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Abstract
We present a proof search procedure for the minimal coreflection logic iCK4, an intuitionistic modal logic with
the normality axiom and the coreflection principle. The procedure is based on a sequent calculus Gbu-iCK4
that ensures strong termination of backward proof search. Gbu-iCK4 is shown to be complete via a dual
refutation calculus that enables the extraction of countermodels when the proof search fails. To support practical
experimentation, we provide an implementation of the proof search and the countermodel extraction procedures.

1. Introduction

Within the framework of intuitionistic modal logics, normal systems that consider only the □ modality
and satisfy the coreflection principle 𝑝→ □𝑝 have attracted significant attention due to their connec-
tions with provability and epistemic interpretations and applications in the formal verification; for a
comprehensive discussion, see [1, 2, 3, 4, 5].

Here, we consider the minimal coreflection logic iCK4 which is the logic obtained by extending
intuitionistic propositional logic IPL with the normality axiom □(𝑝 → 𝑞) → (□𝑝 → □𝑞) and the
coreflection principle. Adopting these principles has important consequences in terms of the usual
Kripke birelational semantics for intuitionistic modal logics; indeed, in the resulting models, which
are called strong, the modal accessibility relation 𝑅 is constrained by the intuitionistic one (𝑅 ⊆≤)
and, as a consequence, the persistence of forcing (characterizing the ≤ relation in intuitionistic Kripke
models) also holds for the modal accessibility relation 𝑅. In this work, we investigate proof search in
iCK4 by following the approach used in [6] for the Intuitionistic Strong Löb Logic iSL, which extends
iCK4 with the Gödel-Löb axiom □(□𝑝 → 𝑝) → □𝑝, and which in turn is based on the ideas behind
the calculus Gbu for Intuitionistic propositional Logic presented in [7, 8]. Our focus is on designing a
sequent calculus 𝒞 in which backward proof search always terminates, that is: given any sequent of 𝒞,
repeated upward applications of the rules of 𝒞 eventually halts, regardless of the strategy employed. A
calculus with this property is called (strongly) terminating, and it can be characterized as follows: there
exists a well-founded relation ≺ on the sequents of 𝒞 such that, for every rule application 𝜌 in 𝒞, if 𝜎 is
the conclusion of 𝜌 and 𝜎′ is any of its premises, then 𝜎′ ≺ 𝜎.

Following [6, 7, 8], the crucial step in achieving our goal is to decorate sequents with one of the labels
b (blocked) or u (unblocked). The calculus for iCK4, we call Gbu-iCK4, is strongly terminating and it
is shown to be complete via a dual refutation system, Rbu-iCK4. This refutation calculus enables the
extraction of a countermodel for an unblocked sequent 𝜎 when the proof search for 𝜎 in Gbu-iCK4 fails.
We note that, compared to the calculi for iSL introduced in [6], the case of iCK4 is more challenging,
due to the presence of reflexive worlds (i.e., worlds 𝑤 such that 𝑤𝑅𝑤 holds) that are not admitted in
the iSL-models. This characteristic complicates both the design of inference rules and the process of
countermodel construction. Moreover, as a consequence of this feature, unlike the case of iSL, the
calculus for iCK4 does not satisfy the standard subformula property. Instead, it satisfies a weaker version,
which we refer to as the extended subformula property: every formula occurring in an Gbu-iCK4 proof
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tree is either a subformula of the root sequent or a subformula of the sequent obtained by removing all
occurrences of the □ modality from the root sequent.

Regarding the comparison with existing literature, to the best of our knowledge, the only available
calculus for iCK4 is the natural deduction system introduced in [2], which is not designed to support
proof search effectively.

To complement our theoretical results with an applied contribution, we have implemented both
the proof search procedure and the countermodel extraction in the Java framework JTabWB [9]; the
implementation is available online at [10].

2. The Logic iCK4

Formulas, denoted by lowercase Greek letters, are built from an enumerable set of propositional variables
𝒱 , the constant ⊥ and the connectives ∨,∧,→ and □; ¬𝛼 is an abbreviation for 𝛼→ ⊥ and 𝛼↔ 𝛽 an
abbreviation for (𝛼→ 𝛽) ∧ (𝛽 → 𝛼). We denote multisets (and sets) of formulas by uppercase Greek
letters. Let 𝛼 be a formula and Γ a multiset of formulas; by □Γ we denote the multiset {□𝛼|𝛼 ∈ Γ}.
By 𝛼−, we denote the formula obtained from 𝛼 by erasing every occurrence of □; Γ− is the multiset
{𝛼−|𝛼 ∈ Γ}. We write Sf(𝛼) to denote the set of the subformulas of 𝛼, including 𝛼 itself; Sf(Γ) is the
union of the sets Sf(𝛼), for every 𝛼 in Γ. The size of 𝛼, denoted by |𝛼|, is the number of symbols in
𝛼; the size of Γ, denoted by |Γ|, is the sum of the sizes of formulas 𝛼 in Γ, taking into account their
multiplicity.

We introduce the semantics of logic iCK4; to simplify the presentation, we assume that iCK4 enjoys
the finite model property (for a more general discussion see e.g. [11]). A (bi-relational) strong frame ℱ
is a tuple ⟨𝑊,≤, 𝑅, 𝑟⟩, where 𝑊 is a finite non-empty set (worlds), ≤ (the intuitionistic relation) is a
partial order with minimum element 𝑟 (the root of ℱ ), 𝑅 ⊆𝑊 ×𝑊 is the modal relation satisfying the
following properties: (normality) if 𝑤0 ≤ 𝑤1 and 𝑤1𝑅𝑤2, then 𝑤0𝑅𝑤2; (strongness1) 𝑅 ⊆≤. Note that
these two properties imply the transitivity of 𝑅.

A (bi-relational) strong model 𝒦 is a tuple ⟨𝑊,≤, 𝑅, 𝑟, 𝑉 ⟩ where ⟨𝑊,≤, 𝑅, 𝑟⟩ is a bi-relational strong
frame, and 𝑉 (the valuation function) is a map associating a subset of 𝒱 to every 𝑤 ∈𝑊 and satisfying
the persistence property: 𝑤0 ≤ 𝑤1 implies 𝑉 (𝑤0) ⊆ 𝑉 (𝑤1).

Given a strong model 𝒦, the forcing relation ⊩ between worlds of 𝒦 and formulas is defined as
follows:

𝒦, 𝑤 ⊩ 𝑝 iff 𝑝 ∈ 𝑉 (𝑤), ∀𝑝 ∈ 𝒱 𝒦, 𝑤 ⊮ ⊥
𝒦, 𝑤 ⊩ 𝛼 ∧ 𝛽 iff 𝒦, 𝑤 ⊩ 𝛼 and 𝒦, 𝑤 ⊩ 𝛽 𝒦, 𝑤 ⊩ 𝛼 ∨ 𝛽 iff 𝒦, 𝑤 ⊩ 𝛼 or 𝒦, 𝑤 ⊩ 𝛽

𝒦, 𝑤 ⊩ 𝛼→ 𝛽 iff ∀𝑤′ ≥ 𝑤, if 𝒦, 𝑤′ ⊩ 𝛼 then 𝒦, 𝑤′ ⊩ 𝛽

𝒦, 𝑤 ⊩ □𝛼 iff ∀𝑤′ ∈𝑊 , if 𝑤𝑅𝑤′ then 𝒦, 𝑤′ ⊩ 𝛼.

Hereafter, we write 𝑤 ⊩ 𝜙 instead of 𝒦, 𝑤 ⊩ 𝜙 when the model 𝒦 at hand is clear from the context.
It is easy to prove, by induction on the structure of a formula, that the forcing relation is persistent
w.r.t. ≤ (hence, w.r.t. 𝑅, since 𝑅 ⊆≤); formally:

Lemma 1 (Strong monotonicity lemma) Let 𝒦 = ⟨𝑊,≤, 𝑅, 𝑟, 𝑉 ⟩ be a strong model. For every
formula 𝛼, if 𝑤 ⊩ 𝛼 and 𝑤 ≤ 𝑤′, then 𝑤′ ⊩ 𝛼

A world 𝑤 is reflexive if 𝑤𝑅𝑤 holds; in a strong model the following holds:

Lemma 2 Let 𝒦 = ⟨𝑊,≤, 𝑅, 𝑟, 𝑉 ⟩ be a strong model and let 𝑤 ∈𝑊 .
(i) If 𝑤 is a reflexive world then, for every formula 𝛼, 𝑤 ⊩ 𝛼↔ 𝛼−.

(ii) If 𝑤 ⊮ □𝛼, then there exists 𝑤⋆ ∈𝑊 such that 𝑤𝑅𝑤⋆, 𝑤⋆ ⊮ 𝛼 and either (a) ∀𝑤′ ∈𝑊 : 𝑤⋆𝑅𝑤′,
𝑤′ ⊩ 𝛼 or (b) 𝑤⋆ is reflexive.

1Also called coreflection.



𝑤0 :

⊮ 𝜓 = (□(□𝑝→ 𝑝) → □𝑝) ∨ (□□𝑝→ ((□𝑞 → □𝑝) ∨ □𝑞))

𝑤2 :

⊮ □(□𝑝→ 𝑝) → □𝑝

𝑤3 :

⊩ □(□𝑝→ 𝑝)

⊮ □𝑝

𝑤5 :

⊩ □𝑝→ 𝑝

⊮ □𝑝

𝑤8 :

⊩ □□𝑝

⊮ □𝑞 → □𝑝, □𝑞

⊮ □□𝑝→ ((□𝑞 → □𝑝) ∨ □𝑞)

𝑤10 :

⊩ □𝑞, □□𝑝

⊮ □𝑝

𝑤11 : 𝑞

⊩ □𝑝

𝑤13 : 𝑝

⊩ □𝑝
𝑤 ≤ 𝑤′ iff 𝑤 = 𝑤′ or
there is a path from 𝑤 to 𝑤′

𝑤𝑅𝑤′ iff there is a path from
𝑤 to 𝑤′ ending with →

Figure 1: The countermodel for 𝜓 described in Ex. 3, also referenced as Mod(𝒟) in Ex. 16.

Proof. Point (i). Note that 𝑤 ⊩ 𝜙 ↔ □𝜙, for every formula 𝜙. Indeed, 𝑤 ⊩ 𝜙 → □𝜙 follows by
strongness of 𝒦, 𝑤 ⊩ □𝜙 → 𝜙 by reflexivity of 𝑤. Since 𝛼− is obtained from 𝛼 by replacing every
subformula □𝜙 with 𝜙, we get , 𝑤 ⊩ 𝛼↔ 𝛼−.

Point (ii). Since 𝑤 ⊮ □𝛼, there exists 𝑤𝛼 ∈ 𝑊 such that 𝑤𝑅𝑤𝛼 and 𝑤𝛼 ⊮ 𝛼. We build a finite
sequence 𝒮 of pairwise distinct worlds 𝑤0, . . . , 𝑤𝑛 of 𝑊 such that 𝑤0𝑅𝑤1𝑅 . . . 𝑅𝑤𝑛 and 𝑤𝑘 ⊮ 𝛼 for
every 0 ≤ 𝑘 ≤ 𝑛. We proceed as follows:
• We set 𝑤0 = 𝑤𝛼 (thus, 𝑤𝑅𝑤0).

• Suppose that the last defined world of 𝒮 is 𝑤𝑘 (𝑘 ≥ 0). If there exists 𝑤′ such that 𝑤′ ̸∈ {𝑤0, . . . , 𝑤𝑘}
and 𝑤𝑘𝑅𝑤′ and 𝑤′ ⊮ 𝛼, we set 𝑤𝑘+1 = 𝑤′; otherwise, the construction of 𝒮 halts and 𝑤𝑘 is the last
world of 𝒮 .

Since the worlds in 𝒮 are pairwise distinct and 𝑊 is finite, the construction of 𝒮 eventually halts. Let
𝑤⋆ be the last element of 𝒮 . We have 𝑤⋆ ⊮ 𝛼 and 𝑤0𝑅𝑤1𝑅 . . . 𝑅𝑤

⋆ hence, by transitivity of 𝑅, 𝑤𝑅𝑤⋆.
If 𝑤⋆ is reflexive, then 𝑤⋆ matches (b). Let us assume that 𝑤⋆ is not reflexive; we show that (a) holds.
Let us assume, by contradiction, that there exists 𝑤′ such that 𝑤⋆𝑅𝑤′ and 𝑤′ ⊮ 𝛼. Note that 𝑤′ ̸∈ 𝒮 ,
otherwise, by transitivity of 𝑅, we would get 𝑤⋆𝑅𝑤⋆, against the hypothesis that 𝑤⋆ is not reflexive.
Since 𝑤′ ̸∈ 𝒮 and 𝑤′ ⊮ 𝛼, we can extend 𝒮 by adding 𝑤′, a contradiction (𝑤⋆ is the last element of 𝒮).
This proves that, for every 𝑤′ such that 𝑤⋆𝑅𝑤′, 𝑤′ ⊩ 𝛼; accordingly, 𝑤⋆ matches (a). □

Let Γ be a multiset of formulas. By𝑤 ⊩ Γ we mean that𝑤 ⊩ 𝜙 for every 𝜙 in Γ. The iCK4-consequence
relation ⊨iCK4 is defined as follows:

Γ ⊨iCK4 𝜙 iff ∀𝒦∀𝑤
(︀
𝒦, 𝑤 ⊩ Γ ⇒ 𝒦, 𝑤 ⊩ 𝜙

)︀
.

The logic iCK4 is defined as the set of formulas 𝜙 such that ∅ ⊨iCK4 𝜙. Hence, if 𝜙 ̸∈ iCK4, there exist
a strong model 𝒦 such that 𝑟 ̸⊩ 𝜙, with 𝑟 the root of 𝒦; we call 𝒦 a countermodel for 𝜙.

Example 3 Fig. 6 displays a countermodel 𝒦 for the formula

𝜓 = □(□𝑝→ 𝑝) → □𝑝) ∨ (□□𝑝→ ((□𝑞 → □𝑝) ∨□𝑞))

𝜓 is the disjunction between the Gödel-Löb the axiom □(□𝑝 → 𝑝) → □𝑝, characterizing logic iSL,
and an instance of axiom □𝑟→((𝑠→ 𝑟) ∨ 𝑠) (with 𝑟 = □𝑝 and 𝑠 = □𝑞) characterizing the Modalized



Ax◁

Γ 𝑙⇒𝛼 if Γ ◁ 𝛼 𝐿⊥
⊥,Γ u⇒ 𝛿

𝛼, 𝛽,Γ u⇒ 𝛿
𝐿∧

𝛼 ∧ 𝛽,Γ u⇒ 𝛿

Γ 𝑙⇒𝛼 Γ 𝑙⇒𝛽
𝑅∧

Γ 𝑙⇒𝛼 ∧ 𝛽
𝛼,Γ u⇒ 𝛿 𝛽,Γ u⇒ 𝛿

𝐿∨
𝛼 ∨ 𝛽,Γ u⇒ 𝛿

Γ b⇒𝛼𝑘 𝑅∨𝑘
Γ 𝑙⇒𝛼0 ∨ 𝛼1

𝛼→ 𝛽,Γ b⇒𝛼 𝛽,Γ u⇒ 𝛿
𝐿→

𝛼→ 𝛽,Γ u⇒ 𝛿

Γ 𝑙⇒𝛽
𝑅 ◁→

Γ 𝑙⇒𝛼→ 𝛽
if Γ ◁ 𝛼

𝛼,Γ u⇒𝛽
𝑅 ⋫→

Γ 𝑙⇒𝛼→ 𝛽
if Γ ⋫ 𝛼

Γ,Δ u⇒𝛼
𝑅□

uΓ,□Δ u⇒□𝛼

□𝛼,Γ,Δ u⇒𝛼 Γ−,Δ− u⇒𝛼−
𝑅□

b
Γ,□Δ b⇒□𝛼

if Γ ∪□Δ ⋫ □𝛼

Figure 2: The calculus 𝒞 = Gbu-iCK4 for iCK4 (𝑙 ∈ {b,u}, 𝑘 ∈ {0, 1}).

Heyting calculus mHC. iSL and mHC are proper extensions of iCK4 and their proper axioms are not
valid in iCK4. The worlds of 𝒦 are 𝑤0 (the root), 𝑤2, 𝑤3, 𝑤5, 𝑤8, 𝑤10, 𝑤11, 𝑤13. The relations ≤ and 𝑅
can be inferred by the displayed arrows, as accounted for in the figure. E.g., 𝑤0 ≤ 𝑤10, since there is a
path from 𝑤0 and 𝑤10 (actually, a unique path); 𝑤0 ≤ 𝑤11 and 𝑤0𝑅𝑤11, since the path from 𝑤0 and
𝑤11 ends with the solid arrow →. However, it is not the case that 𝑤0𝑅𝑤10, since the path from 𝑤0 to
𝑤10 ends with the dashed arrow ‧‧➡. The only reflexive worlds are 𝑤5 and 𝑤13. In each world 𝑤𝑘, the
first line displays the value of 𝑉 (𝑤𝑘); for instance, 𝑉 (𝑤0) = ∅, 𝑉 (𝑤11) = {𝑞}. The remaining lines
report (separated by commas) some of the formulas forced and not forced in 𝑤𝑘. Since 𝑤0 ⊮ 𝜓, 𝒦 is a
countermodel for 𝜓. ♢

3. The Sequent Calculus Gbu-iCK4

In this section, we introduce the Gbu-iCK4 calculus (Gentzen calculus for iCK4 with b, u-labelled
sequents), which we will simply refer to as 𝒞 from now on. The calculus 𝒞 acts on labelled sequents 𝜎 of
the form Γ 𝑙⇒ 𝛿, with 𝑙 ∈ {b, u} where Γ is a multiset of formulas and 𝛿 is a formula; Γ and 𝛿 are referred
to as the lhs (lhs(𝜎)) and the rhs (rhs(𝜎)) (left/right hand side) of 𝜎 respectively. We call 𝑙-sequent a
sequent with label 𝑙. Let 𝜎 = Γ 𝑙⇒ 𝛿; with 𝜎− we denote the sequent Γ− 𝑙⇒ 𝛿−, Sf(𝜎) = Sf(Γ ∪ {𝛿})
(the set of subformulas of 𝜎) and Sf+(𝜎) = Sf(𝜎) ∪ Sf(𝜎−) (the set of extended subformulas of 𝜎). To
define the calculus, we introduce the following evaluation relation:

Definition 4 (Evaluation) Let Γ be a multiset of formulas and 𝜙 a formula. Γ evaluates 𝜙, written
Γ ◁ 𝜙, iff 𝜙 matches the following BNF:

𝜙 := 𝛾 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝛼 | 𝛼 ∨ 𝜙 | 𝛼→ 𝜙 | □𝜙 with 𝛾 ∈ Γ and 𝛼 any formula.

By Γ ◁Δ we mean that Γ ◁ 𝛿, for every 𝛿 ∈ Δ. We state some properties of the evaluation relation
which are proved in [6].

Lemma 5
(i) If Γ ◁ 𝜙 and Γ ⊆ Γ′, then Γ′ ◁ 𝜙.

(ii) If Γ ∪Δ ◁ 𝜙 and Γ′ ◁Δ, then Γ ∪ Γ′ ◁ 𝜙.

(iii) If Γ ◁ 𝜙, then Γ ∩ Sf(𝜙) ◁ 𝜙.

(iv) If Γ ◁ 𝜙 and 𝒦, 𝑤 ⊩ Γ, then 𝒦, 𝑤 ⊩ 𝜙.



□𝑝, ¬□𝑝, 𝛼 𝑏⇒□𝑝(5)
Ax◁

𝜎6 𝐿⊥

□𝑝, ¬□𝑝, 𝛼 𝑢⇒ 𝑝(4)
𝐿→

¬𝑝,¬¬𝑝 𝑏⇒¬𝑝(8)
Ax◁

𝜎9 𝐿⊥

¬𝑝,¬¬𝑝 𝑢⇒ 𝑝(7)
𝐿→

¬□𝑝, 𝛼 𝑏⇒□𝑝(3)
𝑅□

b
𝜎10 𝐿⊥

¬□𝑝, 𝛼 𝑢⇒⊥(2)

𝐿→

¬□𝑝 ∧ 𝛼 𝑢⇒⊥(1)

𝐿∧

𝑢⇒¬(¬□𝑝 ∧ 𝛼)(0) 𝑅
⋫→

𝛼 = □¬□¬𝑝
𝜎6 = ⊥, □𝑝, 𝛼 𝑢⇒ 𝑝
𝜎9 = ⊥,¬𝑝 𝑢⇒ 𝑝
𝜎10 = ⊥, 𝛼 𝑢⇒⊥

Figure 3: A 𝒞-derivation of 𝜎0 = 𝑢⇒¬(□𝑝 ∧□¬□¬𝑝).

The rules of the calculus 𝒞 are displayed in Fig. 2. They consist of the axiom rules Ax◁ and 𝐿⊥, together
with left/right rules for each logical connective and right rules for □. For calculi and derivations we
use the definitions and notations of [12]. Applications of rules are depicted as trees with sequents as
nodes, we call them 𝒞-trees; a 𝒞-derivation is a tree where every leaf is an axiom sequent, i.e., a sequent
obtained by applying a zero-premise rule of 𝒞. A sequent 𝜎 is provable in 𝒞, and we write ⊢𝒞 𝜎, if
there exists a 𝒞-derivation with root sequent 𝜎.

The calculus is oriented to backward proof search, where rules are applied bottom-up. If the conclusion
of a rule has label b, the (bottom-up) application of left rules is blocked. There are two rules for right
implication, namely 𝑅 ◁→ and 𝑅 ⋫→; the choice between them is settled by the evaluation relation ◁.
Right □-formulas are handled by rules 𝑅□

u and 𝑅□
b ; here the choice is determined by the label of the

conclusion. We remark that if 𝜎 = Γ,□Δ b⇒□𝛼 and Γ ∪□Δ ◁□𝛼, then 𝜎 is an axiom sequent (see
rule Ax◁) and an application of rule 𝑅□

b to 𝜎 is prevented by the side condition of 𝑅□
b . In backward

proof search, a b-sequent starts the construction of a branch only containing b-sequents, where only
right rules are applied. This phase ends either when an axiom sequent is obtained or when no rule can
be applied or when one of the rules turning a label b into u is applied (namely, rules 𝑅 ⋫→ and 𝑅□

b ).
Inspecting the rules of the calculus, one can easily check that every rule, except 𝑅□

b , meets the
subformula property, i.e., every formula occurring in the premises is a subformula of a formula oc-
curring in the conclusion. This does not hold for 𝑅□

b since the formulas in the rightmost premise
Γ−,Δ− u⇒𝛼− might not belong to Sf(Γ,□Δ b⇒□𝛼). However, every formula in Γ−,Δ− u⇒𝛼− be-
longs to Sf+(Γ,□Δ b⇒□𝛼). Accordingly, the calculus 𝒞 meets a weaker form of the subformula
property, we call extended subformula property, namely: every formula occurring in a 𝒞-tree having 𝜎
as root belongs to Sf+(𝜎).

Example 6 In Fig.3 we show a 𝒞-derivation 𝒟 of the u-sequent 𝜎0 = u⇒¬(¬□𝑝 ∧ 𝛼), where 𝛼 =
□¬□¬𝑝 (we recall that ¬𝛽 is an abbreviation for 𝛽 → ⊥). In 𝒟 sequents are marked with an index
(𝑛) and, hereafter, are referred to as 𝜎𝑛. 𝒟 highlights some of the peculiarities of 𝒞. In backward proof
search, 𝜎3 is obtained by a (backward) application of rule 𝐿→ to 𝜎2; the label b in 𝜎2 is crucial to block
the application of rule 𝐿→, which would generate an infinite branch. In sequent 𝜎4 (the left premise of
rule 𝑅□

b with conclusion 𝜎3) the key feature is the presence of the formula □𝑝 (also called diagonal
formula); without it, the sequent 𝜎4 would be ¬□𝑝, 𝛼 u⇒ 𝑝 and, after the application of 𝐿→ (the only
applicable rule), the left premise would be 𝜎5 = ¬□𝑝, 𝛼 b⇒□𝑝, which yields a loop (𝜎5 = 𝜎3). We stress
that the sequent 𝜎7, corresponding to the right premise of 𝑅□

b , is a pure intuitionistic sequent, since it
is obtained from 𝜎3 by removing all the boxes. ♢

The following theorem states the main properties of 𝒞:

Theorem 7
(i) 𝒞 enjoys the extended subformula property.

(ii) 𝒞 is terminating.



(iii) ⊢𝒞 Γ 𝑙⇒ 𝛿 implies Γ |=iCK4 𝛿 (Soundness).

(iv) Γ |=iCK4 𝛿 implies ⊢𝒞 Γ u⇒ 𝛿 (Completeness).

We remark that in soundness 𝑙 is any label; instead, in completeness the label is set to u. For instance,
since 𝑝 ∨ 𝑞 ⊨iCK4 𝑞 ∨ 𝑝, completeness guarantees that the u-sequent 𝜎u = 𝑝 ∨ 𝑞 u⇒ 𝑞 ∨ 𝑝 is provable
in 𝒞. A 𝒞-derivation of 𝜎u is obtained by first (upwards) applying rule 𝐿∨ to 𝜎u and then one of the
rules 𝑅∨0 or 𝑅∨1; if we first apply a right rule, we are stuck (e.g., if we apply 𝑅∨0 to 𝜎u, we get the
unprovable sequent 𝑝 ∨ 𝑞 u⇒ 𝑞). On the contrary, the b-sequent 𝑝 ∨ 𝑞 b⇒ 𝑞 ∨ 𝑝 is not provable in 𝒞, since
the label b inhibits the application of rule 𝐿∨ and forces the application of a right rule.

The soundness of the calculus 𝒞 can be proved by showing that its rules preserve the iCK4-consequence
relation ⊨iCK4, namely:

Lemma 8 Let 𝜌 be an application of rule of 𝒞 having conclusion Γ 𝑙⇒ 𝛿 and premises Γ1
𝑙1⇒ 𝛿1,. . . , Γ𝑛 𝑙𝑛⇒ 𝛿𝑛

(𝑛 ∈ {1, 2}). If Γ𝑖 ⊨iCK4 𝛿𝑖 for every 𝑖 ∈ {1, . . . , 𝑛}, then Γ ⊨iCK4 𝛿.

Proof. We only treat the cases of rule 𝑅□
b , the other cases being straightforward. Let us suppose that

Γ,□Δ ̸⊨iCK4 □𝛼; we show that either □𝛼,Γ,Δ ̸⊨iCK4 𝛼 or Γ−,Δ− ̸⊨iCK4 𝛼
−. Since Γ,□Δ ̸⊨iCK4 □𝛼,

there exists a model 𝒦 and a world 𝑤 of 𝒦 s.t. 𝑤 ⊩ Γ,□Δ and 𝑤 ̸⊩ □𝛼. By Lemma 2(ii) there exists
𝑤⋆ such that 𝑤𝑅𝑤⋆, 𝑤⋆ ⊮ 𝛼 and one of the conditions (a) or (b) holds. Note that 𝑤⋆ ⊩ Δ and, since
𝑤 ≤ 𝑤⋆, 𝑤⋆ ⊩ Γ. Let us assume that (a) holds; then, 𝑤⋆ ⊩ □𝛼 and 𝑤⋆ ⊮ 𝛼, hence □𝛼,Γ,Δ ̸⊨iCK4 𝛼.
Let us assume that (b) holds. Then, 𝑤⋆ is reflexive hence, by Lemma 2(i), we get 𝑤⋆ ⊩ Γ−,Δ− and
𝑤⋆ ⊮ 𝛼−; we conclude Γ−,Δ− ̸⊨iCK4 𝛼

−. □

To prove the termination of 𝒞 we need to introduce a proper well-founded relation ≺bu on labelled
sequents. The main problem stems from rule 𝐿→. Let 𝜎 and 𝜎′ be the conclusion and the left premise
of an application of rule 𝐿→; we stipulate that 𝜎′ ≺bu 𝜎 since 𝜎′ has label b and 𝜎 has label u; thus,
we establish that b weighs less than u. Now, we need a way out to accommodate the rules 𝑅 ⋫→ and
𝑅□

b that, read bottom-up, switch b with u. We observe that the lhs of the left premise evaluates a new
formula; e.g., in the application of rule 𝑅 ⋫→ having premise 𝛼,Γ u⇒𝛽 and conclusion Γ 𝑙⇒𝛼 → 𝛽, it
holds that Γ ⋫ 𝛼 (side condition) and Γ ∪ {𝛼} ◁ 𝛼 (definition of ◁); this suggests that here we can
exploit the evaluation relation.

Let Ev be defined as follows:

Ev(Γ 𝑙⇒ 𝛿) = {𝜙 | 𝜙 ∈ Sf(Γ ∪ {𝛿}) and Γ ◁ 𝜙 }

Note that Ev(𝜎) ⊆ Sf(𝜎). We also have to take into account the size of a sequents, where |Γ 𝑙⇒ 𝛿| =
|Γ|+ |𝛿|.

Finally, we observe that the conclusion of rule 𝑅□
b is a modal sequent (it contains at least one □),

while the right premise is intuitionistic (no □). To convey this property in the definition of ≺bu, we
introduce the following function:

isModal(𝜎) =

{︃
1 if 𝜎 contains at least one □

0 otherwise

We write 𝜎′ ≺bu 𝜎 iff one of the following conditions holds:

(a) isModal(𝜎′) < isModal(𝜎);

(b) isModal(𝜎′) = isModal(𝜎) and Sf(𝜎′) ⊂ Sf(𝜎);

(c) isModal(𝜎′) = isModal(𝜎) and Sf(𝜎′) = Sf(𝜎) and Ev(𝜎′) ⊃ Ev(𝜎);

(d) isModal(𝜎′) = isModal(𝜎) and Sf(𝜎′) = Sf(𝜎) and Ev(𝜎′) = Ev(𝜎) and label(𝜎′) = b and
label(𝜎) = u;

(e) isModal(𝜎′) = isModal(𝜎) and Sf(𝜎′) = Sf(𝜎) and Ev(𝜎′) = Ev(𝜎) and label(𝜎′) = label(𝜎)
and |𝜎′| < |𝜎|.



Proposition 9 The relation ≺bu is well-founded.

Proof. Assume, by contradiction, that there is an infinite descending chain . . . ≺bu 𝜎1 ≺bu 𝜎0.
There is 𝑘 ≥ 0 such that isModal(𝜎𝑗) stabilizes, namely: isModal(𝜎𝑗) = isModal(𝜎𝑘) for every
𝑗 ≥ 𝑘. We have Sf(𝜎𝑘) ⊇ Sf(𝜎𝑘+1) ⊇ . . . ; since Sf(𝜎𝑘) is finite, the sets Sf(𝜎𝑗) eventually stabilize,
namely: there is 𝑙 ≥ 𝑘 such that Sf(𝜎𝑗) = Sf(𝜎𝑙) for every 𝑗 ≥ 𝑙. Since Ev(𝜎𝑗) ⊆ Sf(𝜎𝑗), we get
Ev(𝜎𝑙) ⊆ Ev(𝜎𝑙+1) ⊆ . . . ⊆ Sf(𝜎𝑙). Since Sf(𝜎𝑙) is finite, there is 𝑚 ≥ 𝑙 such that Ev(𝜎𝑗) = Ev(𝜎𝑚)
for every 𝑗 ≥ 𝑚. This implies that there exists 𝑛 ≥ 𝑚 such that all the sequents 𝜎𝑛, 𝜎𝑛+1, . . . have the
same label; accordingly |𝜎𝑛| > |𝜎𝑛+1| > |𝜎𝑛+2| > . . . ≥ 0, a contradiction. We conclude that ≺bu is
well-founded. □

To prove that the rules of 𝒞 are decreasing w.r.t.≺bu, we need the following:

Lemma 10 Let 𝜌 be an application of a rule of 𝒞, let 𝜎 be the conclusion of 𝜌 and 𝜎′ any of the premises
of 𝜌. For every formula 𝜙, if lhs(𝜎) ◁ 𝜙 and 𝜎′ is not the right premise of 𝑅□

b , then lhs(𝜎′) ◁ 𝜙.

Proof. The assertion can be proved by applying Lemma 5. For instance, let 𝜎 = Γ,□Δ u⇒□𝛼 and
𝜎′ = Γ,Δ u⇒𝛼 be the conclusion and the premise of rule 𝑅□

u ; assume that Γ ∪□Δ ◁ 𝜙. Since Δ ◁□Δ,
by Lemma 5(ii) get Γ ∪Δ ◁ 𝜙. □

Proposition 11 Every rule of the calculus 𝒞 is decreasing w.r.t. ≺bu.

Proof. Let 𝜎 and 𝜎′ be the conclusion and one of the premises of an application of a rule of 𝒞. Note
that isModal(𝜎′) ≤ isModal(𝜎). If 𝜎′ is not the right premise of 𝑅□

b , it holds that Sf(𝜎′) ⊆ Sf(𝜎);
moreover, if Sf(𝜎′) = Sf(𝜎), by Lemma 10 we get Ev(𝜎′) ⊇ Ev(𝜎). We can prove 𝜎′ ≺bu 𝜎 by a case
analysis; we only detail two significant cases.

𝜎′ = 𝛼→ 𝛽,Γ b⇒𝛼 𝛽,Γ u⇒ 𝛿
𝐿→

𝜎 = 𝛼→ 𝛽,Γ u⇒ 𝛿

If isModal(𝜎′) < isModal(𝜎), then 𝜎′ ≺bu 𝜎 by point (a) of the definition; otherwise we have
isModal(𝜎′) = isModal(𝜎). If Sf(𝜎′) ⊂ Sf(𝜎), then 𝜎′ ≺bu 𝜎 by point (b) of the definition; otherwise,
as discussed above, it holds that Sf(𝜎′) = Sf(𝜎) and Ev(𝜎′) ⊇ Ev(𝜎). If Ev(𝜎′) ⊃ Ev(𝜎), then
𝜎′ ≺bu 𝜎 by point (c); otherwise, 𝜎′ ≺bu 𝜎 follows by point (d).

𝜎′ = □𝛼,Γ,Δ u⇒𝛼 𝜎′′ = Γ−,Δ− u⇒𝛼−
𝑅□

b
𝜎 = Γ,□Δ 𝑙⇒□𝛼

Γ ∪□Δ ⋫ □𝛼

Note that isModal(𝜎′) = isModal(𝜎) = 1. If Sf(𝜎′) ⊂ Sf(𝜎), then 𝜎′ ≺bu 𝜎 by point (b). Otherwise,
Sf(𝜎′) = Sf(𝜎) and Ev(𝜎′) ⊇ Ev(𝜎). Note that □𝛼 ∈ Ev(𝜎′) and, by the side condition, □𝛼 ̸∈ Ev(𝜎).
This implies that Ev(𝜎′) ⊃ Ev(𝜎), hence 𝜎′ ≺bu 𝜎 by point (c). As for the right premise, we have
isModal(𝜎′′) = 0 and isModal(𝜎) = 1, thus 𝜎′′ ≺bu 𝜎 by point (a). □

By Prop. 9 and 11, we conclude that the calculus 𝒞 is terminating.

4. The Refutation Calculus Rbu-iCK4

A common technique to prove the completeness of a sequent calculus consists in showing that, whenever
a sequent 𝜎 is not provable in the calculus, then a countermodel for 𝜎 can be built; we prove the
completeness of 𝒞 according with this plan. Following the ideas in [13, 7, 8, 14], we formalize the
notion of “non-provability in 𝒞” by introducing the refutation calculus Rbu-iCK4, a dual calculus to
𝒞 = Gbu-iCK4. Hereafter, we will refer to Rbu-iCK4 simply as ℛ. Sequents of ℛ, called antisequents,
have the form Γ 𝑙⇏ 𝛿. Intuitively, a derivation in ℛ of Γ 𝑙⇏ 𝛿 witnesses that the sequent Γ 𝑙⇒ 𝛿 is
refutable, that is, not provable, in 𝒞. Henceforth, Γat denotes a finite multiset of propositional variables,
Γ→ denotes a finite multiset of →-formulas (i.e., formulas of the kind 𝛼 → 𝛽). The axioms of ℛ are
the irreducible antisequents, namely the antisequents Γ 𝑙⇏ 𝛿 such that the corresponding dual sequents



Γat is a multiset of propositional variables, Γ→ is a multiset of →-formulas

Irr𝜎
if 𝜎 is
irreducible

𝛼, 𝛽,Γ u⇏ 𝛿
𝐿∧

𝛼 ∧ 𝛽,Γ u⇏ 𝛿

Γ 𝑙⇏ 𝛼𝑘 𝑅∧𝑘
Γ 𝑙⇏ 𝛼0 ∧ 𝛼1

𝛼𝑘,Γ
u⇏ 𝛿

𝐿∨𝑘
𝛼0 ∨ 𝛼1,Γ

u⇏ 𝛿

Γ b⇏ 𝛼 Γ b⇏ 𝛽
𝑅∨

Γ b⇏ 𝛼 ∨ 𝛽
𝛽,Γ u⇏ 𝛿

𝐿→
𝛼→ 𝛽,Γ u⇏ 𝛿

Γ 𝑙⇏ 𝛽
𝑅 ◁→

Γ 𝑙⇏ 𝛼→ 𝛽
Γ ◁ 𝛼

𝛼,Γ u⇏ 𝛽
𝑅 ⋫→

Γ 𝑙⇏ 𝛼→ 𝛽
Γ ⋫ 𝛼

Γ− u⇏ 𝛼−
Ref

Γ b⇏ □𝛼
Γ ⋫ □𝛼

□𝛼,Γ,Δ u⇏ 𝛼
𝑅□

b
Γ,□Δ b⇏ □𝛼

Γ ⋫ □𝛼
{Γ b⇏ 𝛼 }𝛼→𝛽∈Γ→

SAt
u

Γat,Γ→,□Δ⏟  ⏞  
Γ

u⇏ 𝛿

Γ→ ̸= ∅
𝛿 ∈ (𝒱 ∪ {⊥}) ∖ Γat

{Γ b⇏ 𝛼 }𝛼→𝛽∈Γ→ Γ b⇏ 𝛿0 Γ b⇏ 𝛿1
S∨u

Γat,Γ→,□Δ⏟  ⏞  
Γ

u⇏ 𝛿0 ∨ 𝛿1

{Γ b⇏ 𝛼 }𝛼→𝛽∈Γ→ Γat,Γ→,Δ u⇏ 𝛿
S□uΓat,Γ→,□Δ⏟  ⏞  

Γ

u⇏ □𝛿

Figure 4: The refutation calculus ℛ = Rbu-iCK4 (𝑙 ∈ {b,u}, 𝑘 ∈ {0, 1}).

Γ 𝑙⇒ 𝛿 are not the conclusion of any of the rules of 𝒞. Irreducible antisequents are characterized as
follows:

Definition 12 An antisequent 𝜎 is irreducible iff 𝜎 = Γat,Γ→,□Δ 𝑙⇏ 𝛿 and both
(i) 𝛿 ∈ (𝒱 ∪ {⊥}) ∖ Γat and

(ii) 𝑙 = b or Γ→ = ∅.

The rules of ℛ are displayed in Fig. 4. In rules SAt
u , S∨u and S□u (we call Succ rules) the notation

{Γ b⇏ 𝛼}𝛼→𝛽∈Γ→ means that, for every 𝛼 → 𝛽 ∈ Γ→, the b-antisequent Γ b⇏ 𝛼 is a premise of the
rule. Note that all of the Succ rules have at least one premise (in rule SAt

u this is imposed by the condition
Γ→ ̸= ∅). ℛ-trees and ℛ-derivations are defined analogously to the case of the sequent calculus 𝒞. The
next theorem, proved below, states the soundness of ℛ:

Theorem 13 (Soundness of ℛ) If ⊢ℛ Γ u⇏ 𝛿, then Γ ̸|=iCK4 𝛿.

Example 14 In Fig. 5 we show an ℛ-derivation 𝒟 of 𝜎0 = u⇏ 𝜓 where 𝜓 is the same formula
considered in Ex. 3. By Th. 13, we get ̸|=iCK4 𝜓, namely 𝜓 ̸∈ iCK4. ♢

Countermodel extraction. A strong model 𝒦 with root 𝑟 is a model for 𝜎 = Γ u⇏ 𝛿 (a countermodel
for 𝜎 = Γ u⇒ 𝛿, respectively) iff 𝑟 ⊩ Γ and 𝑟 ⊮ 𝛿; thus 𝒦 certifies that Γ ̸|=iCK4 𝛿. Let 𝒟 be an
ℛ-derivation of a u-antisequent 𝜎u0 ; we show that from 𝒟 we can extract a model Mod(𝒟) for 𝜎u0 . A
u-antisequent 𝜎 of 𝒟 is prime iff 𝜎 is the conclusion of rule Irr or of a Succ rule. We introduce the
relations ⪯ and ≺ between antisequents occurring in 𝒟:

• 𝜎1 ≺ 𝜎2 iff 𝜎1 and 𝜎2 belong to the same branch of 𝒟 and 𝜎1 is below 𝜎2;

• 𝜎1 ⪯ 𝜎2 iff either 𝜎1 = 𝜎2 or 𝜎1 ≺ 𝜎2.

Let𝑊 be the set of prime antisequents occurring in𝒟. We introduce a mapΨ between the u-antisequents
of 𝒟 and 𝑊 .

• Ψ(𝜎u) = 𝜎u𝑝 iff 𝜎u𝑝 is the ⪯-minimum prime antisequent 𝜎 such that 𝜎u ⪯ 𝜎.



𝑝→ 𝑝 𝑏⇏ 𝑝(6)
Irr

𝑝→ 𝑝 𝑢⇏ 𝑝(5)
SAt

u

□𝑝→ 𝑝 𝑏⇏ □𝑝(4)
Ref

□𝑝→ 𝑝 𝑢⇏ 𝑝(3)
SAt

u

□(□𝑝→ 𝑝) 𝑢⇏ □𝑝(2)
S□u

𝑏⇏ □(□𝑝→ 𝑝) → □𝑝(1)
𝑅

⋫→

□𝑝, 𝑞 𝑢⇏ 𝑝(11)
Irr

□□𝑝,□𝑞 𝑢⇏ □𝑝(10)
S□u

□□𝑝 𝑏⇏ □𝑞 → □𝑝(9)
𝑅

⋫→
𝑝 𝑢⇏ 𝑞(13)

Irr

□□𝑝 𝑏⇏ □𝑞(12)
Ref

□□𝑝 𝑢⇏ (□𝑞 → □𝑝) ∨□𝑞(8)
S∨u

𝑏⇏ □□𝑝→ ((□𝑞 → □𝑝) ∨□𝑞)(7)
𝑅

⋫→

𝑢⇏ (□(□𝑝→ 𝑝) → □𝑝) ∨ (□□𝑝→ ((□𝑞 → □𝑝) ∨□𝑞))(0)
S∨u

Figure 5: The ℛ-derivation 𝒟 of 𝜎0 = 𝑢⇏□(□𝑝→ 𝑝) → □𝑝) ∨ (□□𝑝→ ((□𝑞 → □𝑝) ∨□𝑞)).

One can easily check that Ψ is well-defined and Ψ(𝜎𝑝) = 𝜎𝑝, for every prime 𝜎𝑝. Let 𝜎1 and 𝜎2 be two
elements of 𝑊 .

• 𝜎1𝑅+𝜎2 iff there is a u-antisequent 𝜎′ such that 𝜎1 ≺ 𝜎′ ⪯ 𝜎2 and 𝜎′ is either the premise of rule
𝑅□

b or the rightmost premise of S□u or the premise of Ref .

• 𝜎1𝑅*𝜎2 iff 𝜎1 = 𝜎2 and there exists an u-antisequent 𝜎 in 𝒟 such that 𝜎 is the premise of rule Ref
and 𝜎1 = Ψ(𝜎).

We define Mod(𝒟) as the structure ⟨𝑊,≤, 𝑅, 𝜎u𝑟 , 𝑉 ⟩ where:
• 𝑊 is the set of the prime antisequents of 𝒟;

• ≤ is the restriction of ⪯ to 𝑊 ;

• 𝑅 is the transitive closure of 𝑅+ ∪𝑅*;

• 𝜎u𝑟 is the ≤-minimum prime antisequent of 𝒟;

• 𝑉 ( Γ u⇏ 𝛿 ) = Γ ∩ 𝒱 .
It is easy to check that Mod(𝒟) is a strong model; in particular, 𝜎u𝑟 exists since the antisequent at the
root of 𝒟 has label u. The map Ψ defined above is referred to as the canonical map Ψ between the
u-antisequents of 𝒟 and Mod(𝒟).

We state the main properties of Mod(𝒟).

Theorem 15 Let 𝒟 be an ℛ-derivation of a u-antisequent 𝜎u0 .
(i) For every u-antisequent 𝜎u = Γ u⇏ 𝛿 in 𝒟, Ψ(𝜎u) ⊩ Γ and Ψ(𝜎u) ⊮ 𝛿.

(ii) Mod(𝒟) is a model for 𝜎u0 .

Point (ii) follows from (i) and the fact that Ψ(𝜎u0 ) is the root of Mod(𝒟). The proof of (i) is deferred
below. Note that point (ii) of Th. 15 immediately implies the soundness of ℛ (Th. 13).

Example 16 In Fig. 6 we represent the structure of the ℛ-derivation 𝒟 in Fig. 5, displaying the
information relevant to the definition of Mod(𝒟). The model Mod(𝒟) for 𝜎0 coincides with the strong
model in Fig. 1 (described in Ex. 3), where 𝑤𝑘 is an alias for 𝜎𝑘 . Fig. 6 also reports the canonical map Ψ
and the relations ≪, ≪𝑅 and ≪*

𝑅 defined below. ♢

Proof search. We investigate more deeply the duality between 𝒞 and ℛ. A sequent 𝜎 = Γ 𝑙⇒ 𝛿 is
regular iff 𝑙 = u or Γ = Γat,Γ→,□Δ; by 𝜎 we denote the antisequent Γ 𝑙⇏ 𝛿. Let 𝜎 be a regular
sequent; in the next proposition we show that either 𝜎 is provable in 𝒞 or 𝜎 is provable in ℛ. The
proof conveys a proof search strategy to build the proper derivation, based on backward application
of the rules of 𝒞. We give priority to the invertible rules of 𝒞, namely: 𝐿∧, 𝑅∧, 𝐿∨, 𝑅 ◁→, 𝑅 ⋫→, 𝑅□

b ; as



𝜎6∙ Irr

𝑝→ 𝑝 𝑢⇏ 𝑝(5)
SAt

u

𝜎4∙ Ref

□𝑝→ 𝑝 𝑢⇏ 𝑝(3)
SAt

u

□(□𝑝→ 𝑝) 𝑢⇏ □𝑝(2)
S□u

𝜎1∙ 𝑅
⋫→

□𝑝, 𝑞 𝑢⇏ 𝑝(11)
Irr

□□𝑝,□𝑞 𝑢⇏ □𝑝(10)
S□u

𝜎9∙ 𝑅
⋫→

𝑝 𝑢⇏ 𝑞(13)
Irr

𝜎12∙ Ref

□□𝑝 𝑢⇏ (□𝑞 → □𝑝) ∨□𝑞(8)
S∨u

𝜎7∙ 𝑅
⋫→

𝑢⇏ (□(□𝑝→ 𝑝) → □𝑝) ∨ (□□𝑝→ ((□𝑞 → □𝑝) ∨□𝑞))(0)
S∨u

Ψ(𝜎0) = 𝜎0, Ψ(𝜎2) = 𝜎2,
Ψ(𝜎3) = 𝜎3, Ψ(𝜎5) = 𝜎5,
Ψ(𝜎10) = 𝜎10, Ψ(𝜎11) = 𝜎11,
Ψ(𝜎13) = 𝜎13

𝜎0 ≪ 𝜎2, 𝜎0 ≪ 𝜎8,
𝜎8 ≪ 𝜎10, 𝜎10 ≪ 𝜎11,
𝜎2 ≪𝑅 𝜎3,
𝜎3 ≪*

𝑅 𝜎5, 𝜎8 ≪*
𝑅 𝜎13

Figure 6: Structure of the ℛ-derivation 𝒟 in Fig.5 (∙: label b).

discussed in the proof of Prop. 17, the application of such rules does not require backtracking. If the
search for a 𝒞-derivation of 𝜎 fails, we get an ℛ-derivation of 𝜎.

Proposition 17 Let 𝜎 be a regular sequent. One can build either a 𝒞-derivation of 𝜎 or an ℛ-derivation
of 𝜎.

Proof. Since ≺bu is well-founded (Prop. 9), we can inductively assume that the assertion holds for
every regular sequent 𝜎′ such that 𝜎′ ≺bu 𝜎 (IH). If 𝜎 or 𝜎 is an axiom (in the respective calculus),
the assertion immediately follows. If an invertible rule 𝜌 of 𝒞 is (backward) applicable to 𝜎, we can
build the proper derivation by applying 𝜌 or its dual image in ℛ. For instance, let us assume that
rule 𝑅□

b of 𝒞 is applicable with conclusion 𝜎 = Γ,□Δ b⇒□𝛼 and premises 𝜎0 = □𝛼,Γ,Δ u⇒𝛼 and
𝜎1 = Γ−,Δ− u⇒𝛼−. Let 𝑘 ∈ {0, 1}; since 𝜎𝑘 ≺bu 𝜎 (see Prop. 11), by (IH) there exists either a
𝒞-derivation 𝒟𝑘 of 𝜎𝑘 or an ℛ-derivation ℰ𝑘 of 𝜎𝑘. According to the case, we can build one of the
following derivations:

𝒟0

□𝛼,Γ,Δ u⇒𝛼

𝒟1

Γ−,Δ− u⇒𝛼−
𝑅□

b
Γ,□Δ b⇒□𝛼

ℰ0
□𝛼,Γ,Δ u⇏ 𝛼

𝑅□
b

Γ,□Δ b⇏ □𝛼

ℰ1
Γ−,Δ− u⇏ 𝛼−

Ref
Γ,□Δ b⇏ □𝛼

Let us assume that no invertible rule can be applied to 𝜎; then:

• 𝜎 = Γ u⇒ 𝛿 with Γ = Γat,Γ→,□Δ and 𝛿 ∈ 𝒱 ∪ {⊥, 𝛿0 ∨ 𝛿1, □𝛿0 }.

We only discuss the case 𝛿 = □𝛿0. Let 𝜎0 = Γat,Γ→,Δ u⇒ 𝛿0 be the premise of the application of rule
𝑅□

u of 𝒞 to 𝜎; for every 𝛼 → 𝛽 ∈ Γ→, let 𝜎𝛼 = Γ b⇒𝛼 and 𝜎𝛽 = Γ ∖ {𝛼 → 𝛽}, 𝛽 u⇒ 𝛿 be the two
premises of an application of rule 𝐿→ of 𝒞 to 𝜎 with main formula 𝛼→ 𝛽. By the (IH):
• we can build either a 𝒞-derivation 𝒟0 of 𝜎0 or an ℛ-derivation ℰ0 of 𝜎0.

• for every 𝛼→ 𝛽 ∈ Γ→ and for every 𝜔 ∈ {𝛼, 𝛽}, we can build either a 𝒞-derivation 𝒟𝜔 of 𝜎𝜔 or an
ℛ-derivation ℰ𝜔 of 𝜎𝜔 .

One of the following four cases holds:
(A) We get 𝒟0.

(B) There is 𝛼→ 𝛽 ∈ Γ→ such that we get both 𝒟𝛼 and 𝒟𝛽 .

(C) There is 𝛼→ 𝛽 ∈ Γ→ such that we get ℰ𝛽 .

(D) We get ℰ0 and, for every 𝛼→ 𝛽 ∈ Γ→, ℰ𝛼.



According to the case, we can build one of the following derivations:

(A)
𝒟0

𝜎0
𝑅□

u𝜎
(B)

𝒟𝛼
𝜎𝛼

𝒟𝛽
𝜎𝛽

𝐿→𝜎
(C)

ℰ𝛽
𝜎𝛽

𝐿→
𝜎

(D)
ℰ𝛼

. . . 𝜎𝛼 . . .

ℰ0
𝜎0

S□u𝜎

In the proof search strategy, this corresponds to a backtrack point, since we cannot predict which case
holds. □

Let us assume Γ ⊨iCK4 𝛿 and let 𝜎 = Γ u⇒ 𝛿. By Soundness of ℛ (Th. 13) 𝜎 is not provable in ℛ, hence,
by Prop. 17, 𝜎 is provable in 𝒞; this proves the Completeness of 𝒞 (Th. 7(iv)).

Properties ofℛ. It remains to prove point (i) of Th. 15. By Sf−(𝛼) we denote the set Sf(𝛼) ∖ {𝛼};
𝑤 < 𝑤′ means that 𝑤 ≤ 𝑤′ and 𝑤 ̸= 𝑤′.

Let 𝒟 be an ℛ-derivation having a Succ rule at the root. To display 𝒟, we introduce the schema (1)
below; at the same time, we define the relations ≪, ≪𝑅 and ≪*

𝑅 between u-antisequents in 𝒟.

𝒟 =
𝒟𝜒

· · · 𝜎b
𝜒 = Γat,Γ→,□Δ b⇏ 𝜒 · · ·

...

𝜎u
𝜓 = Γat,Γ→,Δ u⇏ 𝜓

Succ
𝜎u = Γat,Γ→,□Δ u⇏ 𝛿

(1)

• 𝜎b𝜒 is any of the premises of Succ having label b.

• 𝜎u𝜓 is only defined if Succ is S□u (thus 𝛿 = □𝜓); in this case we set 𝜎u ≪𝑅 𝜎u𝜓 .

• The ℛ-derivation 𝒟𝜒 of 𝜎b𝜒 has the form

...
𝜎u
1 𝜌1
𝜎b
1 · · ·

...
𝜎u
𝑚 𝜌𝑚
𝜎b
𝑚

Irr . . .
𝜏b
1

Irr
𝜏b
𝑛

𝒯 b
𝜒

𝜎b
𝜒 = Γ b⇏ 𝜒

𝑚+ 𝑛 ≥ 0

𝒯 b
𝜒 only contains

b-antisequents

Γ = Γat,Γ→,□Δ

- The ℛ-tree 𝒯 b
𝜒 has root 𝜎b𝜒 and leaves 𝜎b1 , . . . , 𝜎

b
𝑚, 𝜏b1 , . . . , 𝜏

b
𝑛 .

- For every 𝑖 ∈ {1, . . . ,𝑚}, either (A) 𝜌𝑖 = 𝑅 ⋫→ or (B) 𝜌𝑖 = 𝑅□
b or (C) 𝜌𝑖 = Ref , namely:

(A)
𝜎u
𝑖 = 𝛼,Γ u⇏ 𝛽

𝑅⋫
→

𝜎b
𝑖 = Γ b⇏ 𝛼 → 𝛽

or (B)
𝜎u
𝑖 = □𝛼,Γat,Γ→,Δ u⇏ 𝛼

𝑅□
b

𝜎b
𝑖 = Γ b⇏ □𝛼

or (C)
𝜎u
𝑖 = Γ− u⇏ 𝛼−

Ref
𝜎b
𝑖 = Γ b⇏ □𝛼

We set 𝜎u ≪ 𝜎u𝑖 in case (A), 𝜎u ≪𝑅 𝜎u𝑖 in case (B), 𝜎u ≪*
𝑅 𝜎u𝑖 in case (C).

Note that, if 𝜎u ≪*
𝑅 𝜎u𝑖 , then the world Ψ(𝜎u𝑖 ) of Mod(𝒟) is reflexive.

Example 18 The relations ≪, ≪𝑅 and ≪*
𝑅 induced by the ℛ-derivation 𝒟 of Fig. 5 are displayed in

Fig. 6. ♢

Now we introduce two technical lemmas which are needed to prove Th. 15.

Lemma 19 Let 𝒯 b be an ℛ-tree only containing b-antisequents having root Γat,Γ→,□Δ b⇏ 𝛿; let
𝒦 = ⟨𝑊,≤, 𝑅, 𝑟, 𝑉 ⟩ and 𝑤 ∈𝑊 such that:

(I1) 𝑤 ⊮ 𝛿′, for every leaf Γat,Γ→,□Δ b⇏ 𝛿′ of 𝒯 b;

(I2) 𝑤 ⊩ (Γ→ ∩ Sf−(𝛿)) ∪ □Δ;



(I3) 𝑉 (𝑤) = Γat.
Then, 𝑤 ⊮ 𝛿.

Proof. By induction on depth(𝒯 b). The case depth(𝒯 b) = 0 is trivial, since the root of 𝒯 b is also a
leaf. Let depth(𝒯 b) > 0; we only discuss the case where

𝒯 b =

𝒯 b
0

𝜎b
0 = Γ b⇏ 𝛽

𝑅 ◁→
Γ b⇏ 𝛼→ 𝛽

Γ = Γat,Γ→,□Δ
Γ ◁ 𝛼

By applying the induction hypothesis to the ℛ-tree 𝒯 b
0 , having root 𝜎b0 and the same leaves as 𝒯 b,

we get 𝑤 ⊮ 𝛽. Let Γ𝛼 = Γ ∩ Sf(𝛼); by Lemma 5(iii), Γ𝛼 ◁ 𝛼. Since Sf(𝛼) ⊆ Sf−(𝛼 → 𝛽), by
hypotheses (I2)–(I3) we get 𝑤 ⊩ Γ𝛼, which implies 𝑤 ⊩ 𝛼 (Lemma 5(iv)). This proves 𝑤 ⊮ 𝛼→ 𝛽. □

Lemma 20 Let 𝒟 be an ℛ-derivation of 𝜎u = Γ u⇏ 𝛿 having form (1) where Γ = Γat,Γ→,□Δ; let
𝒦 = ⟨𝑊,≤, 𝑅, 𝑟, 𝑉 ⟩ and 𝑤 ∈𝑊 such that:
(J1) or every 𝑤′ ∈𝑊 such that 𝑤 < 𝑤′, it holds that 𝑤′ ⊩ Γ→.

(J2) For every 𝑤′ ∈𝑊 such that 𝑤𝑅𝑤′, it holds that 𝑤′ ⊩ Δ.

(J3) For every 𝜎′ = 𝛼,Γ u⇏ 𝛽 such that 𝜎u ≪ 𝜎′, there exists 𝑤′ ∈ 𝑊 such that 𝑤 ≤ 𝑤′ and 𝑤′ ⊩ 𝛼
and 𝑤′ ⊮ 𝛽.

(J4) For every 𝜎′ = □𝛼,Γat,Γ→,Δ u⇏ 𝛼 such that 𝜎u ≪𝑅 𝜎
′, there exists 𝑤′ ∈𝑊 such that 𝑤𝑅𝑤′ and

𝑤′ ⊮ 𝛼.

(J5) For every 𝜎′ = Γ− u⇏ 𝛼− such that 𝜎u ≪*
𝑅 𝜎

′, there exists 𝑤′ ∈𝑊 such that 𝑤𝑅𝑤′, 𝑤′ is reflexive
and 𝑤′ ⊮ 𝛼−.

(J6) 𝑉 (𝑤) = Γat.
Then, 𝑤 ⊩ Γ and 𝑤 ⊮ 𝛿.

Proof. We show that:

(P1) 𝑤 ⊮ 𝜒, for every premise 𝜎b𝜒 = Γ b⇏ 𝜒 of Succ;

(P2) 𝑤 ⊩ 𝛼→ 𝛽, for every 𝛼→ 𝛽 ∈ Γ→.
We introduce the following induction hypothesis:

(IH1) to prove Point (P1) for a formula 𝜒, we inductively assume that Point (P2) holds for every formula
𝛼→ 𝛽 such that |𝛼→ 𝛽| < |𝜒|;

(IH2) to prove Point (P2) for a formula 𝛼→ 𝛽, we inductively assume that Point (P1) holds for every
formula 𝜒 such that |𝜒| < |𝛼→ 𝛽|.

We prove Point (P1). Let 𝜎b𝜒 be the premise of Succ displayed in schema (1). We show that the RbuSL□-
tree 𝒯 b

𝑋 and 𝑤 match the hypotheses (I1)–(I3) of Lemma 19, so that we can apply the lemma to infer
𝑤 ⊮ 𝜒.

We prove (I1). Let 𝜎b = Γ b⇏ 𝛿 any leaf of 𝒯 b
𝑋 ; we show that 𝑤 ⊮ 𝛿. By definition of schema (1), one

of the following cases holds.

(a) 𝜎b = Γ b⇏ 𝛼→ 𝛽 and 𝜎u = 𝛼,Γ u⇏ 𝛽 and 𝜎u ≪ 𝜎u;

(b) 𝜎b = Γat,Γ→,□Δ b⇏ □𝛼 and 𝜎u = □𝛼,Γat,Γ→,Δ u⇏ 𝛼 and 𝜎u ≪𝑅 𝜎
u;

(c) 𝜎b = Γ b⇏ □𝛼 and 𝜎u = Γ− u⇏ 𝛼− and 𝜎u ≪*
𝑅 𝜎

u
𝑖 ;

(d) 𝜎b = Γat,Γ→,□Δ b⇏ 𝛿 is irreducible.



In case (a), by hypothesis (J3) there is 𝑤′ ∈ 𝑊 such that 𝑤 ≤ 𝑤′ and 𝑤′ ⊩ 𝛼 and 𝑤′ ⊮ 𝛽, hence
𝑤 ⊮ 𝛼→ 𝛽. In case (b), by hypothesis (J4) there is 𝑤′ such that 𝑤𝑅𝑤′ and 𝑤′ ⊮ 𝛼, hence 𝑤 ⊮ □𝛼. Let
us consider case (c). By hypothesis (J5) there exists a reflexive world 𝑤′ such that 𝑤𝑅𝑤′ and 𝑤′ ⊮ 𝛼−.
By Lemma 2, 𝑤′ ⊩ 𝛼↔ 𝛼−; it follows that 𝑤′ ⊮ 𝛼, hence 𝑤 ⊮ □𝛼. In case (d), we have 𝛿 ∈ 𝒱 ∪ {⊥}
and 𝛿 ̸∈ Γat. Since 𝑉 (𝑤) = Γat (hypothesis (J6)), we get 𝑤 ⊮ 𝛿. This proves that hypothesis (I1) holds.

We prove (I2). Let 𝛾 ∈ Γ→ ∩ Sf−(𝜒); since |𝛾| < |𝜒|, by (IH1) we get 𝑤 ⊩ 𝛾. Moreover, 𝑤 ⊩ □Δ
by (J2), thus (I2) holds. Finally, (I3) coincides with (J6). We can apply Lemma 19 and conclude 𝑤 ⊮ 𝜒,
and this proves Point (P1).

We prove Point (P2). Let 𝛼→ 𝛽 ∈ Γ→, let 𝑤′ ∈𝑊 be such that 𝑤 ≤ 𝑤′ and 𝑤′ ⊩ 𝛼; we show that
𝑤′ ⊩ 𝛽. Note that 𝜎b𝛼 = Γ b⇏ 𝛼 is a premise of Succ; since |𝛼| < |𝛼→ 𝛽|, by (IH2) we get 𝑤 ⊮ 𝛼. This
implies that 𝑤 < 𝑤′. By hypothesis (J1), 𝑤′ ⊩ 𝛼→ 𝛽, hence 𝑤′ ⊩ 𝛽; this proves (P2).

We prove the assertion of the lemma. By (P2) and hypotheses (J2) and (J6), we get 𝑤 ⊩ Γ. The proof
that 𝑤 ⊮ 𝛿 depends on the specific rule Succ at hand and follows from Point (P1) and hypothesis (J6). □

We are now in position to complete the proof of Th. 15.
Proof. [Th. 15(i)] By induction on the depth of 𝜎u = Γ u⇏ 𝛿 in 𝒟. Let 𝜌 be the rule of ℛ having
conclusion 𝜎u. We proceed by a case analysis, only detailing some significant cases.

If 𝜌 = Irr, then Γ = Γat,□Δ and 𝛿 ∈ (𝒱 ∪ {⊥}) ∖ Γat and Ψ(𝜎u) = 𝜎u. Note that 𝑉 (𝜎u) = Γat,
hence 𝜎u ⊩ Γat and 𝜎u ⊮ 𝛿; it remains to show that 𝜎u ⊩ □Δ. If 𝜎u is reflexive, then 𝜎u is the premise
of Ref , hence Δ is empty. Otherwise, there is no 𝑤 in Mod(𝒟) such that 𝜎u𝑅𝑤, hence 𝜎u ⊩ □Δ.

If 𝜌 = 𝑅 ◁→, then, 𝜎u = Γ u⇏ 𝛼 → 𝛽, where Γ ◁ 𝛼, and the premise of 𝜌 is 𝜎u1 = Γ u⇏ 𝛽. By the
induction hypothesis, Ψ(𝜎u1 ) ⊩ Γ and Ψ(𝜎u1 ) ⊮ 𝛽. By Lemma 5(iv) we get Ψ(𝜎u1 ) ⊩ 𝛼, which implies
Ψ(𝜎u1 ) ⊮ 𝛼→ 𝛽. Since Ψ(𝜎u) = Ψ(𝜎u1 ), we conclude Ψ(𝜎u) ⊩ Γ and Ψ(𝜎u) ⊮ 𝛼→ 𝛽.

If 𝜌 = S□u , then 𝜎u = Γ u⇏ □𝛿, where Γ = Γat,Γ→,□Δ, and Ψ(𝜎u) = 𝜎u. Let 𝒟u be the
subderivation of 𝒟 having root 𝜎u; we apply Lemma 20 setting 𝒟 = 𝒟u, 𝒦 = Mod(𝒟) and 𝑤 = 𝜎u.
We check that hypotheses (J1)–(J6) hold.

We prove hypothesis (J1). Let 𝑤′ be a world of Mod(𝒟) such that 𝜎u < 𝑤′; we show that 𝑤′ ⊩ Γ→.
There exists an u-antisequent 𝜎′ = Γ′ u⇏ 𝛿′ such that 𝜎u ≺ 𝜎′ ⪯ 𝑤′ and either 𝜎u ≪ 𝜎′ or 𝜎u ≪𝑅 𝜎

′ or
𝜎u ≪*

𝑅 𝜎
′ (see the definition of schema 1). Since depth(𝜎′) < depth(𝜎u), by the induction hypothesis

we get Ψ(𝜎′) ⊩ Γ′. If 𝜎u ≪ 𝜎′ or 𝜎u ≪𝑅 𝜎′, we get Γ→ ⊆ Γ′, hence Ψ(𝜎′) ⊩ Γ→. Let 𝜎u ≪*
𝑅 𝜎′.

Then, (Γ→)− ⊆ Γ′, hence Ψ(𝜎′) ⊩ (Γ→)−. Since Ψ(𝜎′) is reflexive, by Lemma 2 we get Ψ(𝜎′) ⊩ Γ→.
Having proved Ψ(𝜎′) ⊩ Γ→, by the fact that Ψ(𝜎′) ≤ 𝑤′ we conclude 𝑤′ ⊩ Γ→.

We prove hypothesis (J2). Let 𝑤′ be a world of Mod(𝒟) such that 𝜎u𝑅𝑤′; we show that 𝑤′ ⊩ Δ.
There exists an u-antisequent 𝜎′ = Γ′ u⇏ 𝛿′ such that 𝜎u ≺ 𝜎′ ⪯ 𝑤′ and either 𝜎u ≪𝑅 𝜎

′ or 𝜎u ≪*
𝑅 𝜎

′.
Reasoning as in the case concerning (J1), we get Ψ(𝜎′) ⊩ Δ; since Ψ(𝜎′) ≤ 𝑤′, we conclude 𝑤′ ⊩ Δ.

We prove (J3). Let 𝜎u ≪ 𝜎′ = 𝛼,Γ u⇏ 𝛽; we show that there exists 𝑤′ such that 𝜎u ≤ 𝑤′ and 𝑤′ ⊩ 𝛼
and 𝑤′ ⊮ 𝛽. By the induction hypothesis, Ψ(𝜎′) ⊩ 𝛼 and Ψ(𝜎′) ⊮ 𝛽. Since 𝜎u ≤ Ψ(𝜎′), we can set
𝑤′ = Ψ(𝜎′).

We prove (J4). Let 𝜎u ≪𝑅 𝜎
′ = Γ u⇏ 𝛼; we show that there exists 𝑤′ such that 𝜎u𝑅𝑤′ and 𝑤′ ⊮ 𝛼.

By the induction hypothesis, Ψ(𝜎′) ⊮ 𝛼. Since 𝜎u𝑅Ψ(𝜎′), we can set 𝑤′ = Ψ(𝜎′).
We prove (J5). Let 𝜎u ≪*

𝑅 𝜎′ = Γ− u⇏ 𝛼−; we show that there exists 𝑤′ such that 𝜎u𝑅𝑤′, 𝑤′

is reflexive and 𝑤′ ⊮ 𝛼−. By the induction hypothesis, Ψ(𝜎′) ⊮ 𝛼−. Since 𝜎u𝑅Ψ(𝜎′) and Ψ(𝜎′) is
reflexive, we can set 𝑤′ = Ψ(𝜎′).

Hypothesis (J6), namely 𝑉 (𝜎u) = Γat, holds by the definition of 𝑉 . By applying Lemma 20, we
conclude that 𝜎u ⊩ Γ and 𝜎u ⊮ □𝛿. □

Conclusions. In this paper we have presented a terminating sequent calculus Gbu-iCK4 for iCK4
enjoying a weak variant of the subformula property. If a sequent 𝜎 is not derivable in Gbu-iCK4,
then 𝜎 is derivable in the dual calculus Rbu-iCK4, and from the Rbu-iCK4-derivation we can extract a
countermodel for 𝜎. We leave as future work the investigation of cut-admissibility for Gbu-iCK4; this
is a rather tricky task since labels impose strict constraints on the shape of derivations. We also aim to



extend our approach to the other provability logics with the coreflection principle related with iCK4
and iSL, such as iGL, mHC and KM (for an overview, see, e.g., [11]).
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