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Abstract

It has long been established that the set Th of theorems in an axiomatic formal theory is recursively enumerable
(re.). Building upon the Davis-Putnam-Robinson-Matiyasevich theorem, which states that every r.e. set is
Diophantine, this paper explores the complexity of representing Th through a Diophantine equation D = 0.
We contend that a good trade-off between two primary measures of the complexity of the representation,
which are the number of unknowns and the degree of the polynomial D, should aim at the transparency of
the representation. Our work builds on a previous construction, notably that of M. Carl and B.Z. Moroz, who
have provided a Diophantine representation of the sentences provable in the Godel-Bernays class theory (NBG)
within first-order predicate calculus. In contrast, our Diophantine representation of NBG relies on a modernized
version of Schroder’s algebra of relations, specifically the £ equational calculus proposed by A. Tarski and S.
Givant. Additionally, we replace NBG’s traditional axioms with an alternative axiomatization by H. Friedmann.
These changes reduce the complexity of the Diophantine representation of NBG’s provability, while maintaining
equivalence to more classical formalizations. While we provide only preliminary insights into this novel equational
axiomatization, we report on initial experiments with these axioms using the Vampire theorem prover.
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1. Introduction

For a long time (see, e.g., [1]), it has been known that the set Th of all theorems of an axiomatic formal
theory is recursively enumerable (r.e. for short). In light of the Davis-Putnam-Robinson-Matiyasevich
theorem [2, 3], which claims that every r.e. set is Diophantine, it follows that under any effective
encoding N of sentences by natural numbers, a polynomial D(a, z1, ...,z )s) with integer coefficients
can be determined such that the following biimplication holds for each sentence a:

a€Th & (Jay,...,zn € N)(D(Ma); z1,...,2n) = 0). (1)

How complex is such a set of theorems? Two complexity measures associated with a Diophantine
representation (), as well as trade-offs between the two, are discussed in [4, p. 153 ff.]:

Rank of Th: The minimum possible value of M, the number of unknowns x; in a representation (7).
Order of Th: The minimum possible degree of D with respect to the unknowns z; in ().

Taken alone, the order can always be kept below 5—at the price, however, of a significant increase in
the rank (see [4, pp. 3—4]). Taken alone, the rank can always be kept below 11—though at the cost of an
order exceeding 10** (see [5, p. 552]); ways of balancing the two measures emerge, in fact, from the
study [5] on universal Diophantine equations.

A criterion for best associating a polynomial D with a theory Th is that the construction of D should
be transparent, in the sense that it closely mirrors the process of deriving a theorem « from the axioms
of Th in a specific formal system. This criterion may appear somewhat elusive, but it is well illustrated
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by the manner in which Merlin Carl and Boris Z. Moroz [6] treated the Godel-Bernays class theory (here
referred to as NBG, after the initials of von Neumann, Bernays, and Godel) as formalized in first-order
predicate calculus (see [7, Chapter 4]).

This paper presents an emulation, by the authors, of the work of Carl and Moroz. However, instead
of using first-order logic, the formalism underlying the axiomatization of NBG adopts a modernized
version of Ernst Schroder’s algebra of (dyadic) relations, specifically the equational logic £*, extensively
discussed by Alfred Tarski and Steven Givant in [8]. Furthermore, the axioms of the theory have been
replaced by an alternative axiomatization, proposed by Harvey Friedmann in [9]. These changes have
streamlined the complexity of the Diophantine representation of NBG’s provability, even though the
new formalization remains equivalent to more classical ones.

While only a glimpse of the novel axiomatization of NBG based on £* is offered, the article reports
on the initial stages of experimentation with these axioms, assisted by the theorem prover Vampire (cf.
https://vprover.github.io/).

2. Polynomial of a Theory Specified in a Formal System

We begin by stating our goal in general terms. Our goal is to encode a formalized theory using
Diophantine equations. The theory is based on a symbolic language and consists of the following
components:

1. A finite number of logical axiom schemata.
2. A finite number of derivation rules, each applying to at most two premises.
3. A finite set of proper axiom schemata.

Together with the language, the first two components define the underlying logical calculus, while the
third specifies the theory itself.

Let § be the set of all statements of the formal language, and let Th C § be the set of provable
theorems of the theory. We assume the availability of an effective bijection N : § — N that assigns a
unique natural number to each statement.

By the Davis-Putnam-Robinson-Matiyasevich theorem, every recursively enumerable set is Diophan-
tine. Since Th is recursively enumerable, there exists a Diophantine polynomial D := D(a; x1,...,zp)
such that the equation D = 0 has solutions in the set N of natural numbers if and only if the parameter
a belongs to N'[Th]. Our objective is to explicitly construct such a polynomial D.

Although general techniques exist for this purpose, our construction will provide deeper insight into
the number-theoretic devices underlying the Diophantine representation of Th.

We proceed with the following subtasks:!

« Constructing a Diophantine polynomial f4x; € Z[a; 1], where #] = (x1, ..., x, ), that admits
solutions in N*! if and only if a is the number corresponding to one of the logical axioms.

« Constructing a Diophantine polynomial f4., € Za,b, c; 23], where 3 = (1, ..., T, ), that
admits solutions in N*? if and only if N'~'(a) is obtainable from N~ (b) and N'~*(c) by means
of one of the derivation rules.

« Constructing a Diophantine polynomial f4x, € Z[a; 23], where 23 = (z1,. .., xy,), that admits
solutions in N*3 if and only if @ is the number corresponding to one of the adopted proper axioms.

We will ensure that these three polynomials take only nonnegative integer values. This does not restrict
generality, as the property or relation over N represented by a Diophantine parametric polynomial
remains unchanged when the polynomial is squared. To smooth the presentation, we also impose that

"For clarity, when representing a polynomial, we sometimes separate variables using ;" to distinguish those that act as
parameters from those that are viewed (even if only implicitly) as existentially bounded variables.
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k1 = ko = k3, and denote this common value as £: in fact, we can multiply any Diophantine polynomial
not involving a variable z; by the monomial x; + 1, without affecting the relation it represents.

A proof is a nonempty list of statements each of which is either an axiom or is derived, thanks to a
derivation rule, from statements which precede it in the list. We can hence say:

acTh < (IneN)3Ty,T,...,T, €F) such that
e T, = oand

« for each h < n, one of the the following holds:
- Ty, is a logical axiom, i.e., there exists Z € N¥ such that f4x; (N(T,), ) = 0

— there exist i, j < h and Z € N* such that T}, is derivable in a single step from 7j and 7T} , i.e.,

fdeT(N(Th)7N(E>7N(7})’£) =0;

~ T}, is a proper axiom, i.e, there exists # € N* such that f4x,(N(T}), %) = 0.

We can summarize this via the following

Proposition 1. Define the demonstrative polynomial of the theory as:
fola,b,¢;7) == faxi(a;@) - faxp(a; @) - faer(a,b,c;T).

Let Th be the set of all theorems of our theory. Then

N[Th] = {aeN\(an,to,tl,...,tneN)(thn)(ai,j,i’,j'eN)(afeN’f)(o:
fp(th,ti,tj,:f)+(h+z'+j)~((i+z"+1—h)2+(j+j’+1—h)2)+(tn—a)2)}.

Each of the three polynomials composing fp represents an alternative condition: f4x;(a,Z) = 0
implies that a encodes a logical axiom; fax,(a,Z) = 0 implies that a encodes a proper axiom; and
fder(a, b, c, ) = 0 implies that N{a) is directly obtainable from N(b) and N(c) via a derivation rule.
Since we are interested in the locus of zeros, multiplying these polynomials together imposes that at
least one of the conditions must hold. Similarly, we often sum squares of polynomials to enforce that
multiple conditions are jointly satisfied. For example, (i + 4’ 4+ 1 — h)? + (j + j/ + 1 — h)? vanishes
only when ¢ < h and j < h; h 4+ ¢ + j vanishes only if h = 0, in which case we want ¢ = j = 0; and
(t, — a)? vanishes precisely when the final statement #,, coincides with the theorem a we are checking
for.

Remark 1. Note that when h = 7 = j = 0, then ¢, = t; = ;. In this case, ty is typically an axiom, since
in most formal systems no derivation rule allows deriving a statement from itself. In the calculus £*
to be discussed later, this situation may arise but poses no problem: it leads to having ¢( of the form
A = A, which is a valid scheme. —

We can encode a finite-length list of natural numbers using two numbers, ¢ and ¢, via the Chinese
Remainder Theorem (see, e.g., [4, pp. 200-201]), as embedded in a technique due to [10]. This is
formalized in the following lemma, which is well introduced in [11]:

Lemma 1. Let (ag, aq,- .., a,) be a tuple whose components a;, belong to N. Then there exist /,c € N
such that, for each h, the component ay, can be retrieved via the rule:

apb=¢ mod 1+c-(h+1) and ap<l4c-(h+1),

ie.,

FgeN)[(l—ap)=1Q+c-(h+1)-qg &gap<c-(h+1)].



Accordingly, we can rewrite the specification of N'[Th] as follows:

N[Th] = {u ‘ dn,l,cVh < nai,j,j/,jlatl,h,tg 7 € Nk dq1,92,q3, Q4,715 ..., T4

(O = ((t1+r—ch+1)*+({—t1 —q(c(h+ 1)+ 1))+ (ta + 72 — c(i + 1))*+
(0—ty—qoc(i+1)+1))2+(ts+rs—c(G+ 1))+ (0 —t3—q3(c(i+1)+1))*+
m+rs—cn+1))2+{—u—qlc(n+1)+1))%+
folty,ta,ts, @)+ (h+i+ )+ +1—h)2+ (G447 +1— h)2))>}

This can be considered a valid expression in any theory formulated in a formal language with an
arbitrary set of axioms and derivation rules involving at most two premises. To translate such an
expression into a purely Diophantine one, we can use various techniques of eliminating the bounded
universal quantifier. Here we follow the one from [11]. We will call the polynomial obtained after this
elimination the polynomial fy, of the theory.

The number of variables used for the elimination is (p + 1)(m + 1) + F + 1, where

« m = k 4+ 15 is the number of existentially quantified variables after the bounded universal
quantification (recall £ = max(ky, k2, k3)),

« I is the number of variables present in the polynomial that expresses factorial,
« pis the number of variables present in the polynomial that expresses the product [T _, (1 + bw).

The resulting polynomial has the maximum degree among the degree of f, and the degrees of the
polynomials needed to perform the translation of factorial and the product []¥ _; (1 + bw). All this is
immediately deducible by looking at [12, pp. 153-154].

We do not make these constants explicit because they can always be improved through more refined
Diophantine formulations. Here we follow the theorems in [12, pp. 144-149], from which F' = 55 and
p = 115.

3. Case Study: The Polynomial of NBG, a Class Theory

The goal of this article is to find a polynomial that represents the class theory NBG. To do so, we will
express the theory in algebraic (relational) form.

Our work follows the line of preceding work on the same theory, as formulated in first-order predicate
calculus by [6].

Operation [6]-V Ours-V [6]-D Ours-D [6]-A Ours-A
Polynomial fax; 14,953 18 >160 32
Polynomial fge, 2 7 4 10
Polynomial fax, 9 0 15 30
Polynomial fp 14,976 18 >179 72

Value p 240 115

Value F 118 55
Polynomial f, 3,639,528 4000 > 364 108

Table 1

Comparison between the complexity of the Diophantine representation of NBG achieved by Carl and Moroz in
[6], and the analogous one being discussed in this paper

Table 1 presents a brief summary of the differences in expressive economy between our approach and
that of [6]. In that table, we denote by V the number of variables, by D the degree, and by A the other
key quantities F', p mentioned at the end of Sec. 2. The number of variables indicated is the number of
existential quantifiers that occur after the bounded universal quantifier. As for our work, the previous



considerations apply to the numerical relationships among the various components. For the work of
[6], this holds only partially due to some technical details.

Let deg(D) denote the degree of a generic polynomial D. Observe that deg(fp) < deg(fax;- faxp-
fder). Here, the inequality hints that sometimes, as we will do in the following section, it is possible to
combine these three polynomials in a less expensive way than by direct multiplication. This inequality
suggests that, as we will demonstrate in the following section, it is sometimes possible to combine these
three polynomials more efficiently than by direct multiplication.

We can now proceed to show how to encode logical axioms, proper axioms, and derivation rules.

3.1. Encoding of the equalities of £*, a historical relational language

We briefly recall the syntax of the relational language, which we denote by £*. For further details, the
reader may consult the standard reference [8].
The alphabet is as follows:

Definition 3.1. The alphabet of £L* consists of:
« Two identity symbols, one for relations, one for predicates {¢,=}
« Two binary operators, union and composition {U, o}
« Two unary operators, reflection and complement {~, 7}
« The membership symbol { € }
« Parentheses {(, )}

Semantically, € is interpreted as a non-empty two-argument relation.
We define, inductively, the formation rules of predicates:

Definition 3.2. The set P of predicates is formed as follows:
« 1, € are predicates,
. If A, B are predicates, then AU B, Ao B, A~ A are predicates.
However, the ultimate objects of our relational calculus are not predicates but equalities.

Definition 3.3. Let A, B € P. An equality is an expression of the form A = B. We denote by U/ the
set of such equalities.

Hence, for the language £*, formulas § are equalities U/.

Since our work concerns exclusively syntactic aspects of the language (in particular, the notion of
derivation), there is no need to define the semantic of £*.

The logical axioms are reported in section 3.2 and the notion of proof in Section 3.4. The formulation
of the proper axioms requires constructs that go beyond the scope of this article and will be presented
in a different work.

We can proceed to number the formulas of the language. We take this idea from Julia Robinson [13].

First, we give the definition of Cantor’s bijection in Diophantine form:

Definition 3.4. We denote by c the Cantor pairing function:
c(i,j)=g = 29=(i+j)(i+j+1)+2j
The definition of N proceeds in two steps, the first being inductive:
Definition 3.5. Define inductively a numbering N’ of the formulas Py, Py, .. .:

e Pp=€,ie N(e)=0,



L] Pl = L,
 Pyg41) = P U P with g = c(3, j),
. P4(g+1)+1 = P; o Pj with g = c(i, j),

o Pygo = Py,

« Pagi3 =P

The map N : U — N is defined as
N (P = Pj) = c(i, j).

We emphasize that among the many possible bijections between &/ and N, we have chosen one that
allows us to immediately reconstruct the structure of the formula it represents from a given number.
3.2. Diophantine representation of axiomatic relational laws

We present, without delay, the logical axioms:

LPUQR=QUP 2PU(QUR)=(PUQ)UR
3.QUPUQUP=Q 4. Po(QoR)=(PoQ)oR
5(PUQ)oR=(PoR)U(QoR) 6.Pot=P

7.P~~ =P 8. (PUQ)~ =Q~ UP~
9.(PoQ)”" =Q oP~ 10. (P~ oPoQ)UQ =Q

These axioms are actually laws, that is, axiom schemata.
We begin constructing the polynomials that represent the logical axioms of our theory. We define
the auxiliary variables:
Fran (@75 y15 - Y5 by to) = 27(2 — 1)%4
(2y1 — 2¢(p,9))* + (22 — 2c(q. p))*+
(2y3 — 2c(q,))” + (2ya — 2c(A(yn + 1) + 2,7))*+
(2y5 — 2c(p, 4(y3 + 1) + 2))* + +(2t1 — 2c(4q + 2,p))*+
( 4(y1 +1),7))% + (23 — 2c(p, 7))*+
( Alts+1) + Ld(ys + 1) +1))* + (265 — 2¢(p, 1))*+
( 4p+3,4(4(y1 +1) + 1) +2))° + (27 — c(dlte + 1) + 1,4q + 2))*+
(2ts — 2c(16(y2 + 1) +2,16(t1 + 1) + 2))* + (2tg — 2c(4q + 3,4p + 3))*

[\

o~

Ny

|

[\

O
~~ o~

and we use these variables in the following polynomials:

ST =2u—2c(4(yr +1),4(y2 + 1))
f2a=2u—=2c(4(ya + 1) + 2, 4(ys + 1) + 2)
fa = 2u — 2c(4tg + 2,q)
5 =2u—2c(4(ta + 1) +1,4(ta + 1))
fe =2u—2c(4(ts +1) + 1,p)
3 =2u—2c(4(4p + 3) + 3,p)
foo9 =2u—2c(4(4(y1 + 1) 4+ 2) + 3,4(tg + 1) + 2)
fio =2u —2c(4(t7 + 1),4q + 2)
Call f7 the product of these, and define fx = ffun + f3>. We have deg(f5) = 2-8 = 16, deg(fx) =
(2-8)-2=32
We can now state the following:



Proposition 2. Let faxi(u,g1) = fx, with g1 = (p,q,7,y1,-..,Y5,t1,-..,t9,2). Then, if U € U is in
one of the logical-axioms schemata, there exists gi € N'® such that f4x;(N(U), di) = 0.

Proof. Obvious by construction.

Let us elaborate on the first axiom as an example. y; is the pairing of p, q via c, y2 the pairing of
q, p via c. The operation 4(y; + 1) is precisely that given in the definition of N for U. Therefore, the
operation c(4(y1 + 1),4(y2 + 1)) is exactly the operation performed in the definition of N to represent
the equality of two unions with identical operands in reversed order. O

3.3. Diophantine representation of NBG’s proper axioms

We must now perform the same operation for the polynomials of the proper axioms of our class theory.
We have chosen to use the axioms as formulated in [9]. The choice of this axiomatization depends on
the fact that it is simpler to formulate in the relational language than that of [7].
Since there are no axiom schemata, the multi-image of each axiom via A will be a single number.
Hence, we may refrain from explicitly writing out the individual axioms and thus the polynomial:

Lemma 2. Let fy : N x Z — Zbe apolynomial, and X € AXp. Then
N[X]|={ueN | IpeZst fr(u,p) =u—my =0}
with my € N. Furthermore, if we let fax), = HXEAXp fx, then
N[AXpl ={ueN | Ip e Zst faxp(u,p)=0}.

Note that in this lemma, the presence of the variable p is purely accessory.

According to our formulation of the proper axioms, | AX p| = 15. Again, we have chosen to remain
faithful to a more transparent idea of proof rather than forcing the degree or the number of variables to
be as low as possible. Using appropriate operations, we could indeed have created a single ‘macroaxiom’
to obtain a polynomial f4x, of degree 1 instead of one of degree 30.

Compared to the axiomatization proposed by [9], ours omits one axiom that we discovered unneces-
sary (the union of two classes) and adds one. It is well-known (see [8]) that the relational calculus is
equivalent to first-order predicate calculus with only three variables. This is an extremely important
limitation of its expressiveness. It is also known, however, that there is a condition under which this
limitation is overcome, providing a calculus with the same expressive power. This condition is the
existence of a pair of conjugate quasi-projections, i.e. two functions wg, w; for which w; @ = 1. For
some specific wy, wj, this property is our additional axiom. Having clarified this fundamental point,
we can proceed by setting AX = AXp U AX! and thus combining the obtained results:

Proposition 3. Let

FaxCung) = frun+ (75 T #x)

XeAXp

then
N[AX] = {u € N | 3gi € N¥ st fax(u,gi) = 0}

and we have deg(fax) = (16 4+ 15) - 2 = 62.
Proof. Obvious by construction. O

The polynomial f4x encodes the fact that a demonstration step §; is a logical or a proper axiom.



3.4. A Diophantine representation of £*’s formal derivations

In this section, we codify, in Diophantine form, the notion of derivability in the relational calculus,
recalled here:

Definition 3.6. A family © of equalities is called a theory if it possesses the following closure properties:
0. The logical axioms belong to ©.
1. When two equalities B = (' and B = D belong to ©, then C' = D also belongs to ©.

2. When B, C, D are predicates and B = C belongs to O, the equalities BUD =CUD,Bo D =
CoD,B=C,and B~ = C also belong to ©.

The equalities that form a theory are called its theorems.

Here, we are interested in points 1 and 2.
We must encode the fact that one equality is derived from another (or from two others) by means of
these rules.

Lemma 3. Let B = C' and B = G be equalities in U/.
Given hy € Z[u,u’,u”,p,q,r], then the equality C = G is derived from B = C and B = G by
inference rule 1 if and only if

Elp7Q>T | hl(N(C:G)>N(B:C)7N(B:G)vpa%r):O
with
hl(“) U/, U//7P7 q, T) = (2U/ - 2C(p7 Q))2 + (2“” - 2C(p7 T))2 + (2’LL - c(Qa 7”))2-

Let
hi € Z[u,u/,p,q,7,8,t], i =2,...,5 and h; € Z[u,u',p,q|, i = 6,7,

then for each of the four inference schemata of point 2, the following holds:
An equality U with code w = N'(U) is derived by the ith schema from B = C'if and only if

E!p,q,r,s,t | hi(uﬂ/\/(B:C)?p’(LTuS?t):07 22273

or hz(u)N(B:C)apaq):O) 12455
with h; defined as follows:

2

BUD=CUD hy(u,u p,q,rs,t)=(2u" —2c(p,q))*+
(25 — 2c(p, 7)) + (2t — 2c(q, 7)) + (2u — 2c(4s + 4,4t + 4))?
BoD=CoD hgu,u,p,q,rst)=(2u —2c(p,q))*+
(2s — 2c(p, 7)) + (2t — 2c(q,7))? + (2u — 2c(4s + 5,4t + 5))?
T =C" ha(u, o', p,q) = (2u' — 2c(p, q))* + (2u — 2c(4p + 3,4q + 3))?
B=C hs(u, ', p,q) = (2u' — 2c(p, q))* + (2u — 2c(4p + 2, 4q + 2))?
Proof. Immediate by the bijectivity of N, N”. O

Taking care to keep variables and degree under control, we can summarize:
Proposition 4. Let
faer (u, v’ u”, g3) =
(2u" = 2¢(p,q))* + (25 — 2c(p,7))* + (2t — 2c(q,7))* + (2 — 2)*+
(s —u")? + (t —u)?) (2u — 2c(4s + 4 + 2z, 4t + 4+ 2))*
(2u — 2c(4p + 2 + z,4q + 2 + 2))?



with g3 = (p,q,7,8,t,2). An equality U with code u = N (U) is derived from the equality B = C
(and B = G) by the derivation rules if and only if

393 € N® | fier(u, N(B=C),N(B=G),g5) =0

and also deg(fger) =2+2-2-2=10.

Since fger and fax are positive, we simply multiply them to obtain fp, which then has degree
104+ 62 = 72.

Because we are multiplying, with an appropriate renaming of variables, we can reuse those of the
polynomial that has more of them (in our case f4x) in the definition of the other. Hence, we have a
total of 18 variables in fp.

4. Vampire-assisted Reasoning

The availability of an equational reformulation of an axiomatic set theory within Tarski-Givant relational
calculus offers an interesting approach to the mechanization of reasoning in Set Theory. The approach
consists of two steps. The first step requires building a prover for the equational calculus on top of
an existing first-order theorem prover. Subsequently, this equational prover will be used to automate
equational set-reasoning in the axiomatic theory.

The feasibility of this path has been explored in [14, 15], where the authors propose an equational
re-engineering of Zermelo-Skolem-Fraenkel axiomatic system ZF and show how the first-order theorem
prover Otter can serve as an inference engine for ZF.

In this section, we outline a similar approach for the case of NBG based on the state-of-the-art
theorem prover Vampire.

4.1. Reasoning in the £* calculus

The key to enable a first-order theorem prover to perform deductions in £* is to consider relational
equalities (e.g., the logical axioms of Section 3.2) as universally closed first-order sentences, where the
predicates (namely, P, (), R) play the role of first-order variables.

We implemented this idea by developing a hierarchy of layers on top of a core group of first-order
sentences reflecting the logical axioms of £*.

Each level extends the syntax of calculus by introducing new constructs derived from the constructs
of the levels below. Then, Vampire is used to prove, starting from definitions and laws proved at lower
levels, a set of laws that characterize the new constructs. For example, at the bottom level Vampire
easily proved a rich collection of lemmas on the primitive operators, namely, union (U), composition
(o), complementation (), and inversion (7). At the next level we introduced the relational constants @,
1 and the constructs of intersection (P N Q := P U Q), difference (P \ Q := Q U P), and Peircean
sum (P 1 Q := P o Q). Vampire quickly proved several laws involving these new constructs.

We recall below only some examples of the constructs introduced, and laws demonstrated, in the
subsequent levels of the hierarchy.

Inclusion. A possible definition for the notion of inclusion of relations is:
PCQ:=QUP=1.

Among the laws proved in this layer we mention, monotonicity and transitivity of inclusion, the
so-called cycle laws and Dedekind law [16].

Functionality. The main derived constructs in this layer are a selector of the functional part of a
relation:
fncPart (P) := P\ (Po1)



and a shorthand for functionality condition:
Fnc(P) == P oP C 1.

Among the laws proved in this level there are:

fncPart (P) ™ o fncPart (P) C ¢,
Fnc(P) AFnc(Q) — Fnc(Po @),
Fnc(P) — Po(QNR)=((PoQ)N(PoR)).

Totality. This layer introduces and a shorthand for totality of relations:
Total(P) := Po 1 = 1.
Among the related laws Vampire easily proved the implications:

Total(P) A Total(Q)) — Total(P o Q), Total(¢),
Total(P o Q) — Total(P), PNP~ =0 — Total(P).

By developing the entire hierarchy of levels, Vampire managed to prove several hundreds laws, in
most cases taking fractions of a second and never going beyond a few minutes for the most difficult
proofs.

4.2. Benchmarks for assisted reasoning in the equational formalization of NBG

At the top of the hierarchy described earlier, after specifying the (equational rendering of the) proper
axioms of the theory of interest, one can exploit Vampire to obtain proofs of theory-specific theorems.

As mentioned in the previous section, the proof framework we are developing has achieved good
results in proving several theorems of relational calculus.

Extending the framework to support automated theorem-proving in NBG involves the addition of
layers that introduce set-theoretic notions and include equational re-formulations of the proper axioms
of NBG. While the relational translation of the axiomatic system proposed by Harvey Friedmann in [9]
has been largely completed, its application to the proof of non-trivial theorems remains a work in
progress.

The system was preliminarily tested by obtaining some apparently simple proofs. For example,
Vampire quickly obtained a proof of the equivalence of different formulations of the Extensionality axiom,
or that from the Infinity axiom the existence of a set immediately follows (namely, that 1 o € o1l =1
holds).

As future work, we intend to validate the approach based on the equational formulation of NBG and
powered by the theorem prover Vampire by tackling some harder problems of increasing difficulty. The
goals that will be the first object of this activity include automated proofs of the following claims:

« An empty class exists (our formulation of NBG does not explicitly include the emptyset axiom)
« For any given set z there exists a class whose sole element is x

+ Any class that is a singleton is a set

« Any class that has exactly two elements is a set

« There exists a universal class

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.
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