 𝑦 ← trim(𝑦).

2. Numeric Confidence Extraction:
• Use regular expressions to search for numeric confidence values within 𝑦.
• If a numeric value is found, convert it to a float and clip its value to the range [0, 1]. For

instance, a response including "0.85" would yield 𝑐 = 0.85.

3. Default Uncertainty Handling:
• In the absence of numeric values, assign a default confidence 𝑐 = 1.0. This default ensures

reliance exclusively on the binary signal derived from keyword polarity.



4. Solution Polarity Determination:
• Adjust the polarity of the mapping based on explicit binary indicators:

𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =

⎧⎪⎨⎪⎩
0, if "no" (negative) is detected,

1, if "yes" (positive) is detected,

0.0, if neither or both indicators ("yes" and "no") are detected.

This parsing approach enables consistent extraction of numerical confidence scores from multiple
textual responses generated for each query.

3.5. Evaluation

Our preliminary experiments focused on a subset of the mappings for the NCIT-DOID task of Bio-
ML[12]. This track includes a special dataset, Bio-ML LLM, which contains 50 randomly selected
matched class pairs from ground truth mappings, excluding pairs that can be aligned with direct string
matching (i.e., having at least one shared label). This restricts the efficacy of conventional lexical
matching. Of these 50 pairs, we selected the six which were considered as particularly hard to detect.
For each source class in these "very hard" mappings, we created an additional "hard" negative (i.e., a
target class with some lexical similarity to the source). The mappings are listed in Table 4.

Source Target Status

Esophageal Verrucous Carcinoma esophagus verrucous carcinoma 1
Esophageal Verrucous Carcinoma esophageal varix 0
Diabetic Vascular Disorder diabetic angiopathy 1
Diabetic Vascular Disorder diabetic encephalopathy 0
Malignant Hypopharyngeal Neoplasm hypopharynx cancer 1
Malignant Hypopharyngeal Neoplasm malignant granular cell skin tumor 0
Neuraminidase Deficiency glycoproteinosis 1
Neuraminidase Deficiency biotinidase 0
Bone Necrosis ischemic bone disease 1
Bone Necrosis dysbaric osteonecrosis 0
Microcystic Adnexal Carcinoma malignant syringoma 1
Microcystic Adnexal Carcinoma nasopharynx carcinoma 0

Table 4
Source and target classes with corresponding mapping status (1: correct mapping; 0: incorrect mapping).

4. Results

Table 5 presents the confusion matrix for the preliminary experiments. When the prompt does not
include hierarchical contextual information, the best-performing models are OpenAIo1 and GTP4o,
which despite being smaller than GPT4 have improved reasoning capabilities. These reasoning capabili-
ties may help the models perform better when there is less information available. In fact, GPT4 ranks
fourth despite being the largest model.

When semantic contextual information is given to the models, we observed very different behaviours
between the "kind_of" prompt and the "subclass_of" prompt. While the "kind_of" resulted in improved
results for the non-reasoning models, for the reasoning models, it had either no impact or a small
negative impact. The "subclass_of" prompt, however, did not perform as well, having a negative impact
in most models. These results demonstrate that hierarchical contextual information should be considered
when designing prompts for biomedical ontology alignment. It is well worth noting that the second
best performing approach was the pairing between Claude-3.7-Sonnet and the "kind_of" prompt, which
achieved nearly identical results with GPT4, while being 10% of its size.



MODEL w/o HC w/ HC (kind of) w/ HC (subclass of)

Pred: 1 Pred: 0 Pred: 1 Pred: 0 Pred: 1 Pred: 0

flan-t5-base Actual: 1 1 5 3 3 1 5
Actual: 0 0 6 1 5 0 6

Claude 3.7 Sonnet Actual: 1 3 3 5 1 4 2
Actual: 0 0 6 1 5 0 6

OpenAIo1 Actual: 1 4 2 4 2 3 3
Actual: 0 0 6 0 6 0 6

GPT4o Actual: 1 5 1 4 2 3 3
Actual: 0 1 5 0 6 0 6

GPT4 Actual: 1 3 3 5 1 3 3
Actual: 0 1 5 0 6 0 6

Table 5
Confusion Matrix Results for Different Models

We also investigated in more depth some false negative cases, depicted in Table 6. Some mappings,
such as "Neuraminidase Deficiency - glycoproteinosis" are missed by all models, regardless of the
context that is imparted in the prompt. Curiously, some sources indicate that this may not actually be
an equivalence but rather a subsumption, with the corresponding diseases being modelled as such in
ICD-10 (categories E77 and E77.1). However, including the hierarchical context in the form of "kind_of"
prompts mitigates these issues, with most models, especially the mid to large sized, improving their
recall of hard-to-find positive mappings.

Source Target HC Fail to find

Neuraminidase Deficiency glycoproteinosis all all fail
Microcystic Adnexal Carcinoma malignant syringoma No Claude-3.7-Sonnet, flan-t5-base, GPT4
Microcystic Adnexal Carcinoma malignant syringoma subclass_of , flan-t5-base, GPT4
Microcystic Adnexal Carcinoma malignant syringoma kind_of none fail
Bone Necrosis ischemic bone disease No Claude-3.7-Sonnet, flan-t5-base, GPT4
Bone Necrosis ischemic bone disease subclass_of flan-t5-base, GPT4, GPT4o
Bone Necrosis ischemic bone disease kind_of flan-t5-base

Table 6
Examples of mappings that the models failed to find when combined with different hierarchical context prompts.

5. Conclusion

This study explored the effectiveness of semantic prompting strategies, particularly the use of hier-
archical contextual information, in enhancing biomedical ontology alignment with language models.
Our experiments revealed that the impact of the inclusion of hierarchical context depended on the
prompt wording. While the "kind_of" prompt — which more closely aligns with everyday language
— improved the performance for non-reasoning models, the "subclass_of" prompt generally led to
decreased performance. These findings highlight that the value of adding semantic context is heavily
influenced by the verbalisation used when designing prompts.

We also found that smaller models like OpenAIo1 and GPT4o outperformed larger models like GPT4
when no hierarchical context was included in the prompt. This suggests that smaller models with better
reasoning capabilities may perform more effectively when limited information is provided. Interestingly,
the pairing of Claude-3.7-Sonnet with the "kind_of" prompt delivered nearly identical results to GPT4,
despite being only 10% of its size, showing that less resource-intensive models can still achieve strong
performance when combined with the right prompting strategies.



Additionally, the inclusion of hierarchical context through the "kind_of" prompt improved the recall
of hard-to-find mappings, especially for mid- to large-sized models. However, some mappings remained
challenging for all models, indicating that certain biomedical ontology mappings require more advanced
approaches.

Future work will focus on extending the prompt design framework to include in-context learning
based on positive and negative examples and developing additional strategies to extract semantic context
by exploring common biomedical ontology features such as partonomy, rich synonyms and logical
definitions.
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