CEUR-WS.org/Vol-4003/paperl2.pdf

C

CEUR

Workshop
Proceedings

Explainable Al for Sperm Morphology: Integrating YOLO
with FastLAS*

1,3,

Talissa Dreossi’?*, Agostino Dovier’?, Susy Urli?, Francesca Corte Pause? and
g y

Martina Crociati?

! Dip. di Scienze Matematiche, Informatiche e Fisiche, Universita degli Studi di Udine, 33100 Udine, Italy
2Dip. di Scienze Agroalimentari, Ambientali e Animali, Universita degli Studi di Udine, 33100 Udine, Italy
3GNCS-INdAM, Gruppo Nazionale per il Calcolo Scientifico.

Abstract

Deep learning models excel in complex classification tasks but often lack interpretability, limiting their adoption
in domains where explainability is critical, such as medicine and veterinary science. This work presents a hybrid
approach that combines deep learning and symbolic reasoning to classify bull spermatozoa morphology in an
explainable manner. We utilise YOLOVS for object detection and morphological and viability classification of bull’s
spermatozoa from microscope-acquired images, achieving high accuracy. To tackle explainability, FastLAS was
employed to learn human-readable classification rules. These rules, coupled with the xASP2 framework, enable
traceable justifications for each classification, addressing the black-box nature of deep learning. Experimental
evaluation demonstrates that, while FastLAS does not match YOLO’s performance, it outperforms traditional
machine learning models and offers significant benefits in explainability. This approach provides a practical solution
for integrating explainable Al in reproductive biology, with implications for medical Al systems where transparency
is essential.
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1. Introduction

Artificial Intelligence (Al) systems have been widely adopted, including also fields where it is essential
to know the reasoning behind their outcomes. An evident example is the medical domain, where
explainability is crucial for ensuring trust and informed decision-making. Indeed, while deep learning
models achieve remarkable accuracy in predictive tasks, their black-box nature raises concerns in
domains where decision transparency is mandatory. One possible solution is to use built-in interpretable
approaches, such as Logic Programming (LP). However, these systems often struggle to achieve the
predictive performance required for complex classification tasks. To address this, we propose a hybrid
approach combining both techniques.

The case discussed in this study is bull’s sperm morphology analysis, a fundamental step to discriminate
between satisfactory and unsatisfactory bulls intended as potential breeders. Traditional evaluation
methods rely on visual assessment of semen smears performed by trained operators, requiring significant
time and expertise. Moreover, inter-operator variability can lead to inconsistencies in classification,
affecting the reliability of the analysis. The automatization of this process with Al could improve
efficiency and standardization, but the opacity of Neural Networks (NN) remains a limiting factor. To
address this, we combined deep learning with symbolic reasoning. Specifically, we use the You Only Look
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Once (YOLO) object detection algorithm to identify and classify spermatozoa from microscope-acquired
images. To favour interpretability, we then employ the Inductive Logic Programming (ILP) system
FastLLAS [1] to learn classification rules from YOLO’s predictions, thus generating an ASP program that
predicts or confirm predictions, and finally xASP for explaining the decisions made with an easy-to-read
output. We have combined all these modules in an app, called XAI-BSC (eXplainable Al for Bull Sperm
Classification), which, given an image, detect the spermatozoa automatically using YOLO and then
gives an explanation in natural language using ASP rules. Even if the system we are presenting is not
yet completely automatic, requiring sometimes human intervention to extract features for the part of
explainability, practical experiments with domain experts prove that it is already a useful tool that allows
saving time to operators.

2. Related Works.

Bringing advanced computational tools into medical and veterinary fields has greatly improved how
accurately we can make diagnoses and how efficiently things get done. Automated software systems,
such as Computer-Aided Sperm Analysis (CASA), have been successfully implemented in order to assess
sperm viability and motility in fresh semen samples [2]. Furthermore, with Al it was possible to develop
predictive statistical models that can assist in decision-making processes across a wide range of fields,
including medical and veterinary applications [3, 4]. For instance, Al algorithms are able to accurately
predict the time of calving in dairy cows, aiding farmers in managing livestock more efficiently [5, 6].
In a similar way, deep learning models have also been applied in the detection of lung abnormalities in
cats [7].

Recent progress in object detection techniques, especially with algorithms like YOLO [8, 9], have
shown significant promise in medical imaging. Indeed, studies like the ones by Chen et al. [10] and
Prinzi et al. [11] have highlighted the ability of YOLO in detecting, respectively, cell and cancer.

Inductive Logic Programming has also made notable progress. In particular we will consider the
development of FastLLAS [1]. FastLAS offers significant potential for creating interpretable and accurate
rule-based models. It has proven to perform exceptionally well when more specific rules are preferred
over general ones. For example Drozdov et al. [12] used FastLAS to build a security policy system, where
restrictive rules were prioritized. Similarly, in some of our previous works we employed FastLAS for
weather forecasting, to explain complex models in an interpretable manner [13], and in legal reasoning,
to extract and possibly explain judges’ reasoning [14]. Additionally, FastLLAS has also demonstrated its
effectiveness in combination with NN [15]. By integrating NN with symbolic reasoning, this approach
aims to combine the learning capabilities of NN with the interpretability of symbolic methods. A smilar
work that integrate those techniques was made by Collevati et. al [16].

Regarding logic programming and explainability, xASP2 has emerged as a significant advancement
[17]. xASP2 focuses on improving the understandability of Answer Set Programming (ASP) by providing
a framework to generate explanations for the solutions produced by ASP. Specifically, xASP2 has the
ability to link the presence or absence of an atom in an answer set to the logic rules involved in its
inference. Other systems, such as xclingo [18], DiscASP [19], xASP [20], exp(ASPc) [21] could also be
used to tackle this task. XASP2 currently handles better certain important aspects, such as explaining
false atoms or supporting specific advanced language features.

The paper is organized as follows: in Sect. 3 we give some backgrounds on the problem, on logic
programming and machine learning languages and tools used in this work. A brief overview of the
related work on deep learning approaches to the problem faced in this paper is reported in Sect. 4 while
the Inductive Logic Programming approach is subject of Sect. 5. Sect. 6 describes experiments, while
Conclusions and some possible lines for future work are drawn in Sect. 7.



3. Background

Understanding the morphological features of bull spermatozoa is essential for assessing fertility. The
analysis is traditionally performed through visual evaluation of spermatozoa under bright-field microscopy
following the Society For Theriogenology (SFT) as part of the Bull Breeding Soundness Evaluation
(BBSE). In standard practice, sperm morphology evaluation is performed independently by at least
two technicians. The agreement between their assessments typically ranges from 43% (Fair) to 58%
(Moderate), ensuring that the analysis remains reliable.

In this study, we employed two techniques to achieve this evaluation: YOLO, a deep learning-based
object detection model, and FastLAS, an ILP framework designed for learning interpretable rules from
data, since it can handle numerical variables. While it would have been possible to define classification
rules with the help of experts, we opted to use an ILP framework for two main reasons. First, while expert
guidelines exist, many morphological features (e.g., the degree of redness required to classify a sperm
cell as dead) cannot be captured with fixed thresholds. As a result, these thresholds cannot be arbitrarily
encoded and must instead be learned from data. Second, inter-operator variability in manual classification
introduces inconsistencies, which can be mitigated through a data-driven approach. By using FastLLAS,
we aim to infer classification rules directly from data, thereby enhancing consistency and objectivity.

3.1. YOLO

YOLOVS is a one-stage object detection model that can localize and classify objects in a single pass,
which is more efficient than two-stage models like Faster R-CNN. YOLOv8 processes images by passing
them through a Convolutional Neural Network (CNN), which extracts spatial and semantic features at
multiple levels. YOLO does not scan the image with sliding windows, neither generates region proposals,
but indeed it divides the image into an § x S grid, where S is a tunable hyperparameter. Each grid cell is
responsible for predicting bounding boxes and class probabilities within its region of the image. In order
to determine the bounding boxes, YOLOvS8 employs an anchor-free detection. This helps in speeding
up the computation since an anchor-based approach uses predefined boxes which can slow learning,
especially when the model is applied to custom datasets.

The model architecture is composed by three main components: backbone, neck, and head. The
backbone is a pre-trained CNN and its purpose is to extract hierarchical feature maps. Then, there is the
neck which combines these features using a Feature Pyramid Network (FPN). FPN allows to improve the
model’s ability to detect objects of varying sizes. Finally, the head computes an output which consist of:
(i) a bounding box coordinates (x,y,w,h), where (x,y) denote the centre and (w,h) the dimensions, (ii) a
confidence score indicating object presence and bounding box accuracy, and (iii) class probabilities for
object classification.

3.2. Answer Set Programming

ASP is a declarative programming paradigm, which is usually employed to model and solve problems
that involve non-monotonic reasoning. An ASP program consists of a set of rules that encode properties
and constraints of a given problem. Each rule has the general form: H: - Aj,...,A,,notBy,...,not B,
where H, A;, and B; are atoms, each expressed as p(t1,...,tx), where p is a predicate symbol, and #;
are terms (constants or variables). H denotes the head of the rule, representing the conclusion inferred
when the body (the other part of the rule) is satisfied. The symbol : - denotes implication from body to
head. A rule is ground if it contains no variables. ASP supports two forms of literals: atoms A and their
default negation not A, called naf-literal (negation as failure). Default negation enables the expression of
incomplete information and supports non-monotonic reasoning, where conclusions may be withdrawn in
light of new evidence.

ASP semantics is the one of stable models (also called answer sets): a set of ground atoms S is a stable
model of a program P if it is the unique minimal model of the reduct PS5, derived by eliminating all rules
whose bodies are not satisfied by S, and by removing all default negation from the bodies of the remaining



rules [22]. A key property of stable models is that for any atom A € S, there exists at least one rule r in
the ground version of P such that the body of r is satisfied by S and A is the head of r. This provides a
basis for explanation: not only is A known to be true in S, but it is also possible to identify the supporting
rule(s) and the literals that justify its derivation.

3.3. Inductive Logic Programming

Inductive Logic Programming is a subfield of machine learning that focuses on learning logical rules
from examples and background knowledge. The learning process involves searching rules within an
hypothesis space, to identify those that best explain the given examples while being also consistent with
the background knowledge.

Among the various frameworks available in ILP, we adopted Learning from Answer Sets (LAS) as
it exploits ASP and is therefore particularly well-suited for learning non-monotonic logical programs.
A learning problem in LAS is formalised as a task, represented by the tuple T = (B, Sy, E), where: B
denotes the background knowledge, which is a set of ASP rules, Sy, is the hypothesis space, i.e. the set of
rules to be possibly learned, and E represents the set of examples that the knowledge base extended with
that learned rules must explain.

Instead of a complete listing of the hypothesis space, usually it is implicitly defined by a mode bias,
specified as a pair (Mj,, M,,), where M, and M, are sets of mode declarations for the heads and bodies of
rules, respectively. Each mode declaration describes which predicates and argument types are allowed in
the corresponding part of a rule. Arguments in a mode declaration can be either var (t) or const(t),
indicating a variable or constant of type t. A literal is said to be compatible with a given mode declaration
if it can be formed by substituting each var (t) with a variable of type ¢, and each const (t) with a
constant of that type.

Examples are represented as partial interpretations. Formally, a partial interpretation e; is a pair of
sets of ground atoms (e, ¢®“), where ¢" denotes the inclusions, which are atoms that must be true,
and e“*“ denotes the exclusions, the atoms that must be false when inclusions are true. A candidate
interpretation / is said to extend a partial interpretation e,; if it satisfies the conditions e C I and
e““NI = 0. Additionally, examples in LAS can be context-dependent, meaning their interpretation
must be evaluated relative to specific contextual information. A context-dependent partial interpretation
(CDPI) is defined as a tuple ecqp; = (epi,ecix), Where ep; is a partial interpretation and e, is an ASP
program representing the context in which the example should be interpreted. A program P is said to
accept a CDPI e 4, if there exists at least one stable model A of PU e, such that A extends ep;. This
allows LAS to handle diverse examples under varying conditions, making it well-suited for tasks requiring
context-sensitive reasoning.

A strong point of LAS, implemented by the system FastLLAS [1], is its ability to handle noisy data,
a crucial feature when working with real-world datasets, which often contain inconsistencies or errors.
LAS models noise by associating a penalty to each example, allowing some of them to be violated during
learning, if doing so leads to a better overall hypothesis. If they are not covered, then the hypothesis will
have a higher cost, as we will better describe later. To represent noisy examples, LAS uses Weighted
Context-Dependent Partial Interpretations (WCDPIs). A WCDPI is defined as a tuple e = (€4, € pen; €cdpi)
where ¢;4 is a unique identifier for the example, e, is a positive integer indicating the penalty incurred
if the example is not covered by the hypothesis, and e 4, is a context-dependent partial interpretation
as described earlier. A LAS task that incorporates noisy examples is called a Noisy LAS task, formally
defined as the tuple 77%°"*¢ = (B, Sy, E), where B is an ASP program providing background knowledge,
S is the hypothesis space, and E is a finite set of WCDPIs. A hypothesis H C Sy, is an inductive solution
of "¢ jf and only if BU H accepts every example e € E.

We said that if a hypothesis fails to accept a particular example, it pays the penalty of that example.
In fact, this penalty contributes to the overall cost of the hypothesis, representing the trade-off between
hypothesis’s explanatory power and its failure to cover certain examples. The cost function of a hypothesis
is indeed defined as the sum over the penalties of all of the examples that are not accepted by the hypothesis,
augmented with the length of the hypothesis. For this reason, the objective of noisy LAS tasks is to



identify an optimal solution, i.e. an hypothesis that minimises the cost function within a given hypothesis
space, based on a set of WCDPI examples.

3.4. ASP Explainability

xASP2 [17] is a tool developed for explaining computed answer sets. Precisely, given a program I1, an
answer set S, and an atom @, xASP2 aims to answer queries of the form “Why does a € S (resp., ¢ ¢ S)”
by identifying the subset of I1 that supports this inclusion (resp., exclusion). It generates explanations in
the form of justification graphs, specifically Directed Acyclic Graphs (DAGs), where nodes represent
atoms and edges represent rules. Edges from node A to node B indicate that the atom in B appears in the
body of the rule on the edge, while the atom in A appears in the head of the rule. For each atom in a stable
model, xASP2 identifies a supporting rule whose body is true and only contains atoms that have already
been explained, ensuring the acyclicity of the graph. Two main challenges in providing such explanations
are: (i) how to compute a small set of assumptions capable of explaining the assignment of @ € A, and
(i1) how to handle sophisticated constructs like choice rules and aggregates, which may be involved in
explaining the falsity of certain atoms in an easily understandable way. While logic programs under the
answer set semantics can also produce explanations based on the assumption of false atoms, this approach
would often result in vague explanations for all false atoms, potentially reducing the explanation to mere
assumptions.

To begin, xASP2 requires a preprocessing step to obtain a justification for a ground program P. The
computation starts with a three-valued interpretation, denoted as (I,17), where both sets are initially
empty. A three-valued interpretation consists of a pair (L,U), where L and U are sets of ground atoms,
with L C U and neither set contains the atom _L. The aim is to iteratively expand these sets to determine
which atoms are true or false based on the rules of the program.

The I set is expanded through iterative inference steps. In the three-valued setting, a rule’s head can
only be inferred if every atom b in its body is determined, that is, b € I" or b € I~. The I set, on the
other hand, is expanded by iteratively adding atoms that belong to an unfounded set X C Bp, where Bp
is the set of ground atoms of rules’ body in P. An unfounded set X is defined with respect to a ground
logic program P if, for each atom a € X, and for each rule r € P whose head is a, one of the following
conditions must hold: either one of the literals in the body of the rule is known to be false, meaning that
if b appears positively in the body, it must be in /~, and if b appears negatively, it must be in I; or for
some atom b appearing positively in r, it must hold that » € X. The purpose of identifying and adding
atoms to the /= set is to eliminate “self-referential” sets of atoms. These are sets where each atom in the
set is supported by another atom within the set, but none can be inferred to be true by other means. Such
sets can lead to cyclic justifications that do not provide meaningful explanations. Removing them, xASP2
ensures that only non-cyclic, valid justifications are kept.

After preprocessing, xASP2 generates an explanation graph that is similar to the one used in offline
Jjustification [23]. The graph visualizes the relationships between the atoms in the program based on the
inference process. Throughout this process, xASP2 tracks the rules used at each step of the derivation
and labels the edges of the explanation graph accordingly.

Finally, xASP2 uses a metaprogramming approach with the Clingo Python API and provides a flexible
Python interface. Users can request explanations for individual literals or opt to generate multiple graphs
covering all atoms in a given answer set. It also offers an interactive, web-based environment navigator
for visualising and exploring these explanation graphs.

4. Deep Learning Module

We provide here a very brief overview of the deep learning module [24, 25], as the primary focus of this
work is on the ILP module and the explainability framework.



4.1. Dataset and Methods

The initial dataset contained 4,890 microscopy fields with 1 to 20 eosin-nigrosine-stained spermatozoa,
labelled by experts. Data augmentation (brightness, contrast, blur, and noise) expanded the dataset to
8,243 images, annotated with bounding boxes using labellmg [26]. Spermatozoa were classified according
to SFT guidelines into six categories based on morphology and viability: Normal Alive (NA) and Normal
Dead (ND) spermatozoa, Major Abnormalities Alive (MAA) and Major Abnormalities Dead (MAD)
spermatozoa, minor Abnormalities Alive (mAA), and minor Abnormalities Dead (mAD) spermatozoa.

Training was initially set to 100 epochs with early stopping to prevent overfitting. If performance
improved beyond 100 epochs, training was extended by 50 epochs. The optimal model, often achieved
around 100 epochs, was saved based on validation loss, even if reached earlier. As an initial work, the
YOLO network was not customized in any way.

4.2. Results

The model [25] achieved 82% mean accuracy, though performance varied due to class imbalance, espe-
cially among under-represented anomaly classes. Prediction quality was assessed using the Intersection

over Union (IoU) metric:
GT N Pr

IoU = GTUPr (1)
where GT and Pr are the areas of ground-truth and predicted boxes, respectively, and so GT N Pr
represents the area of overlap, while GT U Pr represents the area of union. We also report mean Average
Precision (mAP): mAP50 (IoU > 0.50) reached 79%, and mAP50-95 (IoU 0.50-0.95) was 44%, reflecting
detection and localization performance.

All considered, the obtained accuracy value of 82% can be considered satisfactory because in a real-
world scenario, an 80-85% coefficient of agreement between two operators is considered “moderate to
very strong" [27].

5. ILP Module

We explore the FastLAS encoding of the dataset and its results. The background knowledge just includes
predicates for the domain of the features considered.

5.1. Examples

To encode the examples used in this study, a custom-developed application, that we will call XAI-BSC,
was employed. XAI-BSC was designed to facilitate the process of extracting key morphological features
from the spermatozoa images, which were then used to generate the necessary data for learning with
FastLAS. XAI-BSC has also the explainability features that we will describe later. Since the ultimate
goal of this study is to use LP to make DL models explainable, no machine learning or other black-box
techniques were used in the development of the ILP module. The retrieval of morphological information
was achieved through traditional computer vision techniques.

As a first step, XAI-BSC takes the manually annotated bounding boxes, i.e. the YOLO annotation file,
and the corresponding image as input. The app then displays one spermatozoon at a time and asks the user
to answer a series of questions regarding its morphological characteristics. These questions help assess
key features that we are not able yet to automatically detect, such as the way the tail is curled, although
they can sometimes be inferred indirectly from other features (e.g., the aspect ratio of the bounding
box). Next, the app attempts to outline the spermatozoon’s head contour: this contour provides valuable
geometric information, often essential for classifying different sperm classes; for instance, if the shape
resembles a pear, it is indicative of major anomalies.

To detect and accurately outline the heads of spermatozoa in microscopic images, we follow a two-step
process: first, we detect candidate head regions using the Hough Circle Transform (HCT); then, we extract



precise contours using active contour models. The first step identifies potential sperm heads based on
their bright, approximately circular appearance. The HCT operates by first detecting edges in the image,
typically using the Canny edge detector. For each edge point, the algorithm votes in an accumulator
space for all possible circles that could pass through it. These votes represent degrees of radial symmetry,
with higher symmetry corresponding to a stronger likelihood of a circle at that location. Peaks in this
accumulator space indicate the most probable circle centres and radii, which are then selected as candidate
head regions.

Once potential head regions are identified, we restrict this set by filtering the size and then we refine the
detection by accurately tracing the contour of each head. This is achieved using active contour models,
commonly known as snakes. The method evolves an initial contour towards the true boundary based on
image gradients and smoothness constraints. For each detected circle, a snake is initialized as a larger
circle (3 x radius) around the detected centre. This provides a starting point for the snake to converge
onto the actual boundary. The snake is then evolved over a Gaussian-smoothed image, which reduces
noise while preserving important features. The result is a smooth, continuous contour that accurately
follows the boundary of the sperm head. However, due to the nature of the images, which are almost
grayscale with low contrast, detecting the contour can sometimes be challenging. Additionally, since
multiple sperm heads may be present in a single image, it is not easy to automatically establish which of
the detected contours corresponds to the target of interest.

) )

o1 35 O
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1 1

Figure 1: Examples of contour detection of the head. Correct: green/left, Wrong: (right/any of them)

When the contour is not identifiable (see Fig. 1 right), the app defaults to using only the data derived
from the bounding box: those measurement comprehends redness, ratio and area. The image’s redness
level serves as a key indicator for viability assessment: if the spermatozoon is red then it is classified as
dead, otherwise is alive. However, detecting the sperm head alone is not always possible, we measure
redness across the entire image instead. The app also computes the ratio of the bounding box, which
provides insight into whether the spermatozoon has a tail, is curled, or exhibits other morphological
irregularities. Additionally, the area of the bounding box is calculated, offering further information about
the size of the sperm.

On the other hand, when the contour can be detected (see Fig. 1 left), the app extracts additional
features. It calculates the length of the contour, the area enclosed by the contour (which provides a precise
measurement of the sperm head’s size), and the ratio of the minimum and maximum axes of the contour.
These features contribute to a more detailed understanding of the sperm’s shape. The roundness of the
sperm head is also determined using the formula:

4xX XA
Roundness = TxRAxA (2)

P2
where A is the area and p is the perimeter. This measure quantifies the circularity of the head, helping to
distinguish normal sperm from those exhibiting abnormalities, as mentioned earlier.
The detection of the tail was even more challenging as its shape can vary significantly across different
anomalies. However, by calculating the aspect ratio of the bounding box around the spermatozoon, we



gain some insight into tail morphology: the closer this ratio is to one, the more likely it is that the tail is
curled, coiled or missing.

Two separate training sessions were conducted in this study. The first one focused on training to
distinguish between alive and dead spermatozoa, while the second training aimed to differentiate between
anomalies: no anomalies ("n"), major anomalies ("M"), and minor anomalies ("m"). This approach
facilitated training by allowing the ILP module to focus on learning one feature at a time, unlike the DL
module, which must infer all characteristics simultaneously. Below we report an encoding example. Their
general form is #pos (idew, {inc}, {exc}, {cntx}), where #pos indicate that it is a positive
example (while for negatives it is #neg), id is an unique identifier for the example, w is the weight of the
example (i.e. the measure of representativeness of an example), and then we have the three sets of ground
atoms of WCDPI examples, also explained in Section 3. inc represents the inclusions of the example, i.e.
atoms that must be true, while exc, the exclusions, are atoms that cannot be true when inclusions are.
Finally, cntx is the context in which the example must hold.

#pos(id58_12@100,
{label("M")}, % inclusions
{label("n"), label("m"), curledTail, % exclusions
missingTail, singleCoilTail, overtunedHead},
{red(648). area(25200). ratio(175). % context
headRoundness(74). headArea(2594). lenghtHead(210).
ratioHead(2). bubbleHead.}).

As the reader can observe, the inclusion set contains the class label, which, in this case, regards
anomalies. However, the same procedure applies to viability classification. In the exclusions, we
include all other classes (meaning that, it can belong only to one class of anomaly at a time) and any
morphologies that were not selected by the user within the app. The context of the data contains all the
other characteristics retrieved either automatically from the image or manually through XAI-BSC.

In this study, all examples were assigned equal weight (100), as the number of examples for each
class was balanced, and we did not have any specific insight into which examples might be more or less
representative, or which could be considered noisy, for each class. If such information had been available,
we could have adjusted the weights accordingly, assigning higher weights to the more representative
examples and lower weights to the noisy ones.

To improve model’s generalizability and address scalability limitations of ILP, cross-validation with 10
folds was employed during training. This approach allowed us to include a wider variety of examples,
reducing the overfitting risk and ensuring robustness. Each fold of the training dataset contained 12
spermatozoa per class, with 7 per class in the test sets.

5.2. Hypothesis Space and Bias

FastLLAS employs a penalty function to guide the rule learning by assigning a cost to the rules components,
ensuring that the most relevant features are considered.

For the training that distinguishes between alive and dead spermatozoa, a strong bias is introduced to
encourage rules that generalize across multiple examples. Indeed, we assigned a penalty of 100 to the
head of the rule and 1 to each body predicate: covering a single example thus entails a minimum cost
of 101. This configuration forces rules to cover multiple examples simultaneously, as failing to cover a
single example already carries a significant cost of 100 (see Section 5.1). However, other similar biases
could also be effective.

For the training that distinguishes between normal spermatozoa and those with major or minor
anomalies, a different penalty scheme is used. Compared to the viability classification task, the penalty
assigned to the head of a rule is lower (10 instead of 100), reflecting the fact that anomalies can be
determined by a wider range of morphological features, making rules more complex. Regarding the
predicates in the body we can categorize them in two groups. The first one includes predicates about
features that are specific of a class of anomalies (e.g., missing or curled tail), therefore it has the lowest
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Figure 2: Accuracy for each fold for each model. On the left, the graph relative to prediction of anomalies and,
on the right, the one relative to viability

cost (3) since these are strong indicators of anomalies. For example, a spermatozoon missing its tail is
highly likely to have minor anomalies, making these features sufficient for classification. The second
one has a slightly higher cost and include all the other features. Specifically, redness has a penalty of 5
since it is more relevant for viability classification than for detecting anomalies. Similarly, head length is
penalized more because it is not as informative as other morphological features. Meanwhile, head area,
ratio, and roundness have intermediate penalties (4), as they aid classification but are less decisive than
the first group.

Overall, while the penalty differences between features are relatively small, they help balance rule
complexity and generalizability, ensuring that the learned rules prioritize the most discriminative charac-
teristics while avoiding overfitting.

5.3. Results

Given the inherently different nature of deep learning and logic-based approaches, it is unsurprising
that FastLAS exhibits significantly lower performance in prediction compared to YOLO. However, this
was expected, as the primary goal of using FastLLAS is not to outperform deep learning but to provide
explainability in decision-making. The rules by FastLLAS are similar in structure to the following:

pred_label("m") :- distalDroplet, ratio(V_O_rr), V_O_rr >= 77.
pred_label("alive") :- red(V_0O_r), V_O0_r <= 386.

which comply with expert knowledge. Anyway, to evaluate the effectiveness of the ILP approach, we
compared FastLAS against traditional machine learning models such as Support Vector Machines (SVM),
Decision Trees, and Random Forests, which have been proven to be actually able to learn from data, even
if not as much as a DL system. As shown in the plots (Fig. 2), FastLAS consistently outperforms these
models across various metrics, demonstrating its ability to extract meaningful rules from the data.

The Table 1 summarises the performance of the models in classifying spermatozoa into normal, major
or minor anomaly categories. The metrics are divided into two macro-averaging (M) and micro-averaging
(u) as explained below.
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where TP, FP and FN are respectively true positive, false positive and false negative. FastLAS achieves

70% accuracy and a weighted F1-score of 0.73, indicating a reasonable precision-recall balance. The
higher recall (0.79) in micro-averaged results suggests effective anomaly detection, though there may be
a trade-off in precision.

For the classification of spermatozoa as either alive or dead, we refer to Table 2. With 62% an accuracy
and a weighted F1-score of 0.63, FastLAS shows reasonable performance in distinguishing alive from
dead spermatozoa. The recall of 0.65 indicates that the system correctly identifies a fair proportion of the
positive cases, although there is room for improvement.

Table 1
Performance comparison of different models for anomalies prediction.

Precisiony; Recallyy  Precision, Recall, Accuracy Weighted F1

FastLAS 0.70 0.69 0.78 0.79 0.70 0.73
SVM 0.33 0.48 0.44 0.48 0.48 0.40
Random Forest 0.46 0.46 0.45 0.46 0.46 0.46
Decision Tree 0.47 0.45 0.46 0.45 0.58 0.45

Table 2
Performance comparison of different models for viability prediction.

Precision Recall ~Accuracy Weighted F1

FastLAS 0.63 0.65 0.62 0.63
SVM 0.73 0.54 0.58 0.55
Random Forest 0.64 0.54 0.48 0.40
Decision Tree 0.52 0.55 0.56 0.56

Overall, while the performance of FastLAS is lower than that of YOLO, it remains competitive with
traditional machine learning models and offers the added advantage of explainability, which is a key
objective of this study. Furthermore we want to underline that we will be using YOLO for the prediction
(with an accuracy above 80%), and rules from FastLAS for explainability. We are not comparing YOLO
results here since it was trained on a wider set of images, with a different data preprocessing.

6. Explainability

As said the aim of this work is developing a system able to explain the prediction of the DL module. The
ASP rules we obtained from FastLLAS are indeed extremely interpretable, but we still need to reconstruct
the reasoning process, i.e. the rules that are triggered to get the correct prediction. For this purpose, we
used xASP2.

6.1. System Description

We developed XAI-BSC!, a python-based application (python version 3.10) that integrates YOLO with
ASP. The workflow begins with the user uploading an image, which is processed by YOLO to detect
and classify the spermatozoa. The model’s predictions are saved, and the image, overlaid with bounding
boxes and predicted labels, is presented to the user, who can select a specific spermatozoon for which
they wish to obtain an explanation.

Once selected, the chosen spermatozoon is displayed in isolation, using the sub-image defined by
the predicted bounding box. As in the dataset preparation for FastLLAS, we collect some information
about the sperm’s shape directly from the user, while other morphological features are automatically
extracted by XAI-BSC. These features are then encoded into logical facts in ASP format, following the
same schema used during rule learning with FastL.AS.

Icode available at https://clp.dimi.uniud.it/sw/
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Figure 3: xASP2 DAG for the anomaly prediction in Fig. 4.

The feature encoding and the rules learned by FastLAS are provided as input to clingo, which computes
the answer set corresponding to the classification process. Using xASP2, we generate a graph representing
this answer set, enabling us to visualise the reasoning steps that led to the final prediction. From this
graph, we trace the path of inference that supports the classification. It is important to note that the ASP
rules may occasionally result in no prediction or incorrect predictions. Therefore, not all classifications
are explainable within the symbolic framework. To ensure that explanations correspond to the YOLO
prediction, we include an auxiliary predicate (found_correct_explanation) that holds true only
when the ASP-derived label matches YOLO’s output. The other ASP prediction are ignored. Once the
correct reasoning path is identified, it is translated into natural language, providing the user with a clear
and understandable explanation for the classification decision. Specifically, from the DAG generated
by xASP2, the algorithm searches for all links starting from the correct explanation node. From the
prediction node, it follows links to other feature or fact nodes, extracts the variable values from these
nodes for later substitution into explanations.

XAI-BSC and tests (see Section 5.3) were conducted on a system running Ubuntu 24.04 LTS with an
Intel 12th Gen Core i7-12700 processor and a maximum clock speed of 4.9 GHz with 16 GB RAM. It
featured an NVIDIA GeForce RTX 3060 GPU and an SK Hynix NVMe SSD.

6.2. Results

Figs. 3, 4 and 5 illustrate the system’s explanation capabilities for class predictions. The first two
figures presents the explanation for a sample predicted as having a major anomaly. In this case, the
system highlights the presence of a proximal droplet as the key feature justifying the classification. This
information is shown both in natural language alongside the image of the spermatozoon and in the form
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Figure 5: xASP2 DAG for a prediction of no anomalies (normal)

of an explanation graph. On the other hand, Fig. 5 shows the explanation for a sample classified as having
no anomalies. Unlike the previous case, the classification here is supported by the absence (red nodes) of
specific features such as bent tail, bent neck, or proximal droplets. Additionally, the system takes into
account the ratio value of 0.37 (scaled for ASP encoding), which further supports the prediction of a
normal spermatozoon.

7. Conclusions and Future Works

By integrating YOLO, for object detection, with FastLLAS, for rule learning, we have presented XAI-
BSC, which has been proved to be a tool able to achieve both accurate classification and interpretable
explanations.

We encountered some limitations using FastLLAS, such as for scalability when the number of features,
examples or hypothesis space grow significantly. Our strategy to mitigate this was to restrict the learning
to separate sub-tasks (viability and anomaly classification). Instead, to improve generalizability, we
adopted a 10-fold cross-validation strategy which ensured that rules are exposed to a wider variety of
examples and so are not tailored to a single dataset split. This also permitted to guarantee robustness
since rules are learnt from a broad set of different examples.

Looking ahead, we are planning several improvements and extensions. First, enhancing the accuracy
of sperm head detection (even if we can already detect heads with a decent accuracy). Additionally, we
aim to develop reliable methods for tail detection and automate the identification of other morphological
features such as proximal droplets. These improvements will help reduce manual input and increase the
system’s autonomy. Finally, we plan to conduct user studies to evaluate the system’s explainability in
practice, assessing how effectively it supports decision-making and user trust in real-world settings, and
we will also compare our work with other explainable Al methods such as LIME or SHAP.
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