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Abstract
This paper explores the integration of the Digital Twins Definition Language (DTDL) with ASP Chef, a web-based

platform for Answer Set Programming (ASP). The goal of the research is to take advantage of the capabilities of

ASP Chef to query, analyze, and visualize digital twins. As a first step in this direction, we introduce a method for

mapping DTDL-defined digital twin models into ASP facts. This approach enables a seamless transition from

high-level digital twin specifications to declarative reasoning and interactive visualization, offering a flexible

framework for interpreting and exploring digital twin configurations.
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1. Introduction

Digital twins are virtual representations of physical entities, such as sensors, rooms, vehicles, or

more complex systems, designed to reflect their structure, behavior, and real-time state. These digital

counterparts enable simulation, monitoring, and data-driven reasoning over physical environments.

The modeling of digital twins requires a precise and expressive language to describe their properties,

telemetry, relationships, and component structure. To this end, Microsoft has developed the Digital

Twins Definition Language (DTDL), a domain-specific modeling language tailored to define digital twin

interfaces and instances. DTDL is built upon JSON-LD (JavaScript Object Notation for Linked Data), a

serialization format for linked data that extends standard JSON. JSON-LD was introduced as a way to

integrate structured data into the evolving Semantic Web using familiar JSON syntax, while maintaining

compatibility with RDF (Resource Description Framework). RDF defines a data model to represent

relationships between entities on the Web. JSON-LD serves as a concrete serialization of RDF data and

in fact can be simultaneously interpreted both as valid JSON and as an RDF document. This foundation

allows DTDL to support semantic interoperability, reuse, and extensibility through the definition of

domain-specific ontologies. Models in DTDL can inherit from one another, enabling abstraction and spe-

cialization, and can either define custom concepts or reuse industry-specific vocabularies. For instance,

the RealEstateCore ontology for smart buildings (https://github.com/Azure/opendigitaltwins-building)

and the EnergyGrid ontology for energy systems (https://github.com/Azure/opendigitaltwins-building)

are both provided as reference models within the Azure Digital Twins ecosystem. Technically, a

DTDL model is defined as a forest of DTDL elements—interfaces, properties, telemetry, commands,

and relationships—organized under unique identifiers called DTMIs (Digital Twins Model Identifiers).

These models can be composed, extended, and reused across different domains and applications

(https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v4/DTDL.Specification.v4.md).

ASP Chef [1, 2] is a web-based platform designed to support interactive development, execution,

and visualization of logic programs within the paradigm of Answer Set Programming (ASP). While

many ASP environments focus primarily on the writing and debugging of code, ASP Chef adopts a

higher-level perspective, enabling users to design and execute pipelines of operations, known as recipes,
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that process and transform answer sets in a structured and modular fashion. Each recipe in ASP Chef is

composed of a series of ingredients, where each ingredient encapsulates a specific operation: grounding

a logic program, solving it to compute answer sets, filtering results based on user-defined conditions,

applying queries, generating new interpretations, or rendering output in visual form. This modular

design allows users to construct complex logic-based workflows in a step-by-step manner, facilitating

experimentation, compositional reasoning, and reuse of processing logic across different applications.

What sets ASP Chef apart is its ability to manage interpretation streams (i.e., sequences of partial or

complete answer sets) through these pipelines. Rather than returning a static set of results, recipes can

transform intermediate results, chain operations, and ultimately produce outputs that are either textual

(e.g., ASP facts) or graphical (e.g., network visualizations). The visual layer is powered by templating

systems such as Mustache, integrated with JavaScript visualization libraries like @vis.js/Network,

enabling interactive graphical representations of logical models. The user interface of ASP Chef is

entirely browser-based and designed for accessibility and ease of use, lowering the barrier for both

newcomers and experts. Users do not need to install any external solvers or tools locally; the platform

integrates standard ASP solvers such as clingo and handles grounding, solving, and visualization

client-side. This makes it particularly suitable for educational contexts, rapid prototyping, and data-rich

domains where logical models must be both computed and interpreted by humans.

The objective of this work is to enable the analysis and visualization of digital twins defined using

DTDL within the declarative and visual framework offered by ASP Chef. While DTDL provides a

standardized, extensible way to model the structure and semantics of digital twins, defining interfaces,

properties, relationships, and telemetry, its focus remains on representation rather than reasoning. By

translating DTDL models into ASP facts, we can take advantage of the expressive power of ASP to

perform complex queries, detect inconsistencies, infer implicit knowledge, and simulate behaviors over

digital twin models. Integrating these two technologies allows for the creation of flexible reasoning

pipelines where DTDL-defined twins serve as the data layer, and ASP Chef recipes provide the logic

and visualization layers. In this approach, the declarative logic encoded in ASP can be used to filter or

analyze digital twin instances. At the same time, the built-in support for templating and graph-based

visualization in ASP Chef makes it possible to render digital twin networks in an interactive and

human-friendly form. This integration thus bridges high-level semantic modeling with logic-based

analysis and visual feedback, empowering users to inspect, reason over, and communicate digital twin

configurations more effectively. From a practical standpoint, this integration is particularly relevant in

contexts where explainability, rule-based control, or constraint checking over digital twins is essential.

For example, in smart building scenarios, one may use DTDL to describe a the layout of a building,

sensors, and control systems, and then use ASP to verify that sensor placement satisfies coverage

constraints, or to detect redundant or missing components. In energy grids or manufacturing processes,

logical rules may encode safety policies, energy efficiency conditions, or fault detection mechanisms

that can be automatically applied to the representation of the digital twin.

2. Background

2.1. Digital Twins and the Digital Twins Definition Language (DTDL)

A digital twin is a digital abstraction of a physical entity, characterized by a structured data model and

real-time data integration. It maintains a synchronized representation of the current state of a physical

object, and can be used to analyze its historical behavior, and potential future evolution. Formally, a

digital twin consists of four main parts:

1. A semantic model that defines the structure of the twin (e.g., properties, telemetry, commands,

and relationships).

2. Bindings to live data sources that feed the model with real-time observations.

3. Behavioral logic for monitoring, diagnostics, or decision-making (e.g., rule-based systems or

machine learning).



4. Interfaces for interaction, including APIs for querying or commanding the physical system.

Here we focus on the semantic model of digital twins.

The Digital Twins Definition Language (DTDL) is a modeling language designed to define the

structure, behavior, and relationships of digital twins. It is built upon JSON-LD, enabling semantic

interoperability and integration with linked data systems. DTDL v4 introduces several metamodel

classes that serve as building blocks for modeling digital twins. The primary construct in DTDL are

interfaces. An Interface encapsulates a set of elements (defined in the contents array) that describe the

capabilities and structure of a digital twin. In other words, it defines a reusable model that specifies the

data the twin can expose (through properties and telemetry), the actions it can perform (via commands),

and its relationships with other digital twins. Each interface is uniquely identified by a Digital Twin

Model Identifier (DTMI) and can include the following elements: properties defining readable and

writable values representing the state of the twin; telemetries representing data emitted by the twin,

typically used for monitoring or analytics; commands defining callable operations that the twin can

perform; relationships describing links between the twin and other twins, establishing a graph of

interconnected entities; components allowing composition by including other interfaces as part of the

current interface, promoting modularity and reuse. Interfaces can also extend other interfaces (extends

array), supporting inheritance and the creation of hierarchical models. A Property represents a value

associated with the state of the twin. Properties can be simple (e.g., integers, strings) or complex (e.g.,

objects, arrays), according to their schema declaration. They may be marked as writable, indicating that

their values can be updated. Telemetry elements define data that the twin emits, such as sensor readings

or status updates. They specify the schema of the emitted data and are typically used for real-time

monitoring. A Command specifies an operation that can be invoked on the twin. Commands can have

defined request and response schemas, facilitating structured interactions with the twin. Relationships
establish connections between twins, enabling the modeling of complex systems as interconnected

graphs. Each relationship can specify a target interface, multiplicity, and can include properties to

describe the nature of the connection (properties array). A Component allows an interface to include

another interface, promoting modular design and reuse. Components are useful for modeling complex

entities composed of simpler parts.

DTDL supports various schemas to define the data types used in properties, telemetry, and commands.

Here we consider primitive schemas for basic data types such as boolean, integer, double, string, and

dateTime, and complex schemas for structures like Object, Array, Map, and Enum. The Object schema

is used to define records composed of multiple named fields (fields array), each associated with its

own name and schema. The Array schema defines a homogeneous list of elements, where each element

conforms to a single specified type (elementSchema). The Map schema allows the representation of

key-value collections in which all keys are strings, and all values share a common schema; a map schema

includes two nested objects, namely mapKey and mapValue, both defining a name and a schema. The

Enum schema defines a controlled vocabulary of possible values for a property, telemetry, or command

parameter; it consists of a valueSchema indicating the underlying data type (string, integer, or boolean),

and an enumValues array (each value comprising name and value). Moreover, all constructs optionally

include comment, description and displayName metadata.

Example 1. Here is an example taken from the DTDL documentation (https://github.com/Azure/

opendigitaltwins-dtdl/blob/master/DTDL/v4/DTDL.v4.md):

{
"@context": "dtmi:dtdl:context;4",
"@id": "dtmi:com:example:thermostat;1",
"@type": "Interface",
"displayName": "thermostat",
"contents": [

{
"@type": "Telemetry",
"name": "temp",
"schema": "double"

https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v4/DTDL.v4.md
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v4/DTDL.v4.md


},
{
"@type": "Property",
"name": "setPointTemp",
"writable": true,
"schema": "double"

}
]

}

The above digital twin defines an interface representing a device called thermostat (with DTMI

dtmi:com:example:thermostat;1). The interface includes two elements in its contents: a Telemetry
named temp, which is a read-only data stream representing the current temperature (using the double

data type); a (writable) Property named setPointTemp, which allows users or systems to configure

the desired target temperature (again, using the double data type). Overall, this digital twin model

describes a simplified thermostat that reports current temperature via telemetry and allows control of

the target temperature via a writable property. ■

2.2. Answer Set Programming (ASP)

In ASP, a (logic) program is composed of a finite set of rules that describe how certain facts, known

as atoms, can be derived. Each rule consists of a head and a body. The head represents a possible

conclusion, either a single atom or a choice among multiple atoms, while the body defines the conditions

that must be satisfied for the head to hold. These conditions are expressed as a conjunction of literals,

which may also include aggregates and arithmetic constraints. Depending on the form of the head, a

rule may deterministically derive its conclusion or non-deterministically guess it as part of a choice.

Formally, an ASP program Π gives rise to a set of answer sets (also known as stable models), which are

interpretations that satisfy all the rules of Π while meeting a specific stability condition. This condition

ensures that each model is both supported (i.e., every true atom is justified by the program) and minimal

(i.e., no proper subset of the model also satisfies the program) [3]. Depending on the structure of the

program, Π may yield zero, one, or multiple answer sets, each corresponding to a distinct solution of

the problem encoded in the program.

To specify the intended output of a program, ASP allows the use of output directives, in particular

the #show directive. These directives restrict the visible part of the answer sets to specific atoms or

terms. The general form of a show directive is:

#show 𝑝(𝑡) : conjunctive_query.

Here, 𝑝 denotes an optional predicate symbol, 𝑡 is a (possibly empty) sequence of terms, and

conjunctive_query is a conjunction of literals serving as a condition for displaying instances of 𝑝(𝑡).
During answer set computation, only those atoms matching the criteria specified by one or more #show

directives are retained in the output, effectively projecting the full answer sets onto a user-defined

view. This mechanism offers a flexible and declarative approach to controlling the output of a program,

which is especially valuable in large or complex settings where only a selected subset of the derived

information is pertinent for subsequent processing or human interpretation.

For a detailed specification of syntax and semantics, including #show and other directives, we refer to

the ASP-Core-2 standard format [4], which defines a widely-adopted common ground for ASP languages

and tools.

Example 2. Consider a scenario where we want to select a subset of thermostat models that jointly

provide a required set of features (e.g., telemetry and writable properties) for integration into a smart

building system. The following ASP program models this selection problem:

𝑟1 : 1 <= {selected(T) : thermostat(T)} <= N :- limit(N).
𝑟2 : :- required(F), #count{T : selected(T), provides(T,F)} = 0.
𝑟3 : #show T : selected(T).



Rule 𝑟1 is a choice rule that selects between 1 and 𝑁 thermostat models (as determined by the fact

limit(N)). Rule 𝑟2 is a constraint that enforces full coverage: every required feature 𝐹 must be covered

by at least one selected thermostat. The #show directive in 𝑟3 ensures that only the selected thermostats

appear in the output, effectively projecting the answer sets to the relevant subset. Suppose the following

input facts define the thermostats, the features they support, and the desired feature set:

feature (temp). feature (setPointTemp). feature(humidity).
required(temp). required(setPointTemp). limit(2).
thermostat(t1). provides(t1, temp). provides(t1, humidity).
thermostat(t2). provides(t2, temp). provides(t2, setPointTemp).
thermostat(t3). provides(t3, setPointTemp).

In this setting, temp represents telemetry (e.g., current temperature), setPointTemp is a writable

property (i.e., a configurable target temperature), and humidity is an additional, optional telemetry

signal. The program has the projected answer set t1 t3, indicating that selecting thermostats t1 and

t3 ensures coverage of the required features (temp and setPointTemp) using at most two thermostats.

Actually, in this case there is also an answer comprising t2 alone. The number of selected thermostats

can be minimized by adding to the program the following weak constraint:

:∼ selected(T). [1@1, T]

To simplify the presentation, we omit the use of weak constraints in the remainder of this paper. ■

2.3. ASP Chef

An operation 𝑂 is a function receiving in input a sequence of interpretations and producing in output a

sequence of interpretations. Operations may produce side outputs (e.g., a graph visualization) and accept

parameters to influence their behavior. An ingredient is an instantiation of a parameterized operation

with side output. A recipe is a tuple of the form (encode, Ingredients, decode), where Ingredients is

a (finite) sequence 𝑂1⟨𝑃1⟩, . . . , 𝑂𝑛⟨𝑃𝑛⟩ of ingredients, and encode and decode are Boolean values.

If encode is true, the input of the recipe is mapped to [[__base64__("𝑠")]], where 𝑠 = Base64 (𝑠in)
(i.e., the Base64–encoding of the input string 𝑠in ). After that, the ingredients are applied one after

another. Finally, if decode is true, every occurrence of __base64__(s) is replaced with (the ASCII string

associated with) Base64−1(𝑠). Among the operations supported by ASP Chef there are Encode⟨𝑝, 𝑠⟩ to

extend every interpretation in input with the atom 𝑝("𝑡"), where 𝑡 = Base64 (𝑠); Search Models⟨Π, 𝑛⟩
to replace every interpretation 𝐼 in input with up to 𝑛 answer sets of Π ∪ {𝑝(𝑡). | 𝑝(𝑡) ∈ 𝐼}; Show⟨Π⟩
to replace every interpretation 𝐼 in input with the projected answer set Π ∪ {𝑝(𝑡). | 𝑝(𝑡) ∈ 𝐼} (where

Π comprises only #show directives.

Example 3. The problem from Example 2 can be addressed in ASP Chef by a recipe comprising a single

Search Models⟨{𝑟1, 𝑟2, 𝑟3}, 1⟩. Alternatively, a recipe separating computational and presentational

aspects would comprise two ingredients, namely Search Models⟨{𝑟1, 𝑟2}, 1⟩ and Show⟨{𝑟3}⟩. ■

Several operations in ASP Chef support expansion of Mustache templates [5]; among them, there are

Expand Mustache Queries, @vis.js/Network (to visualize graphs), Tabulator (to arrange data in interactive

tables), and ApexCharts (to produce different kinds of charts). A Mustache template comprises queries

of the form {{ Π }}, where Π is an ASP program with #show directives—alternatively, {{= 𝑝(𝑡) :

conjunctive_query }} for {{ #show 𝑝(𝑡) : conjunctive_query. }}. Intuitively, queries are expanded

using one projected answer set of Π ∪ {𝑝(𝑡). | 𝑝(𝑡) ∈ 𝐼}, where 𝐼 is the interpretation on which the

template is applied on. Separators can be specified using the predicates separator/1 (for tuples of

terms), and term_separator/1 (for terms within a tuple). The varadic predicate show/* extends a

shown tuple of terms (its first argument) with additional arguments that enable repeating tuples in

output and can be used as sorting keys (using predicate sort/1). Moreover, Mustache queries can use

@string_format(format, . . .) to format a string using the given format string and arguments, and

floating-point numbers are supported with the format real("NUMBER"). Format strings can also be

written as (multiline) f-strings of the form {{f". . ."}}, using data interpolation ${expression:format}

to render expression according to the given format .



Figure 1: Graphical representation of input and selected thermostats for the problem presented in Example 2

Example 4. The recipes presented in Example 3 can be further enriched by adding specific ingredients

for the graphical visualization of both the input data and the computed solutions. To this end, the

Mustache template provided below can be employed in combination with the @vis.js/Network rendering

engine to produce the network graph depicted in Figure 1:

{ data: {
nodes: [
{{= {{f"{ id: "${T}", label: "${T}",

group: "selected_thermostat" }"}} : thermostat(T), selected(T) }}
{{= {{f"{ id: "${T}", label: "${T}",

group: "other_thermostat" }"}}: thermostat(T), not selected(T) }}
{{= {{f"{ id: "${F}", label: "${F}",

group: "required_parameter" }"}} : parameter(F), required(F) }}
{{= {{f"{ id: "${F}", label: "${F}",

group: "other_parameter" }"}} : parameter(F), not required(F) }} ],
edges: [ {{= {{f"{ from: "${T}", to: "${F}" }"}} : provides(T,F) }} ], },

options: {
nodes: { size: 28, font: {size: 20}, borderWidth: 2 },
edges: { width: 1.5, color: {color: "#999", highlight: "#222", hover: "#444"},

arrows: { to: { enabled: true, type: "arrow", scaleFactor: 0.7 } }, },
groups: {
selected_thermostat: { shape: "hexagon",

color: { background: "#aed581", border: "#689f38" },
font: { color: "#1b5e20", size: 22, face: "Georgia" } },

other_thermostat: { shape: "triangle",
color: { background: "#fff59d", border: "#fdd835" },
font: { color: "#ef6c00", size: 20 } },

...

It is worth noting that Mustache queries are employed to define the nodes and edges of the graph

based on facts extracted from the computed answer set. A complete recipe addressing the selection

problem, along with the visualization presented in Figure 1, is available at https://asp-chef.alviano.net/

s/CILC2025/thermostat-selection. ■

3. Mapping DTDL Models to ASP Facts

To enable automated reasoning and visualization over digital twin models written in DTDL, we define

a structured mapping from DTDL elements to ASP facts. This mapping captures both the syntac-

tic structure and semantic annotations of DTDL interfaces and their contents, using a uniform and

compositional set of predicates tailored for use within the ASP Chef platform.

https://asp-chef.alviano.net/s/CILC2025/thermostat-selection
https://asp-chef.alviano.net/s/CILC2025/thermostat-selection


3.1. Representing Device Structure and Sensor Data

Identifiers. Each DTDL interface is uniquely identified by a DTMI, a URI-like string that serves

as a stable reference across all mappings. Elements (such as properties, telemetry, relationships, and

commands) with no explicit ID declared within an owner construct (e.g., an interface) are identified

using pairs of the form (OwnerId ,Name), where OwnerId is the ID of the containing interface (e.g.,

the DTMI of the owner interface) and Name is the local name of the element within that interface.

This tuple-based identifier scheme ensures uniqueness while preserving the hierarchical structure of

DTDL. This convention also simplifies reasoning and querying: interface-scoped names avoid global

namespace conflicts and enable consistent access to nested structures, which is particularly useful when

dealing with multiple models or modular ontologies.

Metadata. Comments, descriptions and display names are uniformly represented using three pred-

icates: description/2, displayName/2, and comment/2. These predicates are used to annotate both

interfaces and their individual elements (e.g., properties, telemetry, relationships, commands). The first

term in these predicates is the ID of the element, and the second term contains the metadata.

Interfaces. Each interface is represented by an instance of interface/1. Elements within the

contains array of an interface (with ID) 𝐼 are represented using the predicates has_property/3,

has_telemetry/3, has_command/3, has_relationship/3, and has_component/3. Interfaces within

the extends array of 𝐼 are represented using the predicate extends/2.

Properties and Telemetries. Each property is represented by an instance of property/1. Properties

marked as writable also occur in the mapping as instances of writable/1. Each telemetry is represented

by an instance of telemetry/1. Telemetry elements in DTDL represent data emitted by the digital twin,

such as sensor readings. The ASP encoding closely mirrors the property representation, with distinct

predicates to differentiate their semantics:

Example 5. Let us consider the DTDL model defined in Example 1. Its mapping to ASP facts is the

following:

interface(dtmi).
displayName(dtmi, "Thermostat").
has_telemetry(dtmi, "temp", (dtmi, "temp")).
has_property(dtmi, "setPointTemp", (dtmi, "setPointTemp")).

telemetry((dtmi, "temp")).
schema((dtmi, "temp"), "double").

property((dtmi, "setPointTemp")).
schema((dtmi, "setPointTemp"), "double").
writable((dtmi, "setPointTemp")).

where dtmi is "dtmi:com:example:Thermostat;1". ■

3.2. Encoding Connectivity, Actions, and Data Types

Relationships. Each relationship is represented by an instance of relationship/1. If multiplicities

are specified, they are represented by predicates minMultiplicity/2 and maxMultiplicity/2. Simi-

larly for the target interface, we use predicate target/2. As for properties, if a relationship is marked

as writable, we add an instance of predicate writable/1. Each property within the properties array

of a relationship (with ID) 𝐼 is represented using the predicate has_property/2.

Commands and Components. Each command is represent by an instance of command/1. Request

and response schemas of a command 𝐶 are assigned IDs, say respectively Req and Res , and linked

together with facts command_request(𝐶,Req) and command_response(𝐶,Res). Nullable conditions



are represented by instances of nullable_command_request/1 and nullable_command_response/1.

Each component is represented by an instance of component/1.

Schemas. The schema of each element is represented by an instance of schema/2. Primitive schemas

are represented by a string (as defined in DTDL). Complex schemas are instead associated with instances

of the following predicates: object/1 for objects, and has_field/3 for each named field with the

fields array of an object; array/2 for arrays, where the second term is the schema associated with ele-

ments in the array (elementSchema); map/2 for maps, where the second term is the schema of mapValue;

enum/2 for enumerations, where the second term is the schema valueSchema, and enum_value/3 for

each named value within the enumValues array.

Example 6. Let us consider a relationship connectedSensors targeting up to 20 instances of the inter-

face SoilMoistureSensor (here associated with DTMI "dtmi:...:SoilMoistureSensor;1", where 1

is the version of the model):

{ "@type": "Relationship",
"name": "connectedSensors",
"target": "dtmi:...:SoilMoistureSensor;1",
"maxMultiplicity": 20,
"description": "Soil moisture sensors connected to this controller" }

It maps to the following facts:

has_relationship("dtmi:...","connectedSensors",("dtmi:...","connectedSensors")).
relationship(("dtmi:...","connectedSensors")).
maxMultiplicity(("dtmi:...","connectedSensors"),20).
target(("dtmi:...","connectedSensors"),"dtmi:...:SoilMoistureSensor;1").
description(("dtmi:...","connectedSensors"),

"Soil moisture sensors connected to this controller").

Now, let us consider a property operatingStatus taking one value among operational, maintenance,

error, and disabled:

{ "@type": "Property",
"name": "operatingStatus",
"schema": {

"@type": "Enum",
"valueSchema": "string",
"enumValues": [
{ "name": "operational", "displayName": "Operational",

"enumValue": "operational" },
{ "name": "maintenance", "displayName": "Under Maintenance",

"enumValue": "maintenance" },
{ "name": "error", "displayName": "Error", "enumValue": "error" },
{ "name": "disabled", "displayName": "Disabled", "enumValue": "disabled" }

] } }

It maps to the following facts:

has_property("dtmi:...","operatingStatus",("dtmi:...","operatingStatus")).
property(("dtmi:...","operatingStatus")).
schema(("dtmi:...","operatingStatus"),("dtmi:...","operatingStatus")).
enum(("dtmi:...",operatingStatus),"string").
enum_value(("dtmi:...",operatingStatus),"operational","operational").
enum_value(("dtmi:...",operatingStatus),"maintenance","maintenance").
enum_value(("dtmi:...",operatingStatus),"error","error").
enum_value(("dtmi:...",operatingStatus),"disabled","disabled").



■

4. Querying and Visualizing Digital Twins

To enable advanced reasoning and interactive exploration of digital twins within the ASP Chef frame-

work, we have extended the system with a custom operation, @DTDL/Parse. This operation is specifically

designed to ingest digital twin models defined in DTDL (v4) and convert them into an ASP representation

suitable for querying, optimization, and visualization.

4.1. The @DTDL/Parse Operation

The @DTDL/Parse operation is parameterized by two inputs: the name of a predicate used to carry the

DTDL model(s), and a prefix to be prepended to all generated ASP facts, allowing for modular integration

and namespace control within larger ASP programs. The operation works by Base64-decoding each

term of the specified predicate, which is assumed to contain a serialized DTDL model in JSON format. It

then applies the syntactic and semantic transformation detailed in Section 3, mapping DTDL constructs

(such as interfaces, properties, relationships, and telemetry) into a corresponding set of ASP facts. This

transformation enables the use of standard ASP reasoning techniques on data originally expressed in

DTDL, providing a powerful bridge between model-based system design and logic-based reasoning.

Example 7. Let us consider again the DTDL model from Example 1. The ASP facts in Example 5

can be obtained by the recipe hosted at https://asp-chef.alviano.net/s/CILC2025/thermostat-parse.

The recipe Base64-encodes its input (which contains the DTDL model) in order to be processed by

@DTDL/Parse⟨__base64__, 𝜖⟩ (where 𝜖 is the empty string). The result can be inspected with an Output
Encoded Content ingredient, and it is ready to be further processed by other operations. ■

4.2. Integration with ASP Chef Operations

Once the DTDL input has been parsed and converted into ASP facts, the result is re-encoded in Base64

using the same predicate name. This design choice ensures compatibility with the broader ASP Chef

pipeline, allowing the transformed data to be passed seamlessly to subsequent operations, including:

• Search Models, for filtering and exploring answer sets; and

• Optimize, for computing optimal configurations of the digital twin.

This modular and declarative approach promotes reusability and composability of recipes, particularly

in contexts where digital twin models must be queried, filtered, or incrementally refined.

Example 8 (Continuing Example 7). The recipe can be extended with a Search Models ingredient using

the following program:

thermostat(T) :- interface(I), displayName(I,T).
provides(T,F) :- interface(I), displayName(I,T), has_property(I,F,_).
provides(T,F) :- interface(I), displayName(I,T), has_telemetry(I,F,_).

If the input comprises the three thermostats of Example 2, we can subsequently address the selection

program by adapting the recipe from Example 3. A complete recipe is available at https://asp-chef.

alviano.net/s/CILC2025/thermostat-search-models. ■

4.3. Visualizing Digital Twins with @vis.js/Network

A key advantage of integrating DTDL with ASP Chef lies in the ability to render digital twin models

graphically using the @vis.js/Network operation. The ASP facts produced by @DTDL/Parse can be

consumed by Mustache templates to extract relevant entities (such as interfaces, properties, and

relationships) and translate them into a format suitable for visual display. For example, nodes in

https://asp-chef.alviano.net/s/CILC2025/thermostat-parse
https://asp-chef.alviano.net/s/CILC2025/thermostat-search-models
https://asp-chef.alviano.net/s/CILC2025/thermostat-search-models


1 node(interface,I,N) :- interface(I), displayName(I,N).
2 node(interface,I,I) :- interface(I), not displayName(I,_).

3 node(property,P,N) :- property(P), displayName(P,N).
4 node(property,P,S) :- property(P), not displayName(P,_), schema(P,S),
5 primitive_schema(S).
6 node(property,P,"") :- property(P), not displayName(P,_), schema(P,S),
7 not primitive_schema(S).

8 node(telemetry,T,N) :- telemetry(T), displayName(T,N).
9 node(telemetry,T,S) :- telemetry(T), not displayName(T,_), schema(T,S),

10 primitive_schema(S).
11 node(telemetry,T,"") :- telemetry(T), not displayName(T,_), schema(T,S),
12 not primitive_schema(S).

13 node(object,O,N) :- object(O), displayName(O,N).
14 node(object,O,O) :- object(O), not displayName(O,_).
15 node(property,(F,N),S) :- has_field(F,N,S), primitive_schema(S).

16 node(enum,E,N) :- enum(E,S), displayName(E,N).
17 node(enum,E,S) :- enum(E,S), not displayName(E,_), primitive_schema(S).
18 node(enum,E,"") :- enum(E,S), not displayName(E,_), not primitive_schema(S).
19 node(enum,(E,N),V) :- enum_value(E,N,V).

20 link(O,V,N) :- has_property(O,N,V).
21 link(O,V,N) :- has_telemetry(O,N,V).

22 link(ID,S,"<<schema>>") :- schema(ID,S), not primitive_schema(S).

23 link(F,(F,N),N) :- has_field(F,_,S), displayName(F,N), primitive_schema(S).
24 link(F,S,N) :- has_field(F,_,S), displayName(F,N), not primitive_schema(S).
25 link(F,(F,N),N) :- has_field(F,N,S), not displayName(F,_), primitive_schema(S).
26 link(F,S,N) :- has_field(F,N,S), not displayName(F,_), not primitive_schema(S).

27 link(E,(E,N),N) :- enum_value(E,N,V).

Figure 2: ASP program (snippets) producing a labeled graph representation of a DTDL model

the resulting network can represent entities, while edges encode connections such as ownership and

hierarchies. This visualization enables users to quickly grasp the structure of a digital twin, including its

internal organization and interdependencies, without having to inspect raw data manually. A concrete

strategy is publicly available at https://asp-chef.alviano.net/s/CILC2025/dtdl-vis. The recipe combines

the ASP representation of the digital twin models in input with the program reported in Figure 2 to

obtain a labeled graph that can be easily coupled with the Mustache template reported in Figure 3 to

produce the @vis.js/Network shown in Figure 4. A larger example is provided in the next section.

5. Use Case: Digital Twin Modeling of a Vineyard

This section illustrates a use case involving the modeling of a vineyard as a system of interconnected

digital twins. DTDL is used to define the digital counterparts of key physical components involved in

viticulture. The goal is to demonstrate how a complex system composed of sensors, controllers, and

monitoring devices can be translated into ASP facts for reasoning and visualization purposes.

https://asp-chef.alviano.net/s/CILC2025/dtdl-vis


1 { data: {
2 nodes: [
3 {{= {{f"{ id: '${I}', label: '${N}', group: '${T}' }"}} : node(T,I,N) }} ],
4 edges: [
5 {{= {{f"{ from: '${F}', to: '${T}', label: '${L}', arrows: 'to' }"}}
6 : link(F,T,L) }} ] },
7 options: {
8 nodes: { shape: "dot", size:20, font:{size:16}, borderWidth:2, shadow: true },
9 edges: { width: 2, shadow: true },

10 groups: {
11 interface: { font: { size: 24 }, size: 30,
12 color: { background: lightgreen, border: green } },
13 property: { color: { background: yellow, border: orange } },
14 telemetry: { color: { background: pink, border: red } },
15 object: { shape: "hexagon", color: {background:"#d1c4e9",border: "#512da8"}},
16 enum: { shape: "diamond", color: { background:"#fff9c4", border:"#fbc02d" }}
17 } } }

Figure 3: ASP Chef Mustache template (snippets) to configure @vis.js/Network for visualizing DTDL models

Figure 4: Visualization of the three thermostat DTDL models from Example 2 with @vis.js/Network

5.1. DTDL Interfaces for the Vineyard System

The system is composed of five main DTDL interfaces:

• Vineyard Property: represents the entire vineyard estate and acts as the central entry point of

the model.

• Pest Trap: defines smart traps used for pest monitoring.

• Soil Moisture Sensor: describes environmental sensors installed in vineyard plots.

• Irrigation Controller: models smart irrigation systems used to manage water distribution.

• Grape Monitor: represents devices used to monitor grape development and maturity.

These interfaces define properties, telemetry data, commands, and relationships. For example, the

Vineyard Property model includes descriptive fields such as name, owner, totalArea, and spatial data

(location), as well as relationships to vineyard plots, weather stations, and wineries.

5.2. From DTDL to ASP: A Vineyard Interface

To enable reasoning over digital twin data in ASP Chef, each DTDL model is mapped to a collection of

ASP facts. This translation makes it possible to analyze the model declaratively, verifying constraints



and inferring system-level properties.

5.3. Modeling System Relationships and Constraints

A key part of the vineyard system lies in the relationships among components. The DTDL models

define cardinality constraints and logical links between devices:

• Vineyard Property may contain up to 100 Vineyard Plot instances.

• Irrigation Controller can manage up to 10 plots.

• Soil Moisture Sensor and Pest Trap devices are installed within individual plots.

• Grape Monitor monitors a single plot and provides detailed telemetry.

These relationships are mapped into ASP facts using constructs like:

has_relationship("dtmi:...:VineyardProperty;1", "hasVineyardPlots",
"dtmi:...:VineyardPlot;1").

maxMultiplicity(("dtmi:...:VineyardProperty;1","hasVineyardPlots"), 100).
target(("dtmi:...:VineyardProperty;1","hasVineyardPlots"),

"dtmi:...:VineyardPlot;1").

This structure supports the application of inference rules for validating instance data and ensuring

conformance with the intended digital twin architecture.

5.4. Reasoning and Simulation

The resulting ASP knowledge base allows for reasoning tasks such as:

• Verifying that each Vineyard Plot is assigned a moisture sensor.

• Ensuring that no Irrigation Controller exceeds its control limit.

• Identifying unmonitored plots or plots with conflicting sensor assignments.

• Simulating scheduling decisions based on sensor telemetry (e.g., when to irrigate or harvest).

For example, relationships specifying as target an interface model not provided in input can be easily

identified with the following rule:

node(undefined_interface,T,T) :- target(_,T), not interface(T).

The obtained instance of node/3 can in turn be coupled with a Mustache template extending Figure 3

with the group

undefined_interface: { font: { size: 24 }, size: 30,
color: { background: red, border: darkred } },

to highlight in red any undefined interface, as shown in Figure 5. A complete recipe is available at

https://asp-chef.alviano.net/s/CILC2025/vineyard.

6. Related Work

Digital twins have gained significant attention in recent years as a paradigm for modeling, monitoring,

and controlling cyber-physical systems. DTDL, developed by Microsoft, has emerged as a standard for

describing digital twin interfaces in a structured and extensible way. It is widely used in industrial IoT

settings, particularly within the Azure Digital Twins platform. While DTDL focuses on the semantic

modeling of digital entities, it does not offer built-in mechanisms for logical reasoning or constraint

checking. In contrast, ASP provides a formalism well-suited for representing complex knowledge

and deriving conclusions under non-monotonic reasoning. ASP has been successfully applied in

configuration [6, 7, 8], diagnosis [9, 10, 11], and planning [12, 13, 14], but its integration with digital

twin technologies remains underexplored.

https://asp-chef.alviano.net/s/CILC2025/vineyard


Figure 5: DTDL models of the vineyard use case, with undefined interfaces highlighted in red

On the visualization side, tools such as vis.js have been used extensively for interactive graph

visualization. ASP Chef [1] introduced its first visualization functionality in [2] through the addition of

the Graph ingredient, a component designed to generate graph-based visualizations as side effects of

logic program executions. This feature enabled users to embed visual directives within ASP programs

themselves, producing interactive graphical representations of answer sets. The approach follows

the tradition of tools like ASPViz[15], IDPD3[16], and Kara [17], which link answer set semantics to

visual metaphors. Building upon this foundation, recent versions of ASP Chef have taken a different

route to enhance expressiveness and flexibility: rather than embedding visuals directly in ASP rules,

they take advantage of Mustache templates to configure external JavaScript visualization libraries by

querying answer sets. This model-driven approach allows ASP facts and their relationships to drive

the generation of structured visual outputs. Notably, ASP Chef now supports integration with several

high-quality frontend libraries, among them @vis.js/Network for interactive network diagrams. These

capabilities allow users to construct rich, interactive visualizations tailored to the structure of ASP

outputs, making the tool especially useful for teaching, demonstration, and domain-specific analytics.

The use of templating decouples the visualization logic from ASP reasoning, promoting reusability

and composability of recipes. Our work extends ASP Chef with the capability to ingest DTDL models,

enabling a novel interplay between standard digital twin representations and rule-based reasoning.



In summary, while prior works have addressed model-based design, digital twin representation, or

ASP reasoning in isolation, this paper contributes a novel (yet preliminary) integration that combines

semantic modeling (via DTDL), logical reasoning (via ASP), and interactive visualization (via ASP Chef),

offering a complete pipeline for digital twin analysis and validation.

7. Conclusion

This paper presents a preliminary report on our ongoing effort to extend ASP Chef with support

for the Digital Twins Definition Language (DTDL). Our goal is to enable reasoning and visualization

capabilities over digital twin models by integrating a widely adopted semantic modeling language

with the declarative power of Answer Set Programming. To this end, we defined a mapping from

DTDL constructs (such as interfaces, properties, telemetry, commands, and relationships) to ASP

facts, capturing the structure and semantics of digital twin models in a logic-programmable format.

This mapping has been implemented as a new operation within ASP Chef, which processes Base64-

encoded DTDL models and emits a corresponding set of ASP facts. The new functionality integrates

seamlessly with other ASP Chef operations. It supports model querying, constraint validation, and the

generation of interactive visualizations through templated configurations of front-end libraries such

as @vis.js/Network. The approach is composable and declarative, aligning well with the recipe-based

workflow typical of ASP Chef.

A current limitation of our work lies in the absence of support for the serialization of digital twin

instances, that is, concrete entities conforming to DTDL models, along with their runtime data (e.g.,

sensor readings, command states). Addressing this aspect will be the focus of future development. Our

goal is to enable full digital twin lifecycle support, from model ingestion to instance management and

data-driven reasoning.
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