CEUR-WS.org/Vol-4003/paperld.pdf

C

CEUR

Workshop
Proceedings

GPU-Accelerated Propagation for the Stable Marriage
Constraint®

Stefano Travasci!, Fabio Tardivo? and Andrea Formisano®**

"University of Udine, DMIF, Ttaly
?New Mexico State University, Dept. of Computer Science, Las Cruces, NM, USA
Gruppo Nazionale per il Calcolo Scientifico — INAAM, Ttaly

Abstract

The Stable Marriage Problem (SMP) consists of finding a stable matching between two equally sized disjoint
sets, typically referred to as men and women, based on individual preference lists. A matching is stable if no
man and woman prefer each other over their assigned partners. The Gale-Shapley algorithm is the classical
polynomial-time solution to this problem. In Constraint Programming (CP), the Stable Marriage Constraint
(SMC) encapsulates this problem as a global constraint, with a consistency-enforcing propagator derived from an
extended version of the Gale-Shapley algorithm. In this paper, we present a GPU-accelerated propagator for the
SMC and its integration into a CP solver. Experimental results against the sequential version demonstrate the
potential of GPU acceleration in handling large instances of the stable marriage constraint.

Keywords
Stable Marriage, Global Constraint, Constraint Programming, Parallel Programming, GPU Computing

1. Introduction

The Stable Marriage Problem (SMP), also known as the stable matching problem, is the problem of finding
a stable matching (i.e., a bijection) between two sets of equal size, given an ordered list of preferences
for each element of the sets [1]. These sets are usually called men and women, thus the name stable
marriage. Each person has a strictly ordered preference list, ranking all individuals of the opposite sex
from most preferred to least preferred. A matching is unstable if it contains two couples (m;, w;) and
(mj, wj) such that m; prefers w; to w;, and w; prefers m; to m;. In such a situation, m; and w; break
their current engagements to elope together [2]. Couples like (m;, w;) are said to be blocking pairs. A
matching is stable if it contains no blocking pairs. If a man m and a woman w are engaged in some
stable matching, the pair (m, w) is said to be a stable pair. It is customary to say that an instance has
size n if it involves n men and n women. Note that such an instance actually requires 2n? elements to
represent all preference lists. Table 1 shows an example of size n = 5.

The Gale-Shapley algorithm (Section 2) is the most prominent algorithm for solving SMP. It can be
shown that this algorithm always terminates in time O(n?) producing a stable matching. Consequently,
each instance of SMP admits at least one solution [1].

Several variations of SMP exist. In the SMP with indifference, the preference lists are not strictly
ordered, allowing ties between elements [3]. The preference lists may be incomplete [1], meaning that
some partners are deemed unacceptable and that some couples are not admissible. Variations also
exist in which each element of one set may be matched with more members of the other set, i.e., the
solution sought for is a many-to-many relation. A similar problem is the stable roommates problem,
in which there is only one set and the preferences are referred to the other members of the such [4].
Generalizations have been proposed that involve three sets of elements [5, 6]. We refer the reader to [7]

CILC 2025: 40th Italian Conference on Computational Logic, June 25-27, 2025, Alghero, Italy

"Research partially supported by Interdepartment Project on Al (Strategic Plan of UniUD-22-25), and by Unione europea-Next
Generation EU, missione 4 componente 2, project MaPSART “Future Artificial Intelligence (FAIR)”

*Corresponding author.

& travasci.stefano@spes.uniud.it (S. Travasci); ftardivo@nmsu.edu (F. Tardivo); andrea.formisano@uniud.it (A. Formisano)

® 0000-0001-5693-6033 (S. Travasci); 0000-0003-3328-2174 (F. Tardivo); 0000-0002-6755-9314 (A. Formisano)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

mailto:travasci.stefano@spes.uniud.it
mailto:ftardivo@nmsu.edu
mailto:andrea.formisano@uniud.it
https://orcid.org/0000-0001-5693-6033
https://orcid.org/0000-0003-3328-2174
https://orcid.org/0000-0002-6755-9314
https://creativecommons.org/licenses/by/4.0/deed.en

mo ws Wy w1 w2o wo wWo mq ms my mo mo

mp | Wwo w1 W3 W2 W4 wyp | M2 M3 Mo MMy MMy
my | Wo W4 W3 W2 W1 w2 | Mg M2 M1 M4 M3
m3 | w2 w1 W4 W3 Wo w3 | Mo M3 M2 M1 My
my | Wo W1 Wg W2 W3 Wqg | M1 Mg Mo M3 M2
(a) Men’s preference lists (b) Women'’s preference lists

Table 1

Instance of SMP of size 5. The matching {(ms, w1), (mo, ws4), (M4, w3), (M2, wo), (M1, ws)} is stable, while
the blocking pairs (mq,wg), (ma4,wp), and (my4,w;) make the matching {(ms,ws), (M4, ws), (Mo, ws),
(ma,wo), (M1, ws)} unstable.

for a survey in SMP and its variants. Combinations of the mentioned variations are possible, and give
rise to problems of varying complexity. For example, while SMP with either incomplete lists or ties can
be solved in polynomial time, admitting both of them makes the problem NP-hard [8]. Moreover, while
SMP always admits a solution, this is not the case for some of its variants or combinations. Clearly,
whenever SMP is considered as part of a larger CSP model, the presence of other constraints may
compromise the existence of solutions.

SMP and its variants find wide application in various fields such as computer science, mathematics,
biology and physics [9]. SMP variants have been applied also in economics to study markets and
monetary exchange models [10] or to relate social networks and job markets [11]. Systems based on
SMP have been used to various solve real-word problems, for example, to assign medical students
to hospitals by the National Resident Matching Program in the US [7], to match students to high
schools [12], to solve the problems of college admissions, medical resident allocation, and optimal
assignment of sailors to billets, to mention some among many (cf., for instance, [13, 14, 15] and the
references therein).

The bursting advent of GPGPU (General Purpose computing on Graphics Processing Units) has
recently driven the growth of GPU-computing and, more broadly, heterogeneous computing across
numerous application domains. In the field of Computational Logic, research has shown that the massive
parallelism and extreme computational power provided by GPUs can be used to accelerate reasoning and
problem-solving tasks more effectively than traditional CPU-oriented solvers. For instance, approaches
to SAT- and ASP-solving have been put forth in [16, 17, 18, 19], while [20, 21, 22] describe encouraging
outcomes when using GPUs for CSP-solving. In keeping with this research, in this paper we introduce
a GPU-accelerated propagator for the Stable Marriage constraint. As far as we are aware, this is the
first study to use GPUs to speed up the propagation of such a global constraint.

The paper is organized as follows. In Section 2 we briefly review the Gale—Shapley algorithm which
is the basis for the serial propagator described in Section 3. A GPU-accelerated implementation of the
propagator is detailed in Section 4. Experimental comparison with a serial version of the propagator is
reported on in Section 5. Finally, we draw our conclusions in Section 6.

2. The Extended Gale-Shapley Algorithm

The Gale-Shapley algorithm [23], also known as deferred acceptance algorithm, can be seen as a sequence
of proposals from the men to the women. A man who is not already engaged proposes to his most
preferred woman to whom he has not proposed yet. The woman accepts the proposal if she is single,
or if it comes from a man she prefers more than her current partner. Starting with all individuals
unmatched, the algorithm iteratively proceeds until every man is engaged. This process creates a
so-called man-optimal stable matching, in which each man is engaged to his most preferred woman that
he can have. Note that a man-optimal stable matching is woman-pessimal, meaning that each woman is
matched with her least preferred man that she can have [1]. By switching the roles of men and women
so that the women propose, the algorithm yields a woman-optimal and man-pessimal solution [23].

Algorithm 1: The extended Gale-Shapley algorithm (from [2])

1 mark each person as free
2 while there is a free man m do

3 let w be the first woman in m’s list
if w is engaged to some man p then mark p as free
mark m and w as engaged to each other
for each successor m’ of m in w’s list do

delete m/ from the preference list of w
L delete w from the preference list of m’

® N O G e

Several algorithms have been proposed for finding a balanced solution, based on different optimization
criteria [7].

Consider the procedure outlined above. We can observe that if woman w receives a proposal from
man m, then w’s partner in the final stable matching (which is man-optimal/woman-pessimal) cannot
be less preferred than m. Hence, each m’ successor of m in w’s list cannot be paired with w in any
solution. Consequently, we can safely remove m’ from w’s preference list and w from that of m/.
This observation leads to an improved algorithm called extended Gale-Shapley algorithm [1], shown in
Algorithm 1.

Note that in this algorithm proposals are always accepted. Moreover, when the algorithm ends, each
man is engaged with the first remaining woman in his list, and each woman with her last remaining
man. These final lists are known as the man-oriented Gale-Shapley lists (MGS-lists). Intersecting these
lists with those obtained by executing the algorithm with men and women switched, produces the
GS-lists. Every partner a person p can have in any stable matching occurs in p’s GS-list.

3. CSP and the Stable Marriage Constraint

A constraint satisfaction problem (CSP) is a triple P = (X, D, C), where X = {x1,...,z,} is a finite
set of n variables, D is the set of (finite) domains for the n variables, and C' is the set of constraints
over X. Let dom(z) denote the domain of the variable x. A constraint c on a set of variables var(c) =
{zi,,..., 2, } € X describes a subset rel(c) C dom(z;,) x --- x dom(z;,,).

A solution of P is an assignment 0 = [x1/v1, ..., Z,/vy,] of values to the variables in X that satisfies
each c € C, i.e, assuming var(c) = {z;,,...,x;, }, it holds that (v;,, ..., v;,) € rel(c). An assignment
is locally consistent w.r.t. a set Y C X if it satisfies each ¢ € C such that var(c¢) C Y. A CSP on X is
k-consistent [24] if, given any set Y = {x;,,...,z;,_,} € X of k — 1 variables, for each assignment
[@i, /viy, ..., Zi_, /Vi,_,] which is locally consistent w.r.t. Y, for any k-th variable x;, there exists a
value v;, such that [z;, /vi,, ...,z /vi,] is locally consistent w.r.t. Y U {xy}.

The Stable Marriage Constraint (SMC) modelling a given SMP P was introduced in [2]. Enforcing
2-consistency of such constraint corresponds to the application of the extended Gale-Shapley algorithm
on P. That is, each solution for the SMC describes a stable matching of P.

Let us briefly describe the data structures and the basic functions introduced by [2] to deal with a
SMC involving n men and n women.

As we will see, neither engaged couples nor the single/engaged status of men/women are explicitly
stored. Instead, the propagator works by removing from the domains the same values that Algorithm 1
would remove from the preference lists. This is achieved by examining the changes in the domains
(i.e., removals of elements) and removing the pairs that can be safely eliminated as a result of these
modifications, following the same logic as the extended Gale-Shapley algorithm. Note that the removal
of elements from domains can also occur as a result of propagations of other constraints (present in the
CSP model at hand), i.e. by actions “external” to the SMC propagator.

The preference lists are stored into two 2-dimensional arrays (i.e. matrices), mpl and wpl. Hence, the
array mpl|[i] stores the preference list for the the i-th man m;, so that mpl[i][j] is the j-th preference

1

A G R W N

~N

10
11

12

13
14
15
16
17
18
19

Algorithm 2: Stable marriage propagation

Function deltaMin (i) 20 Function init ()
¢ < mpl[i][getMin(z][i])] 21 | fori« Oton—1do deltaMin(i)
setMax(y[¢], wPm/[l][i]) o N
for k + zlb[i] to getMin(z[i]) — 1 do 22 FunFtlpn inst (i,isMan)
L j < mpl[i][k] 23 if isMan then . .
setMax(y[5], wPml[j][i] — 1) 24 forlf +— xlb[l]. to getVal(z[i]) — 1 do
xlbli] + getMin(z[i]) 2 L N mpl[z]-[k:] ara
L 26 setMax(y[j], wPm[j][i] — 1)
Function deltaMax (j) z J mpl[?'] [getVaI(x[i])]
or x(ylj o yub[j] do 8 tVal(y[j], wPmlj][i])
f f:i;tl?;lﬂk%ym) 1toyubljld 29 :‘f)rk?ﬁéetV§|(z[]i]) +1ton—1do
L remVal(x[i], mPw[i][j]) 30 J “lepl M (] i
| yublj] getMax(ylj) ;1 1ok remVal(y[j], wPm|j][i])
Function removeValue (i,a,isMan) 33 for k < 0 to getVal(y[i]) — 1 do
if isMan then 34 j < wpl[i][k]
j < mplfi][a] 35 | remVal(z[j], mPwl[j][z])
remVal(y(], wPml][]) s || e wpllillgetval(yli))
else 37 setVal(z[j], mPw[j][4])
J < wpl[i][a] 38 for k + getVal(y[i]) + 1 to yub[i] do
L remVal(z[j], mPw][j][¢]) 39 L J < wpl[i][k]
- 40 i remVal(z[j], mPw]j][d])

of the i-th man m;. Analogously, women’s preference lists are stored in wpl. The constraint makes
use of two arrays of variables « and y. The domains of these variables are initially set to [0, — 1] and
the value of each variable x[i] (resp., y[i]) represents the partner of the man m; (resp., the woman w;).
More specifically, a value ¢ for a variable z[i] represents the {-th preference in m;’s preference list, i.e.,
an assignment of £ to x[i] describes the match (i,mpl[i][(]), coupling m; and w;,,j;j- To easily switch
between preferences in the domains and their corresponding people, two additional matrices mPw and
wPm are used to store the inverse preference lists. Then, mPw(i] is m;’s inverse preference list and the
value mPw[i][j] is the index of w; in m;’s preference list, and similarly for wPm. Two additional arrays
of integers, yub and xlb, are also used. The former stores the previous upper bounds of the domains of
the variables in y, that is the upper bounds they had when the previous propagation ended. Similarly,
xlb contains the previous lower bounds of the variables in x. The values in yub are initialized to n — 1,
the ones in xb to 0.

The original propagation algorithm is specified in terms of a set of functions to call when some variable
changes [2]. In our implementation (cf., Algorithm 2) we extended the code of removeValue() and inst()
so that both men and women are processed, contrary to what was stated in their original descriptions,
where only men are treated. While the modification of inst() does not affect the correctness of the
algorithm, the change in removeValue() is indeed necessary. The functions are:

deltaMin(i). Called when the minimum of dom(z[i]) increases (i.e., either m; has been rejected by
its preferred partner or the minimum has been changed externally to the propagator). The new
favourite partner is wy (line 2 in Algorithm 2), and the function updates the maximum of dom(wy)
to remove all men wy likes less that m; (line 3). Moreover, in lines 4-6, for each value k that has
been removed from dom(x[i]) the corresponding woman j is determined and the maximum of
dom(ylj]) is updated to exclude men less preferred that x[i]. Finally, in line 7, the lower bound
xlb[i] for m; is updated.

deltaMax(j). Called when the maximum of dom(w;) decreases. The woman m; is removed from the
domain of each man m; that has been removed from dom(w;) (lines 9-11 of Algorithm 2). The

upper bound yub[j] for w; is updated accordingly (line 12).

removeValue(i, a,isMan). Called when a value a is removed from dom(z[7]) (resp., dom(y[i])) and
a is not the minimum (resp., maximum) of the domain of the man m; (resp., woman w;). Then, m;
(resp., w;) is removed from the domain of the person w; (resp., m;) corresponding to the value a.

inst(i,isMan). This function is called when a variable is bound to a specific value, namely, a match
between two persons ¢ and j is created. It handles the two symmetric cases in which ¢ represents
either a man or a woman. Whenever ¢ is engaged with a partner j, the function propagates the
decision imposing that j is engaged to 7 (lines 28 and 37).

init(). This function is called once, when the propagator is initialized. It consists in a call to deltaMin(7)
for each man m;. It is somewhat analogous to setting all the men free so that they will make
proposals at the start of the extended Gale-Shapley algorithm.

These functions make use of some auxiliary simple operations on domains. Namely, those to get the
upper/lower value of a dom(x) (i.e., getMin(z) and getMax(z)); to get/set the value of x (i.e., getVal(x)
and setVal(x, v)); to decrease the maximum of dom(z) to v if v < getMax(x) (i.e., setMax(x, v)); and
to remove a value v from dom(z) (i.e., remVal(x, v)). We omit their description (see [2] for details).

The authors of [2] suggest how the functions in Algorithm 2 can be integrated into a hypothetical
CSP-solver to implement the propagation procedure. We will return to this point in Section 4.1, while
describing the integration of the GPU-accelerated propagator for SMC into MiniCPP.

3.1. The MiniCP Solver and its Extension Mechanism

Among several efficient CSP-solvers, for the purpose of this paper we have chosen MiniCP [25], an
open source solver designed to ease the development of extensions. In particular, our work is based on
MiniCPP [26], a C++ re-engineering of MiniCP supporting CUDA code integration. Previous successful
attempts [20, 21, 22] to extend MiniCPP with GPU-based modules strongly motivated this choice.

The main engine of MiniCPP performs the constraint-based search in the usual manner, by alternat-
ing search and propagation phases, possibly involving backtracking steps. Whenever a consistency-
enforcing procedure is triggered, the corresponding method is responsible for starting the propagation
and reporting the results to the main engine.

The possibility of extending MiniCPP with a new propagator is transparent to the way it is im-
plemented, it suffices that it complies with the solver interface. Indeed, new constraint propagators
can be easily integrated by extending the Constraint class of MiniCPP. To handle a new constraint,
the extension must provide a constructor (to allocate and initialize the main data structures) and two
procedures, post() and propagate(). The former is called by MiniCPP whenever a constraint is added
to the model to set the conditions under which the propagation algorithm, i.e., the propagate() method,
is called. This latter method is responsible to transparently offload the computation on the GPU and to
suitably manage the related data transfers.

Note that MiniCPP provides backtrackable data structures, meaning that when the solver backtracks
it reverts them to their values at the choice point to which the search backtracks, undoing any change
made in the meantime. This can be achieved with an apposite class provided by the solver. As we will
see, we exploit this feature in implementing our parallel propagator.

As concerns the extension of the input syntax for the CSP-solver, we first introduced the definition

stable_matching({men), (women), (menPrefLists), (womenPrefLists))

to represent a SMC in the input MiniZinc models. Then, we relied on the MiniZinc annotation mechanism
to select the propagator to be used [21]. In detail, when a constraint is annotated with ::gpu, it is
propagated using the GPU-accelerated implementation. Figure 1 shows a fragment of a MiniZinc
encoding for the SMP in Table 1, using the syntax extension just described.

int: n =5;

array [1..5] of var 0..n-
array [1..5] of var 0..n-
array [int, int] of 0..n-

men;
1 women;
pm=1[|3,4,1,2,0/0,1,3,2,4|0,4,3,2,1|2,1,4,3,0/|0,1,4,2,3]|1;
pw = [|1,3,4,0,2(|2,3,0,4,1]0,2,1,4,3|0,3,2,1,4|1,4,0,3,2]|1;
(men, women, pm, pw) ::gpu;

array [int, int] of 0..n-
constraint stable_matchin

Q R BB

Figure 1: Fragment of a MiniZinc encoding for the SMP in Table 1

4. The Parallel Propagator: SMP on GPU

As mentioned, to extend MiniCPP with a new constraint, it suffices to specialize the class Constraint.
Our serial and parallel implementations are available at https://clp.dimi.uniud.it/sw, and fully docu-
mented [27]. In what follows, we focus on the GPU-accelerated version, in particular on the propagate()
method. For the convenience of the reader, a brief introduction to GPU computing and CUDA [28] is
provided in appendix A.

Unlike the extended Gale-Shapley algorithm, the parallel implementation of the propagator for SMC
proceeds by processing the proposals of all free men simultaneously. This is done by launching a
thread for every free man. During the first execution of the propagator, all men are considered free. In
subsequent iterations, the free men are those whose domain minimum has been modified, corresponding
to the situation where their most preferred woman is no longer available. Each thread, independently,
makes the proposal for the man it was assigned. Such proposal may cause a previously engaged man to
break up and become free. The thread that handled the proposal will then take responsibility for the
newly freed man and begin making proposals on his behalf. If a proposal does not free any man, the
thread terminates. Note that each proposal can free at most one man, since a woman can be engaged to
at most one man. Therefore, in this operation, the total number of free men cannot increase, since each
proposal either reduces that number or leaves it unchanged. Consequently, at each propagator run, it is
sufficient to start a thread for each currently free man.

If a missing value a is found during the processing of a free man, the SMC propagator must pretend
that the proposal was made anyway, accepted, and the engagement was immediately broken. This is
necessary because a pair removed externally (i.e., by another constraint or the solver) could still be a
blocking pair (cf., Section 1), so the pairs it blocks must be removed from the domains. In presence of
such a value a, not only the man who made the proposal remains free, but also another man may be
freed. In this situation the total number of free men could increase.

For values in the men’s domains removed by the propagator that are beyond the minimum, the
corresponding values in the women’s domains are all greater than the current woman’s maximum.
When, instead, a value is removed from outside the propagator, the corresponding value in the woman’s
domain may be smaller than the domain maximum. In this case, the woman would have accepted the
proposal, forming a pair (m, w) that would be a blocking pair for all matchings in which m is engaged
to a woman he likes less than w, and w is engaged to a man she likes less than m. The missing value in
the domain of m was found because the new minimum is now greater than it, so m will necessarily be
engaged to a woman he prefers less than w. It follows that w cannot be engaged with a man she likes
less than m, otherwise the resulting matching would be unstable. The values of the men that w likes
less than m must be removed from her domain. Since this removal changes the woman’s maximum, it
could potentially free up another man. To deal with this problem, the additional men freed this way are
stored in an array, and the propagator is launched again to process them.

Note that, by applying the strategy just described, the parallel implementation runs only the necessary
number of threads and does not require any synchronization between them.

DATA sTRUCTURES: The propagator uses the same data structures described in Section 3 for the
preference and inverse-preference lists (stored in simple matrices) and the domains (represented as
bitmaps). Some additional data structures are also used. In particular:

https://clp.dimi.uniud.it/sw

« Four backtrackable arrays old_min_men, old_maz_men, old_min_women and
old_maz_women, store the old bounds the variables had after the latest propagation.
(These arrays play the role of xlb and yub seen in Section 3.)

o The arrays stack_mod_men and stack_mod_women store the lists of the men and the women
whose domains have been modified in any way since the latest propagation. The variables
length_men_stack and length_women_stack store their lengths. Note that values that are miss-
ing from the domains (for example, as a consequence of previous propagation of other constraints,
or because they were not in the domain from the beginning) are treated as modifications of the
domains, suitably initializing these arrays.

 The array stack_mod_min_men collects the men whose minimum was changed. The integer
length_min_men_stack stores their number.

+ As mentioned, when handling an externally removed value, a thread might end up freeing an
additional man. This man is added to an array new_stack_mod_min_men, whose current length
is new_length_min_men_stack.

THE PROPAGATOR KERNELS: The method propagate() essentially corresponds to the execution, managed
by the host, of the following three phases:

1. Enforcing domains coherency: If a value was removed from a person’s domain, that person is
also removed from the domain of the person represented by that value.

2. The actual enforcing of the stable marriage constraint: This is where the strategy previously
described is implemented. As previously mentioned, this step may be repeated several times

3. Update of auxiliary data structures (see below).

It is possible that an empty domain is detected in phase 2. Then, phase 3 will act accordingly to pass the
information to the solver (which will either backtrack or declare unsatisfiability).
More specifically:

Phase 1. This step aims to restore domain consistency of the variables for men and women. As
mentioned, when domain changes occur outside the SMC propagator, it is possible for a partner a to
be removed from the domain of a person b, but not vice versa. This kernel make_domains_coherent
restores consistency, if necessary, by removing b from the domain of a. This removal could modify the
minimum of a man’s domain. In this case, such man is added to stack_mod_min_men. The kernel
is run with length_men_stack+length_women_stack threads, one for each person whose domain
was modified (and listed in stack_mod_men and stack_mod_women). Each thread simply scans the
domain associated to its person looking for missing values and acts as explained.

Phase 2. This step performs the core part of the propagation by enforcing the constraint logic. After
an initialization step performed on the host, a grid of length_min_men_stack threads executing the
kernel apply_sm_constraint() is launched (see Algorithm 3). In this execution each thread is assigned
a man retrieved from the array stack_mod_min_men (line 2). Each thread starts a loop to process
elements of the man’s domain, starting from the value old_min_men|m|. The array old_min_men
keeps track of the latest values of the men’s domains that were processed. In line 4 each thread retrieves
the first element to be checked. It may be the case that the current domain is empty (this is discovered by
checking whether w_index is beyond the domain boundary), then the thread exits (line 5). Otherwise
two scenarios are possible. Either w_index is in the domain and then it will be processed (lines 6—17),
or it has been removed and the missing value must be handled (lines 18—25) as explained earlier.

In the first case, the thread/man makes a proposal to the woman w corresponding to w_indez (lines 7-
9). In line 9 an atomic access is performed to update the partner of w (i.e., to set maz_women|w] to the
index m_val of m in w’s preference list). There may be different threads/men concurrently trying to
make this update. Therefore, to ensure that only the proposer who is preferred over the current partner
and all other proposers succeeds, we use an atomic instruction that coherently updates maz_women|w]
and returns its old value p_val (i.e., the index of w’s previous partner in her preference list).

1
2
3

O 0 N N G

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

Algorithm 3: The kernel function apply_sm_constraint() (simplified)

get thread’s unique 1D
m <+ stack_mod_min_men[I D] /* get the (first) man assigned to this thread =/
loop forever
w_index + old_min_men[m] /* get the next value/woman to process */
if dom(m) = () then return
else if w_index € dom(m) then /* the value/woman is still in m’s domain %/
w < mpl[m][w_index] /* get w corresponding to w_index */
m_val < wPm[w][m] /* get m’'s value m_val in w’s domain */
p_val + atomicMin(maz_women|w], m_val) /* the best proposal succedes */
if p_val < m_val then /* w prefers another man and rejects the proposal x/
old_min_men|m| + w_index + 1
continue /* proceed to the next iteration of the loop */
else if p_val = m_val then /* w is already engaged to m */
‘ return
else /* p_val > m_val: the proposal has been accepted */
remove w from the domains of all the man following m in her list
L m <+ wpl|w][p_val] /* set m to be the man previously engaged with w x/
else /* the value/woman has been removed from m’s domain x*/
old_min_men|m| + w_index + 1
w < mpl[m]lw_index] /* get w corresponding to w_index */
m_val < wPm[w][m] /* get m’'s value m_val in w’s domain */
atomicMin(maz_women|[w], m_val—1) /* remove men following m in w’s list */
remove w from the domains of the men who were just removed from her list
if a man p was freed and is not in new_stack_mod_min_men then /* prepare for the x/
L add p to new_stack_mod_min_men /* next call to apply_sm_constraint() =/

The proposal may be rejected (line 10). This may happen because another concurrent thread removed
w_index from m’s domain (because, such thread made a proposal to w on behalf of a man m/' that w
prefers to m). It follows that a value that was thought to be in the domain of m has to be considered
as missing. The thread simply moves on to the next value in m’s domain (after having updated
old_min_men[m] appropriately in line 11 to trigger the next iteration in the loop).

If m is already engaged with w (line 13), no man has been freed, so the thread terminates.

If the proposal is accepted (that is, m_val is smaller than w’s previous maximum and it becomes the
new maximum), then w is removed from the domains of all the men following m in w’s preference list,
up to and including w’s old maximum (line 16). If a man has been freed, the thread will treat such man
as its newly assigned man (the update of m in line 17 will trigger another iteration of the loop).

In the case in which w_indez is a missing value (the test in line 6 fails because it has been removed
from dom(m), as mentioned above), the thread must remove from the domain of the woman associated
with w_index all men following m in her list/domain (line 22). If this step actually removes some
men from her domain, the woman must be deleted from their domains too (for brevity this is shown
succinctly in line 23 of Algorithm 3). The value of old_min_men[m] is updated accordingly (line 19)
to avoid processing again the same woman. If w’s maximum was actually modified (line 22), the old
maximum must be added to new_stack_mod_min_men (lines 24-25), so that apply_sm_constraint()
can be launched again and handle him appropriately. Note that this step is simplified in Algorithm 3.
The real implementation avoids multiple additions of the same elements to new_stack_mod_min_men
by exploiting some auxiliary data structures and using atomic accesses to such data.

When apply_sm_constraint() ends the host retrieves the updated data structures. In particular, the
array new_stack_mod_min_men is inspected. If some men occur in it, the host prepares for another
call to the kernel to process them. This process is repeated until no free men exist.

Phase 3. The aim of this phase is to coherently update in parallel all elements of the arrays
old_maz_women, old_max_men, and old_min_women. This task is performed by the kernel func-
tion finalize_changes(). The grid is composed of n threads. The i-th thread processes the i-th man
and the ¢-th woman. The i-th thread updates the i-th woman’s values in old_maz_women and in
old_min_women, and the i-th man’s value in old_maxz_men. When looking for the current bounds
to put in old_max_men (resp., old_min_women), the thread scans the domain starting from the cor-
responding bound stored in max_men (resp., min_women). For lack of space, we omit the complete
code of finalize_changes().

4.1. Integration into MiniCPP

In order to enable the integration of the functions of Algorithm 2 into a generic CSP-solver, the authors
of [2] assume that constraint propagation is managed with a stack where the constraints to propagate
are collected. Such constraints are extracted and propagated one by one, possibly causing some variable
domains to shrink. This, in turn, causes all the constraints the variable is involved in to be added to
the stack. The propagation process ends when there are no more constraints to propagate or a domain
becomes empty.

MiniCPP has such design, but embodies trade-offs that prioritize simplicity over extensive feature
support. One example is that it does not track which event (i.e., bound change or element removal)
caused the insertion into the stack. Because of this, when the propagator for SMC is invoked, it checks
all men’s and women’s variables for changes. When a change is found, the method to be called is added
to an internal queue. Then, the queue is processed, executing all the needed methods. These, in turn,
may cause further additions to the internal queue.

Another trade-off concerns how domain changes are tracked. MiniCPP offers various methods to
check whether a variable has been modified (e.g., changed() and changedMin()), but these refer to the
last time the variable was backed up (i.e., at the end of the previous propagation phase), not to the last
time the variable was actually modified. Whenever a propagator is run twice between two of these time
points, variables marked as modified before the first run will continue to be considered as modified
before the second run. Additionally, when a propagator changes one of the variables it monitors,
it is re-scheduled and will see that variable as modified. Consequently, using the built-in methods
would result in redundant calls to the propagator. To avoid this, we exploited backtrackable arrays
whose implementation is built in MiniCPP. In particular, the arrays x_old_sizes and y_old_sizes store
the dimensions of the men’s and women’s domains after the previous propagation of the SMC. By
comparing their current sizes with their old ones, it is possible to detect whether a variable has been
modified since the latest execution of the propagator.

5. Experimental Evaluation

To compare the performance of the serial and parallel implementations, we randomly generated 200
instances of size n = 2400. Each instance includes two SMCs: One modelling the standard SMP, and
another with the roles of men and women swapped. Our experiments focus on propagation time and
aim to identify the conditions under which each propagator performs more effectively.

The machine used in these tests is equipped with an Intel Core i7-13700KF CPU (with 16 cores and
24 threads in Hyper-Threading, CPU clock rate 5.40GHz, 30MB cache), 128GB of RAM, and an NVIDIA
GeForce RTX 4090 GPU (compute capability 8.9, 24GB VRAM, 16384 CUDA cores, clock rate 2.57GH).

The first parameter of interest is the number of free men at the beginning of phase 2 of the method
propagate(). The design of the instances is such that all men are free in the first propagation, while
in the following propagations either two or no men are free. Figure 2 shows the distribution of the
propagation times in these three different situations. When there are no or only a few free men, the
serial propagator outperforms the parallel one, with median execution times of 0.44 ms and 0.61 ms,
respectively. In contrast, the parallel version yields median times of 1.36 ms and 8.07 ms under the
same conditions. The significant difference between these two parallel timings is due to an optimization

0 free men 2 free men 2400 free men

350
801 T
200 A
300 A
175
60 250
150
— 200 A
g
- 125
[T)) [}
£ | H
= 150

100+

100 A

20 75

50 A

| 50
ol == o L
serial parallel serial parallel serial parallel

Figure 2: Box-plots showing the propagation times for different numbers of free men

that avoids launching the kernel for the second phase when there are no free men. When all men are
free, the parallel propagator tends to be faster, with a median propagation time of 72.34 ms, compared
to 162.34 ms for the serial version.

Figure 3 compares the execution times of the first 100 propagations for each of the three cases, for
both serial and parallel versions. When there are exactly two free men, the serial propagator consistently
outperforms the parallel one. Conversely, when all men are free, the parallel propagator shows a clear
performance advantage. Interestingly, when no free men remain, the results show that the parallel
version performs better in many instances, but there is no clear winner.

The total number of modified variables is another useful parameter to consider in order to characterize
the class of instances in which the parallel version performs better. The instances are designed such that
this number varies only when there are no free men. Figure 4 shows how the propagation time varies
with respect to the number of modified variables. For illustrative purposes, the plot displays only a
subset of data points, selected to uniformly cover the full range of the number of modified variables. The
serial propagator is faster when the number of modified variables is relatively small, while the parallel
propagator becomes more efficient as the number of modified variables increases. Note that the parallel
propagation time remains nearly constant across all instances, demonstrating strong scalability. This
behavior is mainly because of the optimization that skips the launch of the kernel for the second phase.
More specifically, in the case of few free men, the limited parallelization is not enough to compensate
the overhead of launching the kernel, and may even prove detrimental due to the small number of
threads launched. Having skipped the second phase, the efficiency of the propagator depends only
on the performances of the other phases. Moreover, a larger number of modified variables allows for
greater parallelization of the first phase, resulting in a corresponding increase in performance.

A final parameter we considered is the total domain size, computed as the sum of the sizes of all
domains. Specifically, we are interested in the old sizes, the domain sizes after the previous propagation
of the constraint. Each modified domain is scanned from its old lower bound to its old upper bound, so
the old size provides an estimate of the number of values the propagators may need to examine.

Figure 5 shows the results, with points selected to uniformly cover the x-axis. The case for n = 2400
free men is omitted, as the total domain size at the first propagation step is always n * n * 2, resulting in
a plot that resembles the rightmost one in Figure 2. When there are no free men, the parallel propagator

0 free men
2 free men
2400 free men

Parallel time (ms)

T T T
10-1 100 10l 102
Serial time (ms)

Figure 3: Comparison of the propagation times for the two propagators

0 free men

80 - serial a parallel

70 4

60

50 1

40 -

Time (ms)

30 1
204

10 4

A)
e Sdmanaodis Ao oas dly cBn"sade § il ahdbas a0 g0 Meng

T T T T T
0 1000 2000 3000 4000 5000
Number of modified variables

Figure 4: Correlation between propagation times and the number of modified variables

scales significantly better than the sequential. This is because larger total domains involve more work,
which can be effectively parallelized, helping to offset the various overheads. In contrast, when there
are two free men, the sequential propagator performs better.

Overall, the performance of the parallel propagator aligns with expectations. The more free men
there are, the more advantageous it becomes. A notable exception is the case with no free men, where
the parallel propagator can skip launching the kernel that executes the second phase. In this scenario,

0 free men serial A paraliel 2 free men

801 A
350
70 -
" 300 . s A
250
— 50 . .
) W A
‘E’40 E 200 Y a X ﬂiﬂaﬂ"
g g ’ L a4 ‘ 'y fa
A
= = 150 A a8 y .
30 PN N . b4
A 4 . a a & A “
J 100 - 4 a s A
20 d’aa A A
50 abe : ’
10 1 Lay
h st s 4 : . "ﬂﬁ
Y ah A
0 e bms Acmradg 2 e o #4 b "
10* 105 1068 104 10°
0Old Total Domain Size Old Total Domain Size

Figure 5: Correlation between propagation time and old total domain sizes

the parallel propagator demonstrates good scalability with respect to both the number of modified
variables and the total domain size.

It is worth noting that the second phase is the most complex step of the parallel propagator. Conse-
quently, inefficiencies in this phase have a greater impact on the overall propagation time than any
performance gains achieved in the other phases.

6. Conclusions

This paper revisits the Stable Marriage constraint from a parallel perspective and demonstrates that
CSP-solvers can effectively leverage the computational power of modern GPUs.

It presents a GPU-accelerated implementation of the constraint and compares it against a sequential
version. The results demonstrate that the GPU-accelerated propagator offers better scalability, enabling
solvers to handle larger instances more efficiently.

As future work, an interesting extension would be a hybrid propagator capable of automatically
switching between sequential and GPU-accelerated propagators based on performance considerations.
This mechanism could be implemented using insights from our analysis and determine threshold
parameters specific to the machine on which the hybrid propagator runs.

Another valuable direction would be to extend the propagator to its symmetrical version. In this case,
proposals are made by both men and women, and enforcing the SMC produces the GS-Lists instead of
the MGS-Lists. This enables more values to be removed during propagation, at the cost of an increased
computational workload. The use of a GPU in this context is especially beneficial, as it allows for both
faster and stronger propagation.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

[1] D. Gusfield, R. W. Irving, The Stable marriage problem - structure and algorithms, Foundations of
computing series, MIT Press, Cambridge, MA, USA, 1989.

(2]

(3]
(4]

(8]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

C. Unsworth, P. Prosser, An n-ary constraint for the stable marriage problem, in: Proc. of the Fifth
Int. Workshop on Modelling and Solving Problems with Constraints, 2005.

R. W. Irving, Stable marriage and indifference, Discret. Appl. Math. 48 (1994) 261-272.

R. W. Irving, An efficient algorithm for the “stable roommates” problem, J. Alg. 6 (1985) 577-595.
D. E. Knuth, Mariages Stables et leurs relations avec d’autres problémes combinatoires, Les Presses
de I'Université de Montréal, 1976.

C.Ng, D. S. Hirschberg, Three-dimensional stable matching problems, SIAM J. Discret. Math. 4
(1991) 245-252.

K. Iwama, S. Miyazaki, A survey of the stable marriage problem and its variants, in: Proc. of
ICKS’08, 2008, pp. 131-136.

K. Iwama, D. F. Manlove, S. Miyazaki, Y. Morita, Stable marriage with incomplete lists and ties, in:
J. Wiedermann, P. van Emde Boas, M. Nielsen (Eds.), Proc. of ICALP’99, volume 1644 of LNCS,
Springer, 1999, pp. 443-452.

E. M. Fenoaltea, I. B. Baybusinov, J. Zhao, L. Zhou, Y.-C. Zhang, The stable marriage problem: An
interdisciplinary review from the physicist’s perspective, Physics Reports 917 (2021) 1-79.

P. Bir6, F. Klijn, Matching with couples: a multidisciplinary survey, Int. Game Theory Review 15
(2013).

E. Arcaute, S. Vassilvitskii, Social networks and stable matchings in the job market, in: S. Leonardi
(Ed.), Proc. of WINE’09, volume 5929 of LNCS, Springer, 2009, pp. 220-231.

D. Austin, The stable marriage problem and school choice, AMS Feature Column (2015). Online;
accessed 4-March-2025.

P. Bir6, Applications of matching models under preferences, in: U. Endriss (Ed.), Trends in
Computational Social Choice, AI Access, 2017, pp. 345-373.

D. F. Manlove, Algorithmics of Matching Under Preferences, volume 2 of Series on Theoretical
Computer Science, World Scientific, 2013.

A. E. Roth, M. A. O. Sotomayor, Two-Sided Matching: A Study in Game-Theoretic Modeling and
Analysis, Econometric Society Monographs, Cambridge University Press, 1990.

A. D. Palu, A. Dovier, A. Formisano, E. Pontelli, CUD@SAT: SAT solving on GPUs, J. Exp. Theor.
Artif. Intell. 27 (2015) 293-316. doi:10.1080/0952813X.2014.954274.

A. Dovier, A. Formisano, E. Pontelli, F. Vella, Parallel execution of the ASP computation - an
investigation on GPUs, in: M. D. Vos, T. Eiter, Y. Lierler, F. Toni (Eds.), Proc. of ICLP 2015, Technical
Communications, volume 1433 of CEUR Workshop Proceedings, CEUR-WS.org, 2015.

A. Dovier, A. Formisano, E. Pontelli, Parallel answer set programming, in: Y. Hamadi, L. Sais
(Eds.), Handbook of Parallel Constraint Reasoning, Springer, 2018, pp. 237-282. doi:10.1007/
978-3-319-63516-3_7.

A. Dovier, A. Formisano, F. Vella, GPU-based parallelism for ASP-solving, in: P. Hofstedt, S. Abreu,
U. John, H. Kuchen, D. Seipel (Eds.), Proc. of DECLARE’19, volume 12057 of LNCS, Springer, 2019,
pp- 3-23. doi:10.1007/978-3-030-46714-2_1.

F. Tardivo, A. Dovier, A. Formisano, L. Michel, E. Pontelli, Constraint propagation on GPU: a
case study for the cumulative constraint, Constraints An Int. J. 29 (2024) 192-214. doi:10.1007/
S10601-024-09371-W.

F. Tardivo, A. Dovier, A. Formisano, L. Michel, E. Pontelli, Constraint propagation on GPU: a case
study for the alldifferent constraint, J. Log. Comput. 33 (2023) 1734-1752. d0i:10.1093/L0GCOM/
EXADO33.

F. Tardivo, L. Michel, E. Pontelli, CP for bin packing with multi-core and GPUs, in: P. Shaw (Ed.),
Proc. of CP’24, volume 307 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024, pp.
28:1-28:19. d0i:10.4230/LIPICS.CP.2024.28.

D. Gale, L. S. Shapley, College admissions and the stability of marriage, The American Mathematical
Monthly 69 (1962) 9-15.

F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming, volume 2 of Founda-
tions of Artificial Intelligence, Elsevier, 2006.

L. Michel, P. Schaus, P. Van Hentenryck, MiniCP: a lightweight solver for constraint programming,

http://dx.doi.org/10.1080/0952813X.2014.954274
http://dx.doi.org/10.1007/978-3-319-63516-3_7
http://dx.doi.org/10.1007/978-3-319-63516-3_7
http://dx.doi.org/10.1007/978-3-030-46714-2_1
http://dx.doi.org/10.1007/S10601-024-09371-W
http://dx.doi.org/10.1007/S10601-024-09371-W
http://dx.doi.org/10.1093/LOGCOM/EXAD033
http://dx.doi.org/10.1093/LOGCOM/EXAD033
http://dx.doi.org/10.4230/LIPICS.CP.2024.28

Mathematical Programming Computation 13 (2021).

[26] R. Gentzel, L. Michel, W. J. van Hoeve, HADDOCK: a language and architecture for decision
diagram compilation, in: H. Simonis (Ed.), Proc. of CP’20, volume 12333 of LNCS, Springer, 2020.

[27] S. Travasci, A GPU-based Parallel Propagator for the Stable Marriage Constraint, Master’s thesis,
University of Udine, Italy, 2025.

[28] NVIDIA Corporation, NVIDIA CUDA Zone, 2025. https://developer.nvidia.com/cuda-zone.

[29] NVIDIA, CUDA C++: Programming Guide, NVIDIA Press, Santa Clara, CA, 2025. Version 12.9.

A. CUDA and GPU Computing, in a Nutshell

GPU-computing can be seen as the use of a graphics processing unit (GPU) to accelerate computations
traditionally handled by the central processing unit (CPU). NVIDIA introduced the Compute Unified
Device Architecture (CUDA), a general-purpose programming library that allows programmers to ignore
the underlying graphics concepts in favor of high-performance computing concepts [29]. It has been
successfully used to accelerate computations in a variety of fields, such as physics, bioinformatics, and
machine learning, to mention some among many.

The architecture of a GPU (cf., Fig. 6) includes a main memory (DRAM), typically external to the
chip and used as global memory, an L2 cache, and an array of streaming multiprocessors. Each streaming
multiprocessor contains a small amount of fast memory integrated into the chip, used as an L1 cache
or shared memory, and several CUDA cores, responsible for the actual execution of instructions. The
architecture is designed to allow fast context switching of lightweight threads.

The conceptual model underlying the parallelism supported by CUDA is the Single-Instruction
Multiple-Thread (SIMT), in which the same instruction is executed by different threads, while data and
operands can vary from thread to thread.

A CUDA program includes parts intended to execute on the CPU (also referred to as host) and
parts intended to execute concurrently with the GPU (usually referred to as device). In the simplest
possible interaction between host and device, the host code transfers data to the device global memory,
launches a sequence of parallel computations on the device, and retrieves the results from device
memory. Commands are sent to the device from the host in a stream and are executed in-order. Multiple
streams can be used to run concurrent parallel computations on the device. The CUDA library supports
interaction, synchronization, and communication between the host and the device. Each computation
on the device is described as a set of concurrent threads (a grid, in CUDA terminology), each of which
performs the same function (called a kernel). Each thread is executed by a CUDA core; these threads are
organized hierarchically into warps (groups of 32 threads that execute in lock-step mode) and thread
blocks. Each block is assigned for execution to a streaming multiprocessor. Threads in a warp/block are
intended to execute the same instruction on different data. If the control flow between threads within a
warp diverges, their execution is serialized. The global memory of the device is accessible to all threads,
while threads in the same block can access shared memory at high speed.

https://developer.nvidia.com/cuda-zone

CUDA Core

Streaming Multiprocessor

L1 cache

1 |
Shared memory

A 4

L2 cache

i

Global memory

Figure 6: Simplified GPU architecture

	1 Introduction
	2 The Extended Gale–Shapley Algorithm
	3 CSP and the Stable Marriage Constraint
	3.1 The MiniCP Solver and its Extension Mechanism

	4 The Parallel Propagator: SMP on GPU
	4.1 Integration into MiniCPP

	5 Experimental Evaluation
	6 Conclusions
	A CUDA and GPU Computing, in a Nutshell

