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Abstract
Environmental evidence synthesis plays a crucial role in policy-making, yet policy-makers often struggle to situate
individual insights into a broader context of research findings. The Collaboration for Environmental Evidence’s
Database for Evidence Reviews (CEEDER) provides a collection of evidence, but it remains difficult to navigate.
Large language models help to overcome this challenge, doing well at summarization, but often miss critical
relational contexts. We propose basing the language model on a knowledge graph that grows with the evidence
through the use of Microsoft’s GraphRAG. As a dynamic knowledge layer this approach efficiently connects,
retrieves, and summarizes relevant research. Unlike traditional manually curated knowledge graphs, GraphRAG
dynamically links entities without predefined schemas, adapting to the evolving landscape of environmental
science. By enhancing domain-specific query-focused summarization, GraphRAG has the potential to increase
data accessibility in settings such as CEEDER where conventional knowledge graphs are not feasible.
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1. Introduction

Environmental policy-making depends on the synthesis of research, yet extracting meaningful insights
from its vast scientific literature is challenging. The sustainability literature has been doubling every
8.3 years and encompasses disciplines including biology, chemistry, engineering, health sciences, and
social sciences [1]. The Collaboration for Environmental Evidence’s Database for Evidence Reviews1

(CEEDER) curates nearly 2,000 systematically assessed reviews to support decision-makers [2], but
even these structured resources require manual effort to navigate and interpret.

Traditional search methods like online search or CEEDER’s own search string function offer only
keyword-based retrieval. They don’t provide direct answers and don’t connect related findings across
different reports. Recent advances in large language models (LLMs) have enabled automated text pro-
cessing at scale. However, without structured retrieval, LLMs struggle to map conceptual relationships,
often overlooking the critical connections necessary for effective decision-making [3].

Knowledge graphs (KGs) offer a promising approach to addressing these challenges by structuring and
linking data. In conjunction with LLMs they can make complex webs of evidence navigable, improving
discoverability and supporting reasoning over data. However, creating high-quality KGs requires
significant involvement from domain experts, which becomes prohibitively expensive at scale [4].

Introduced by Microsoft in 2024, GraphRAG2 is a novel evolution of the retrieval-augmented gen-
eration (RAG) technique, combining automated knowledge graph construction and query-focused
summarization to support human sensemaking over entire text corpora [5]. The approach retrieves

KG4S’25: The third international Workshop on Knowledge Graphs for Sustainability, June 01, 2025, Portoroz, Slovenia
Envelope-Open christoph-stade@outlook.de (C. Stade); jschneider@pobox.com (J. Schneider); fu5@illinois.com (Y. Fu)
Orcid 0009-0009-3973-5139 (C. Stade); 0000-0002-5098-5667 (J. Schneider); 0000-0003-2726-0999 (Y. Fu)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1https://environmentalevidence.org/ceeder-search/
2https://github.com/microsoft/graphrag

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:christoph-stade@outlook.de
mailto:jschneider@pobox.com
mailto:fu5@illinois.com
https://orcid.org/0009-0009-3973-5139
https://orcid.org/0000-0002-5098-5667
https://orcid.org/0000-0003-2726-0999
https://creativecommons.org/licenses/by/4.0/deed.en


contextually relevant information using relationship-based similarity, consequently generating more
relevant answers than traditional RAG methods that rely solely on vector similarity of embedded text
fragments [5]. Additionally, while RAG is typically used to generate answers based on general knowl-
edge, in this work we begin to see that GraphRAG could excel at connecting across domain-constrained
documents with an explicit structure, such as scientific papers and especially evidence reviews. Note
that the underlying entity knowledge graph is different from conventional knowledge graphs in that it
does not incorporate structured ontologies, which poses a tradeoff we will discuss in section 3.2.

We propose using Microsoft GraphRAG as a dynamic knowledge layer on CEEDER and identify the
following three advantages for policy-makers to gain with this approach. Using GraphRAG:

1. Provides provenance links for generated knowledge claims to original text chunks in the dataset
2. Encourages proactive knowledge discovery by making evidence more accessible
3. Continuously integrates the newest scientific documents

2. Related Work

Utilizing graph structures for query-focused summarization was previously suggested by Park and
Ko [6]. Their approach uses a graph attention network and a personalized PageRank algorithm to
strengthen the relationship between query nodes and document content. Our approach using GraphRAG
is advantageous because it can leverage cross-document relationships, integrating multiple pieces of
evidence that collectively represent a domain in one unified graph, rather than summarizing one
document at a time.

Barron et al. explored how KG-assisted RAG can enhance language model performance in highly
domain specific settings [7], improving structure and relevance at the cost of significant pre-processing
and manual curation. Their integration of KGs with vector stores emphasizes structured ontologies
which are explicitly built by human experts-in-the-loop using curated corpora. Although the need
for human experts is minimized for scalablility, it can still be a barrier when resources are limited.
In contrast, by using GraphRAG to dynamically link entities, our approach enables retrieval while
completely eliminating the need for predefined schemas.

Within the sustainability domain, Gupta et al. designed a KG-assisted RAG approach for question-
answering about Environmental, Social, and Governance news articles [8]. Their approach uses Rapid
Automatic Keyword Extraction (RAKE) for unsupervised keyword extraction from sentences in a news
corpus, then creates embeddings of extracted key phrases with phrase-BERT that get saved as entities
in a KG. At query time entities are retrieved based on their cosine similarity to the query string. Their
KG aims to provide an LLM with factual data about companies, events, and dates. Yet it is limited
because the retrieval is based on individual node scoring. However, our envisioned application to policy-
making requires abstraction beyond localized facts to answer questions spanning across sub-domains
within climate research, not attempted by their approach. GraphRAG is more suitable since it supports
high-level, global queries and identifying overarching themes by creating community summaries and
combining partial answers.

Our approach integrates a Python package actively maintained by Microsoft3. This ensures a readily
usable command-line interface deployment, a convenience lacking in similar approaches [7, 6, 8].

3. A Dynamic Knowledge Layer for CEEDER

The CEEDER database’s rigorous evidence synthesis methodology creates unique opportunities for
graph-based knowledge discovery: Each systematic review’s structured review question provides natural
anchor points for graph construction. Per individual evidence review, CEEDER’s curators assign a
review question following the PECO/PICO (Population, Exposure/Intervention, Comparison, Outcome)
question format. The review questions serve as a top-level representation of evidence documents

3https://github.com/microsoft/graphrag
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throughout, describing their contents in the most condensed form, even more so than the review’s
abstract. We make every review question part of the context fragments input to GraphRAG’s indexing.
In practice, review questions can guide query optimization as pre-formulated prompts for policy-makers
to use as an entry point to a document or topic.

3.1. Methods and Results

Figure 1: Excerpt of GraphRAG’s entity knowledge graph of CEEDER’s 354 climate change abstracts4.

First, we parsed the database dump CSV file (retrieved from CEEDER on August 2, 2024) to extract
the Title, Review Question and Abstract columns for each review. To limit the amount of data to process,
we restricted ourselves to the 356 reviews in the climate change collection by applying a CEEDER
search filter, which was further reduced after removing two duplicate entries. The reviews were
formatted as individual .txt files with three lines per extracted column entry and moved to GraphRAG’s
input directory. Next we ran the GraphRAG index pipeline to create the entity knowledge graph
following the documentation5. Our configuration differs in pointing to local instances running on
ollama 0.6.06 rather than remote OpenAI models, removing dependency on proprietary APIs, cutting
cost, and ensuring privacy. For the LLM we chose mistral-nemo with 12B parameters7 for its strong
performance-to-size ratio. Preliminary testing with stronger models yield more populated and denser
graphs, suggesting potential for improved performance. The embedding model was nomic-embed-text8

with high general-purpose embedding quality. Table 1 shows an example global query against all
ingested abstracts and a sample review question as user input. Compared to GraphRAG’s local search,
global search is a resource-intensive method, but it often gives accurate responses for questions that
require an understanding of the dataset as a whole. Figure 1 shows the resulting graph visualized using
Gephi network analysis software [9] and the GraphRAG visualization guide9, limited to clusters with

5https://microsoft.github.io/graphrag/get_started/
6https://ollama.com/
7https://ollama.com/library/mistral-nemo
8https://ollama.com/library/nomic-embed-text
9https://microsoft.github.io/graphrag/visualization_guide/
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more than one node and rearranged for improved readability. The indexing process extracted 90,230
entities and 70,895 relationships aggregated to 608 nodes and 250 edges through community-based
summarization and pruning (see Figure 1).

Immediate limitations are visible, like the dark green colored cluster to the right with the meaningless
artifact “Review question”, used to structure the input files. Further, the graph is sparse. There are
many clusters with a single concept node (not shown in Figure 1), likely because of the small input size
of 354 abstracts with 13.97 sentences on average or because of the limited complexity of the language
model used to process the abstracts.

3.2. GraphRAG Compared to Conventional Knowledge Graphs

The entity knowledge graph (EKG) produced by GraphRAG’s indexing pipeline does not conform
to any single established model of a conventional knowledge graph [10]. Nodes have default types
organization, person, geo, and event - an LLM prompt can be used to generate alternative types -
and are a factor for retrieval. Edges have a weight that counts their normalized occurrences. Both
nodes and edges have one or more free-form description strings with arbitrarily rich textual metadata.
Beyond the standard attributes of the EKG’s GraphML-serialization it is missing a schema resembling
an ontology.

In contrast to conventional knowledge graphs, the EKG’s descriptions are not exclusively meant for
human consumption but treated as the single source for all semantic information about the relation
for the LLM to process. For example, the node Nitrogen Fixation is described as “Nitrogen Fixation
refers to the process of converting atmospheric nitrogen into a usable form for plants.” and connected
to the node Plants via a relation with the description “Plants rely on nitrogen fixation for growth
and development.” GraphRAG’s handling of rich semantic descriptions for both nodes and edges is
close to that of a property graph: high complexity in the description enables complex statements to be
expressed with relatively little notation, in strings that the LLM can process.

Conventional knowledge graphs need additional mechanisms like reification or subgraphs to realize
similar contextual information, such as temporal or geographical annotations. And compared to
GraphRAG’s flexible EKG, conventional KGs are expensive to create and thus impractical when resources
are limited. Significant effort in ontology design, data integration, and maintenance is required to
create domain-specific knowledge graphs, with domain experts who define taxonomies and update
schemas [10]. GraphRAG’s indexing pipeline, as a dynamic knowledge layer, eliminates this overhead
inherent to knowledge engineering by automatically extracting and structuring relationships as new
data is introduced just by re-indexing.

While GraphRAG lacks ontology-driven reasoning and complex SPARQL queryability, it offers
compensatory advantages. The flexible EKG enables continuous evidence integration, and scales
efficiently without the need for costly manual curation. This adaptability makes GraphRAG a cost-
effective alternative in resource-constrained settings, such as the CEEDER database.

3.3. Environmental Policy Impact

Policy decisions are inherently tied to the quality and reliability of synthesized evidence. This is true for
both evidence reviews and artificially generated reports, making it essential that the methodologies used
to synthesize information are both accurate and comprehensible. In fact, EU policy-makers highlight
trust, regulatory uncertainty, and risks associated with AI, including its potential harms and the need for
explainability, as key challenges in harnessing AI for policy-driven applications such as climate change
mitigation [11]. Ensuring AI transparency is crucial for informed decision-making, as misrepresented
or opaque evidence can lead to misguided policies with real-world consequences [12].

Unlike traditional AI models that generate responses without clear sourcing, Microsoft’s GraphRAG
provides provenance, explicitly linking generated statements back to their original text chunks in the

9https://github.com/infoqualitylab/CEEDER_study/blob/main/Spring2025_Christoph/mistral-nemo12b/visualized_merged_
graph.pdf
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Review Question
What are the effects of nitrogen input on greenhouse gas emissions from wetland ecosystems?

Response
Nitrogen input significantly impacts greenhouse gas emissions from wetlands, primarily affecting
methane (CH4) and nitrous oxide (N2O) emissions.

Here’s a summary of the key findings:
1. Methane (CH4) Emissions: Excess nitrogen can lead to increased methane production and
emission in wetlands [Data: Reports (2, 7, 64, +more)]. This is due to enhanced microbial activity
under high nitrogen conditions. However, the effects of nitrogen input on methane emissions can
vary depending on other factors such as water table depth and temperature [Data: Reports (4, 6)].
[...]
3. Plant Community Composition and Greenhouse Gas Emissions: Nitrogen input may also
alter plant community composition in wetlands, potentially affecting greenhouse gas emissions [Data:
Reports (3, 5)]. Changes in plant species can influence the amount of carbon sequestered by wetlands,
which indirectly impacts greenhouse gas emissions.

Table 1
Example review question query and answer pair generated with global search, excerpted for readability.

dataset and relationships in the entity KG. For instance, in Table 1, GraphRAG cites “[Data: Reports (2,
7, 64, +more)]”. Consecutive indices are sequential text fragments in the input; larger gaps indicate
that GraphRAG makes connections between multiple reviews’ findings. By linking research questions
and their answers, GraphRAG enables policy-makers to see how findings in different contexts and on
different populations relate through a common intervention. For example, consider the review question:
“What are the effects of nitrogen input on greenhouse gas emissions from wetland ecosystems?” A
separate review addresses: “What are the effects of nitrogen input on soil nitrous oxide emissions and
soil ammonia and nitrate concentrations in natural ecosystems?” Both study the effects of nitrogen
input but in different settings. A policy designed for nutrient management in wetlands could benefit
from lessons learned in natural ecosystems, identifying both shared mechanisms and critical contextual
differences. As the CEEDER climate change collection grows, these overlaps will multiply. This will
enhance GraphRAG’s ability to find consensus, conflicting viewpoints, and trends across multiple
evidence reviews and their findings, going well beyond isolated summarizations. Ultimately, GraphRAG
could help policy-makers move from narrow, study-specific insights to a comprehensive understanding
of the broader landscape of environmental research.

4. Limitations and Future Work

The sampled global queries with selected review questions already suggest an improvement over regular
RAG. However, to verify, this we will run an empirical evaluation. Since environmental science does
not have an existing labeled data set that could be used for validation, we will adopt Edge et al.’s
improvement to the LLM-as-a-Judge technique, employing a language model itself as an evaluator for
the output of other language models [5, 13]. The goal is to use two different models, one for generating
the data, the other for evaluating, to overcome egocentric bias [14]. We will test different configurations
through a constructive ablation study to determine the highest contributors, including an LLM with
only concatenated abstracts in the context window, an LLM with RAG, an LLM with GraphRAG, and
finally, an LLM with GraphRAG with fine-tuned models for sustainability.

Moving forward, we aim to extend GraphRAG’s EKGwith lightweight ontologies in a hybrid approach
to enable additional dimensions to search, such as vertical exploration through evidence hierarchies,
utilizing CEEDER’s evidence overview collection, horizontal discovery of interdisciplinary connections
(e.g., linking the climate change collection to other review collections) and temporal analysis of evolving
scientific consensus across review versions. Two sustainability-focused enhancements could be made to



the core GraphRAG pipeline. First, we will use ClimateBERT [15], a fine-tuned model trained on 450,000
environmental science abstracts, to improve entity recognition accuracy for sustainability concepts.
Second, we will improve the evidence tracking by updating the cryptic “Data: Reports…” (Table 1)
provided by GraphRAGs out-of-the-box capabilities to enhance them with publication titles and DOIs.

In the future, we envision the entity knowledge graph facilitating applications such as detecting
knowledge gaps and conflicting statements. Missing connections between concepts, sparse graph
regions, or dangling nodes may indicate knowledge gaps such as under-researched areas or open
questions. By traversing and inspecting the graph, either automatically, manually or both, it may
be possible to find conflicting or contrasting statements and compute maximum flow to identify the
statement with stronger support [16]. This could provide decision-makers with insight into scientific
consensus and uncertainty.

5. Conclusions

Sustainability research urgently needs automated methods to help policy-makers synthesize research
outcomes because it is one of the fastest growing fields of research, doubling in unique contributions
every 8.3 years, with work from diverse disciplines such as biology, chemistry, engineering, health sci-
ences, and social sciences [1]. Our GraphRAG pipeline improves knowledge discovery in environmental
science by structuring relationships between concepts that traditional retrieval models often conflate.
GraphRAG furthers LLMs’ capabilities for processing vast amounts of text to enable meaningful analysis
at scale.

However, challenges remain, especially in the graph construction process. The lack of entity disam-
biguation and semantic normalization risks missing complex relationships. Further, generative data
might not accurately represent the source data. System use should always be accompanied by clear
disclosures of AI use and the potential for errors in outputs [5]. Yet, unlike static KGs, GraphRAG
continuously integrates emerging evidence, making it well-suited for domains like sustainability, where
evolving research shapes policy decisions.
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