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Abstract

Large Language Models (LLMs) have shown impressive capabilities but still struggle in reasoning. Even with
advanced prompting techniques such as Chain-of-thought, they often make reasoning mistakes. A recent
approach to overcome this difficulty consists in integrating an LLM with an external reasoner, realizing a form of
neuro-symbolic integration. The LLM in this case is used to translate the multi-modal unstructured description
of the problem (text, images) into a formal representation, often based on logic, which is then provided to the
reasoner that computes the answer. Closed source models such as ChatGPT 40 have impressive performance for
this task but they are expensive and require the data to be uploaded in the cloud, which poses privacy problems.
In this paper we investigate the performance of smaller open source models on the problem of describing images
using Prolog facts, to be used by a downstream reasoner.
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1. Introduction

Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing
(NLP) [1], particularly in areas such as text generation, translation, and question answering [2]. These
models represent a major milestone in artificial intelligence (AI), enabling near-human levels of language
understanding and production. Yet, despite these impressive capabilities, a fundamental question
remains: Can LLMs truly reason? [3, 4]

Reasoning is a fundamental component of human intelligence and remains one of the central chal-
lenges in the field of AI [5]. While LLMs demonstrate some reasoning capabilities, they often struggle
with tasks requiring symbolic, causal, and relational consistency.

To address these limitations, prompting strategies like Chain-of-Thought (CoT) have been introduced
[6]. However, open-source models still fall short in complex reasoning tasks, while advanced closed-
source systems such as GPT-40 exhibit better performance [7] albeit with concerns related to cost,
transparency, and privacy.

In this study, we evaluate open-source LLMs within a neuro-symbolic framework for translating
multimodal input into formal logic representations. We investigate the task of generating Prolog code
from images. Our findings offer insights into the current capabilities and limitations of open-source
LLMs, and highlight the persistent challenges that must be addressed to achieve more robust and
generalizable reasoning in future Al systems.

The paper is organized as follows. Section 2 introduces LLMs and Section 3 presents the datasets that
have been used for the evaluation. Section 4 discusses the research questions we aim to answer with
this study. Section 5 shows the performance of the closed-source model GPT-40, while Section 6 those
of open source models. Section 7 concludes the paper.
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2. Large Language Models

Large Language Models (LLMs) have significantly advanced Al capabilities in natural language genera-
tion, reasoning, and decision-making [8]. However, they exhibit persistent limitations in tasks requiring
structured or symbolic reasoning.

2.1. Reasoning Challenges in LLMs

Despite recent breakthroughs in natural language processing, models such as ChatGPT-40 continue
to face core limitations in symbolic and logical reasoning. These challenges are even more evident in
open-source LLMs, highlighting the need for comprehensive evaluation in neuro-symbolic integration
settings.

At the core, LLMs rely on statistical patterns rather than genuine comprehension. Though they can
mimic reasoning, their limited semantic and logical understanding may at times produce plausible
yet incorrect outputs — a phenomenon known as hallucination [4]. A key limitation of LLMs lies
in multi-step reasoning, where they often fail to correctly build upon earlier inferences, resulting in
compounded logic errors and incorrect conclusions [5, 9].

Inconsistencies in output generation, such as misinterpreting conditions, ignoring constraints, or
hallucinating data, raise serious concerns about the reliability and interpretability of these models [10].
Moreover, LLMs tend to show an overconfidence in their predictions, creating a dangerous mismatch
between confidence and factual correctness, especially in safety-critical contexts [11].

Another core limitation lies in handling abstract and counterfactual reasoning. LLMs frequently
produce contradictory or logically inconsistent explanations when faced with counterfactual prompts
[12,9]. Additionally, their outputs are sensitive to prompt phrasing and dataset biases, which complicates
reproducibility and fairness [13, 14].

From a computational standpoint, despite advancements in scale and architecture, LLMs remain
constrained by fundamental limitations, as scaling alone does not resolve core bottlenecks in symbolic
and logical reasoning—reflecting the "curse of complexity" [15]. LLMs face persistent challenges in
mathematical reasoning, often producing correct answers through flawed or superficial reasoning,
particularly in tasks requiring arithmetic accuracy, spatial understanding, and structured deduction
(16, 9].

Lastly, current LLMs lack the capability for online learning or dynamic adaptation. This inhibits
their ability to respond to new inputs or evolving contexts in real time, limiting their usefulness in
interactive and ever-changing environments [17].

Given these persistent challenges, hybrid approaches combining neural and symbolic reasoning have
emerged as a promising solution, which we discuss in the next section.

2.2. Solutions with Neuro-Symbolic Integration

To address the reasoning limitations of LLMs, a range of neuro-symbolic approaches have been proposed.
These methods aim to strengthen logical and mathematical reasoning by combining the perception
capabilities of deep neural networks with the soundness and reliability of symbolic reasoning [18].

Controlling generation at inference time is challenging due to the inherent difficulty and general
intractability of conditioning large language models on logical constraints [19, 20]. The Ctrl-G frame-
work [19] combines production-ready LLMs with Hidden Markov Models, improving the reliability and
controllability of outputs by enforcing adherence to logical constraints represented as deterministic
finite automata.

The DSR-LM framework [21] enhances logical reasoning in LLMs by combining pre-trained language
models for factual understanding with a differentiable symbolic module for deductive reasoning. It learns
weighted rules and uses semantic loss to improve performance, providing a scalable and interpretable
method for integrating prior knowledge.



Maintaining logical consistency is a persistent challenge for neural sequence models, leading to poor
performance on structured reasoning tasks. To mitigate this, a training-free framework inspired by the
dual-process theory of cognition has been proposed [22]. This framework filters the model’s outputs
through a symbolic module, enforcing logical coherence and bridging intuitive (System 1) and analytical
(System 2) reasoning.

LLMs often lack precise reasoning and self-correction capabilities, which symbolic systems handle
more reliably. LLM-ARC [23] addresses these gaps through a neuro-symbolic Actor-Critic framework,
leveraging symbolic evaluation to iteratively refine logic generation. Reasoning is further enhanced
through Answer Set Programming and self-supervised feedback.

In another line of work, Logic-LM [24] addresses LLMs’ limitations in complex reasoning by translat-
ing natural language into formal logic, applying symbolic inference, and refining outputs via solver
feedback. Likewise, SatLM [25] employs declarative specifications and theorem provers to solve
constraint-based problems more reliably than chain-of-thought prompting.

NeSyGPT [26] combines symbolic feature extraction with Answer Set Programming using mini-
mal labeled data, demonstrating an efficient pipeline for neural-symbolic integration with enhanced
scalability.

In the domain of structured query generation, Jiao et al. [27] use unification-based grammars to
ensure syntactic and schema validity in SQL outputs, illustrating the power of grammatical reasoning
for improving robustness.

Further, LLM2LAS [28] tackles commonsense reasoning by coupling LLMs with ILASP to learn
Answer Set Programs from minimal supervision, enabling strong generalization to unseen queries.
Creswell et al. [29] improve logical reasoning through a decomposition approach using fine-tuned
models for information selection and inference, producing structured and interpretable reasoning
chains.

Collectively, these models underscore the importance of logic integration for elevating LLM reasoning.
Techniques such as knowledge graph integration, program-guided generation, reinforcement learning,
and symbolic validation represent promising steps toward more explainable and robust Al systems [9].

In summary, while existing solutions offer promising directions for mitigating LLM reasoning limita-
tions via symbolic integration, none provide a comprehensive remedy, especially on multimodal data.
As the practical effectiveness of many neuro-symbolic frameworks remains uncertain, the following
section introduces the datasets used to evaluate their capabilities image analysis tasks.

3. Datasets

3.1. RAVEN

The RAVEN dataset' [30] has been proposed as a challenge for Computer Vision systems. RAVEN is
an instance of Raven’s Progressive Matrices, a cognitive test proposed by John C. Raven where one
is given 9 panels organized in a 3 x 3 matrix. Of these, one is hidden and the aim is to select a panel,
among a list of 8 other panels, which best completes the matrix. Figure 1 shows an example where the
correct panel is bordered in green.

3.2. Tic Tac Toe

In the Tic-tac-toe game, two players take turns in placing the marks X and O on a 3x3 board. The first
player who aligns three of her marks, either vertically, horizontally or diagonally, wins. The game is a
draw is no more move can be made. We consider two sub-tasks:

1. Given the image of a board of a finished game, determine which player won or whether there
was a draw.

'https://github.com/WellyZhang/RAVEN
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(a) Example of RAVEN problem. (b) Example of RAVEN problem.
Figure 1: Predict the correct panel in RAVEN
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(a) Predict the winner in Tic Tac Toe (b) Predict the next move in Tic Tac Toe

Figure 2: Examples for the Tic Tac Toe dataset using handwritten images.

2. Given the image of a board of an ongoing game, determine what move the next player should
take to maximize the chances of winning.

Datasets for these sub-tasks can be generated with the code at [31].

This dataset requires both perception and reasoning capabilities: in both sub-tasks, the system must
recognize marks and their positions on the board. In the first sub-tasks, the system must perform
geometrical reasoning on the marks. In the second sub-task, the system must apply a game playing
strategy.

The instances of these tasks are images of a board. To represent the marks, we adopt two approaches.
In the first, starting from 3 handwritten images created with Inkscape representing X, O and blank, we
generate variations using

« summing a random integer in the range [-13,+13] to hue, saturation and lightness (HSV)
« applying a random rotation in the range [-10,+10] degrees

In the second approach to represent marks, we use MNIST digit images: we use images of the digits 1
and 2 and 0 for X, O and blank respectively.

Figure 2 shows instances of the two sub-tasks using handwritten symbols: Figure 2a shows an
example for sub-task 1 where the winner is player 2, while Figure 2b shows a board with label (2,3),
meaning that the next symbol has to be placed in the second row, third column.

Figure 3a shows the same instances as Figure 2a but using MNIST digits.

The two datasets are randomly generated using probabilistic logic programming: first a board is
sampled, then ProbLog is used to provide the label of the board and finally the image of the board is
generated by randomly sampling images for 1, 2 and 0. In this way, the example images are all different
and pose challenges for perception.

4. Research Questions

The research questions we aim to answer are:
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(a) Predict the winner in Tic Tac Toe (b) Predict the next move in Tic Tac Toe
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Figure 3: Examples for the Tic Tac Toe dataset using MNIST digits.

RQ1 Are current LLMs able to solve multimodal problems requiring reasoning such as RAVEN and Tic
Tac Toe?

RQ2 Are they able to describe the images using logic programming so that downstream reasoners can
be applied?

RQ3 Are there differences between closed-source and open-source models?

To answer these questions, we constructed a standardized set of prompts that serve as a consistent
framework for evaluating the performance of both GPT-40 and open-source LLMs. The prompts are:

RAVEN Prompts

PR1 Image: Fig. 1a Question: What is the picture that should replace the question mark among
those of the last two rows?

PR2 Image: Fig. 1a Question: Describe the picture using logic programming.
PR3 Image: Fig. 1b Question: same as PR1.

PR4 Image: Fig. 1b Question: same as PR2.

Handwritten Tic Tac Toe Prompts

PT1 Image: Fig. 2a Question: Who is the winner?

PT2 Image: Fig. 2a Question: Describe this tic tac toe board using logic programming.
PT3 Image: Fig. 2b Question: Where should player 2 ("O") move?

PT4 Image: Fig. 2b Question: same as PT2.

MNIST Tic Tac Toe Prompts

PM1 Image: Fig. 3a Question: Given this Tic Tac Toe board and the fact that 0 represents blank, 1
represents player 1 and 2 represents player 2, who is the winner?

PM2 Image: Fig. 3a Question: Given this Tic Tac Toe board and the fact that 0 represents blank, 1
represents player 1 and 2 represents player 2, describe this board using logic programming.

PM3 Image: Fig. 3b Question: Given this Tic Tac Toe board and the fact that 0 represents blank, 1
represents player 1 and 2 represents player 2, where should player 2 move?

PM4 Image: Fig. 3b Question: same as PM2.

The answers of GPT-40 and open-source models are then manually assigned one of the following four
classes:



« v Complete and correct answers.
« v Answers that are partially or could be interpreted as correct.
« x Wrong answers.

« - Malformed answers with missing or errors in token generation.

5. Performance of GPT-40

GPT-4o0 is an autoregressive multimodal model capable of processing and generating text, audio, and
images. Unlike previous models that rely on separate components for different modalities, GPT-4o is
trained end-to-end across textual, visual, and auditory inputs, allowing it to handle any combination of
these modalities using a single unified neural architecture. Notably, GPT-40 demonstrates improved
performance in visual tasks compared to existing models [32]. To evaluate the performance of ChatGPT-
40, the results corresponding to the prompts of Section 4 are summarized in tables 1, 2 and 3 for RAVEN,
Tic Tac Toe with handwritten images and Tic Tac Toe with MNIST images.

Prompts | ChatGPT-40 Prompts | ChatGPT-40 Prompts | ChatGPT-4o0
PR1 x PT1 x PM1
PR2 x PT2 PM2
PR3 x PT3 PM3
PR4 x PT4 PM4
Table 1 Table 2 Table 3
Raven dataset (Fig. 1). Tic Tac Toe dataset (Fig. 2). Tic Tac Toe MNIST dataset (Fig. 3).

To clarify the operation of ChatGPT-40, we report below part of the answer to prompt PR1:

% Format: cell(Row, Column, [shape(Type, Color, Size, Orientation)])

% Row 1

cell(1,1, [shape(pentagon, black, medium, normal)]).

cell(1,2, [shape(square, gray, medium, rotated), shape(circle, black, small, normal),
— shape(triangle, white, medium, rotated)]).

cell(1,3, [shape(square, gray, small, rotated), shape(diamond, gray, small, rotated),
— shape(pentagon, black, medium, normal)]).

% Row 2

cell(2,1, [shape(hexagon, gray, medium, normal), shape(hexagon, black, medium,

— normal)]).

cell(2,2, [shape(triangle, black, medium, normal)]).

cell(2,3, [shape(hexagon, gray, small, normal), shape(square, gray, small, normal),
— shape(square, white, medium, normal)]).

% Row 3

cell(3,1, [shape(triangle, black, small, rotated), shape(circle, white, medium,

— mnormal), shape(square, black, medium, normal)]).

cell(3,2, [shape(hexagon, gray, medium, rotated)]).

cell(3,3, ?). % Missing, to be inferred

... (Generated by AI tool ChatGPT-40)

As you can see, the result is incorrect: for example, cell (1,2) is missing a circle and cell (2,3) contains a
pentagon and not a hexagon. In general, some geometric figures are missing and some have the wrong
number of sides, highlighting a problem in counting.

Instead, for prompt PT2, we obtain a correct answer:



% Format: cell(Row, Column, Content).

% Content can be 'x', 'o', or 'empty'

cell(0, 0, empty). cell(0, 1, x). cell(0, 2, o).
cell(1, 0, x). cell(1l, 1, empty). cell(l, 2, o).
cell(2, 0, x). cell(2, 1, empty). cell(2, 2, o).

... (Generated by Al tool ChatGPT-40)

While ChatGPT-40 exhibited strong performance on simpler visual reasoning tasks, such as those in
Tic Tac Toe, its performance was significantly lower on more complex tasks like those found in the
RAVEN dataset, which can be attributed to the complexity of the visual patterns. The next section
examines how open-source models perform on similar multimodal reasoning tasks.

6. Performance of Open Source Models

We tested the following open source models, capable of processing an image with a text input and
returning a response based on both:

GIT-base-textvqa® [33] is an image-text-to-text model, based on a decoder-only transformer that
uses the CLIP [34] vision encoder, fine-tuned for Q&A on images.

BLIP-2-flan-t5-xx1° is an image-text-to-text model, based on CLIP as vision encoder, a Q-Former
[34] that bridges between vision and text and Flan-T5-xxI [35] as LLM.

Deepseek-VL2* [36], Deepseek-VL2-small® [36] and Deepseek-VL2-tiny® [36] are image-text-to-
text models, composed of a vision-encoding, a vision-language adapter and Misture of Experts
(MoE) [37] architecture.

Molmo-72B-09247 [38] and Molmo-7B-D-0924° [38] are image-text-to-text models based on CLIP
as vision encoder and Qwen2 [39] as LLM.

Molmo-72B-0924-nf4’ is the quantized version of Molmo-72B-0924 in normalized 4 bit float.

Molmo-7B-0-0924'° [38]is an image-text-to-text model based on on CLIP as vision encoder and
OLMo-7B-1024 [40] as LLM.

Cogvlm-chat-hf'![41] is an image-text-to-text model using ViT [42] as vision encoder, an MLP
adapter using SwiGLU [43] as activation function, Vicunal.5-7B [44] as LLM and a visual expert
module composed of a QKV matrix and an MLP in each layer.

MiniCPM-0-2_6 '? [45] is a multi-modal large language model based on SigLip-400M [46], a
vision encoder based on CLIP trained with a sigmoid loss function, Whisper-medium [47] a
speech-to-text model, ChatTTS, [48] a text-to-speech model, and Qwen2.5-7B [49] as LLM.

We tested all models using default options and setting a high number of max sentence tokens. All of
the three Deepseek versions tested, GIT-base-textVQA, CogVLM-chat-hf and BLIP-2-Flan-T5-xxl were
not able to generate logic programming code. All of the four Molmo were able to, and Molmo-72B-0924

*https://huggingface.co/microsoft/git-base-textvqa
*https://huggingface.co/Salesforce/blip2-flan-t5-xxl
*https://huggingface.co/deepseek-ai/deepseek-VL2
*https://huggingface.co/deepseek-ai/deepseek-VL2-small
Shttps://huggingface.co/deepseek-ai/deepseek-VL2-tiny
"huggingface.co/allenai/Molmo-72B-0924
®https://huggingface.co/allenai/Molmo-7B-D-0924
*https://huggingface.co/SeanScripts/Molmo-72B-0924-nf4
"https://huggingface.co/allenai/Molmo-7B-0-0924
"https://huggingface.co/THUDM/cogvlm-chat-hf
“https://huggingface.co/openbmb/MiniCPM-0-2_6
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was the only one able to generate code that could be interpreted and led to an answer that could be
considered as correct. MiniCPM-0-2_6 was able to generate prolog code but that could not be used by
an interpreter and prompted to generate logic programming sometimes returned python.

Spatial information was the main reason for model failure, even if they were able to identify items in
the images, they were not able to position them correctly or reconstruct the patterns.

6.1. Results on the Raven dataset

All three versions of Deekseek-VL2 (Tab. 4) demonstrated an understanding of the task in relation to
the image. Deekseek-VL2-small attempted to generate text coordinates for a bounding box in both
images but failed to produce a coherent box in Fig. 1a and it partially overlapped with an incorrect
answer in Fig. 1b. Deekseek-VL2 was able to describe the problem that had to be solved, reflecting an
understanding of the relation between the prompt and the image, but it too failed to provide the correct
answer. Deekseek-VL2-tiny came close to generating a correct response for Fig. 1b but struggled to
precisely identify smaller shapes within the image.

Prompts Deepseek-VL2 Deepseek-VL2-small Deepseek-VL2-tiny
PR1 x - x
PR2
PR3
PR4

Table 4
Deepseek on the Raven dataset (Fig. 1)

Molmo-7B-D-0924, Molmo-7B-0-0924, and Molmo-72B-0924 (Tab. 5), despite their differences in
parameters and architectures, answered similarly and wrong, failing to understand the task presented
and returning a generic shape as an answer as shown. The answers given by Molmo-72B-0924-nf4 on
both images were close to the correct solution but didn’t distinguish all of the correct shapes to pinpoint
the precise answer. In fact, on Fig. 1a the model hallucinated an extra square and on Fig. 1b it was
able to correctly identify the solution disposition, but failed to distinguish the exact shapes. Looking

Prompts Molmo-72B-0924 Molmo-72B-0924-nf4 Molmo-7B-D-0924 Molmo-72B-0-0924
PR1 x x x x
PR2
PR3
PR4

Table 5
Molmo on the Raven dataset (Fig. 1)

at Tab. 6, it is interesting to note that CogVLM-chat-hf answered similarly to Molmo-72B-0924, and
BLIP-2-Flan-T5-xxl the same as Molmo-72B-0924-nf4 despite the smaller number of parameters and
differences in training datasets, suggesting some form of learned logic from both datasets. Git-base-
textvqa failed to answer both questions and returned an empty string on Fig. 1a and a simple “no” on
Fig. 1b. MiniCPM-o0-2_6 was able to give the correct answer even though it strongly hallucinated while
describing the board.

Prompts GlT-base-textVQA BLIP2-Flan-T5-xx| CogVLM-chat-hf MiniCPM-0-2_6
PR1 - x x
PR2
PR3
PR4

Table 6
Other models on the Raven dataset (Fig. 1)

Making models describe the problem in logic programming terms, for those who were able to, resulted
in the generation of prolog code that was not directly interpretable. All models that generated Prolog
had the same problems as answering questions directly: hallucinations on shapes, patterns and positions.
Molmo models based on Qwen were able to generate more complex code in comparison to the version
based on OLMo, which generated either some simple facts or simple rules. MiniCPM-0-2_6 was the only



model able to answer both questions on Fig. 1a correctly, but without generating any logic programming
code and with strong hallucinations.

6.2. Results on Tic Tac Toe with Handwritten Digits

Considering Tab. 7, Tab. 8 and Tab. 9 on Fig. 2a Deekseek-VL2, Deekseek-VL2-small and GIT-base-
textVQA failed to generate a coherent answer while all of the other models except for MiniCPM-0-2_6
marked, wrongly, the winner as the “X” player. MiniCPM-0-2_6 instead was able to correctly identify
the winner in the “O” player even though it gave the wrong reason for why that was the case.

Prompts Deepseek-VL2 Deepseek-VL2-small Deepseek-VL2-tiny
PTI B B P
PT2
PT3
PT4

Table 7
Deepseek on Tic Tac Toe dataset (Fig. 2)

Prompts Molmo-72B-0924 Molmo-72B-0924-nf4 Molmo-7B-D-0924 Molmo-72B-0-0924
PT1 x x x x
PT2
PT3
PTa

Table 8
Molmo on Tic Tac Toe dataset (Fig. 2)

Prompts GlT-base-textVQA BLIP2-Flan-T5-xx| CogVLM-chat-hf MiniCPM-0-2_6
PT1 - x x

PT2
PT3
PT3

Table 9
Other models on Tic Tac Toe dataset (Fig. 2)

In the generation of logic programming code, only Molmo models based on Qwen were able to return
an answer with structured code with the 72B models having improved answers over the 7B one, while
Molmo-72B-0-0924 was not able to generate any prolog and MiniCPM-o0-2_6 returned some simple
facts. The generated code featured strong hallucinations in the board positions and the failure to capture
precisely item positions, giving more insight on why the models failed on direct answers, as shown in:

Here’s a Prolog representation of the tic-tac-toe board:
board([[X, X, O],[X, _, O],[_, _, _1D).

".." (Generated by Al tool Molmo-72B-0924 on Fig. 2b)

Here’s a description of the tic-tac-toe board using logic programming:

tictactoe_board :- grid(3,3), row(1l,[X,_,0]), row(2,[X,0,]), row(3,[X,_,0]),

— column(1, [X,X,X]), column(2,[0,0,]), column(3,[X,0,X]), diagonal(1l,1,[X,X,0]),
— diagonal(2,2,[0,X,X]), diagonal(3,3,[X,X,0]), all_cells(true), X=true, O=true,
— empty_cells([]).

".." (Generated by Al tool Molmo-7B-D-0924 on Fig. 2a)

Considering Tab. 7, Tab. 8 and Tab. 9 on Fig. 2b, Deekseek-VL2, Deekseek-VL2-small, GIT-base-textVQA
and BLIP-2-Flan-T5-xxl failed to generate a well structured answer. Molmo models and MiniCPM-o0-2_6,
all answered with the best move being to put the “O” in the middle, probably due to the general
knowledge of tic tac toe game in their training data. CogVLM-chat-hf and Deekseek-VL2-tiny answered
suggesting an already occupied space.

Even on Fig. 2b prompts, only molmo models based on Qwen were able to return a structured logic
programming representation of the game board even if displaying strong hallucinations in the board
position.



6.3. Results on Tic Tac Toe with MNIST Numbers

Deekseek-VL2 and Deekseek-VL2-small on Fig. 3a and on Fig. 3b (Tab. 10) failed to generate a well
defined answer or failed to generate text coordinates for bounding boxes that ended up malformed.

Prompts Deepseek-VL2 Deepseek-VL2-small Deepseek-VL2-tiny
PM1 - - x
PM1
PM3
PM4

Table 10
Deepseek on Tic Tac Toe MNIST dataset (Fig. 3)

By looking at Tab. 10, Tab. 11 and Tab. 12, replacing handwritten images with MNIST numbers
didn’t seems to improve in the ability of models to correctly identify the winner, with the exceptions
of CogVLM-chat-hf that was able to correctly identify player “2” as the winner and MiniCPM-o0-2_6
generating a description of the board state where the correct winner could be inferred but failing to
acknowledge it. All other models hallucinated on board states calling players with “1” as the winner or
a tie.

Prompts Molmo-72B-0924 Molmo-72B-0924-nf4 Molmo-7B-D-0924 Molmo-72B-0-0924
PM1 x x x x

PM2
PM3
PM4

Table 11
Molmo on Tic Tac Toe MNIST dataset (Fig. 3)

Prompts GIT-base-textVQA BLIP2-Flan-T5-xx| CogVLM-chat-hf MiniCPM-0-2_6
PM1 x x x
PM2
PM3
PM3

Table 12
Other models on Tic Tac Toe MNIST dataset (Fig. 3)

On Fig. 3b, in reference to Tab. 10 and Tab. 12, Deekseek-VL2, Deekseek-VL2-small, GIT-base-
textVQA and BLIP-2-Flan-T5-xxl failed to generate a well structured and coherent answer. Other models
suggested an occupied space or center square except for both Molmo-7B versions that suggested a
correct move, even with some hallucination on the board state. The move doesn’t lead to immediate
winning but it will lead to a forced win for player “2”. The 7B version based on Qwen also suggested an
incorrect move to an occupied space.

As regards the generation of logic programming code, again, only molmo models based on Qwen
returned structured prolog code with clauses an rules and Molmo-72B-0924 generated interpretable
prolog code that marked player “2” as the winner, while before it answered that it was player “1” having
won diagonally.

Molmo-72B-0-0924 was only able to generate some simple rules on Fig. 3b and MiniCPM-o0-2_6, was
able to generate simple clauses on Fig. 3a and some structured rules on Fig. 3b, both presenting strong
hallucinations that didn’t correctly represent the game state:

cell(0,0,1). cell(0,1,0). cell(0,2,0).
cell(1,0,2). cell(1,1,1). cell(1,2,2).
cell(2,0,1). cell(2,1,2). cell(2,2,0).

... (Generated by Al tool MiniCPM-0-2_6 on Fig. 3a)



7. Conclusions

We have shown that general-purpose LLMs exhibit certain limitations in their logical reasoning abilities
and while they can generate seemingly elaborate answers they struggle with reasoning. Furthermore
this problem is amplified by processing images, showcasing a lack of ability to correctly discern and
distinguish precisely shapes and patterns in complex images. To answer our initial question RQ1, for
now multimodal LLMs, open source and closed source, are not able to consistently respond correctly
to reasoning questions based on images and text. Regarding RQ2, while ChatGPT-40 outperforms
open-source models, it still exhibit some hallucinations, and lacks the ability to correctly describe all
intricacies of a complex image. Smaller open-source models, on the condition of having been trained on
Prolog code, struggle with this task, producing only basic clauses or rules, while larger models, such as
Molmo-72B-0924 and its quantized variant, demonstrated a stronger capability by being able to generate
more structured and correct logic code. Finally with respect to RQ3 we can say that currently closed-
source models still perform better than open-source ones, thanks to the larger number of parameters
and more extensive training.
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