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Abstract
The Nurse Scheduling Problem (NSP) is a well-known combinatorial optimization problem with significant
practical implications in healthcare workforce management. In this paper, we investigate the use of Answer Set
Programming (ASP) to model and solve realistic nurse scheduling scenarios in two Italian healthcare institutions:
the Mariano Santo and the Annunziata hospitals. We design ASP encodings capable of handling both general and
institution-specific constraints, including shift coverage requirements, rotation rules, and personal unavailability.
We analyze the impact of solver configurations and optimization strategies, comparing the performance of clingo
and wasp across multiple solving modes. Our experimental results show that unsatisfiable core-based strategies
are able to find optimal solutions for the tested instances within a few seconds.
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1. Introduction

The organization of nurses’ work schedules is a fundamental task in healthcare management, since
it has a direct impact on the quality of the service provided to patients and on the satisfaction and
well-being of the medical staff [1, 2]. The Nurse Scheduling Problem (NSP) is the problem of assigning
shifts to nurses over a planning horizon, typically a week or a month, while respecting a wide range
of constraints. These constraints usually involve coverage requirements, labor regulations, workload
balance, and personal or institutional preferences [3, 4]. The NSP is characterized by a high degree of
variability, as its formulation often depends on the specific organizational rules and labor regulations in
place within each country, as well as on local practices adopted by individual hospitals or departments.
In Italy, for instance, there are general national-level guidelines that define key aspects such as maximum
working hours, mandatory rest periods, and vacation entitlements. However, these general rules are
typically complemented by more specific requirements that reflect the internal organization of each
healthcare facility. These may include the structural needs of different departments, such as the required
number of nurses per shift or the distinction between inpatient and outpatient units, as well as informal
practices and long-standing habits developed over time by the personnel. As a result, each instance
of the NSP must be modeled to take into account both regulatory constraints and the operational and
cultural context of the department for which the schedule is being produced. For this reason, the NSP
has been widely studied in the literature, and it is known to be a combinatorial optimization problem of
high complexity, especially when applied to real-world scenarios where numerous practical rules and
exceptions must be taken into account.

In this paper, we propose a solution based on Answer Set Programming (ASP) [5, 6] to two different
variants of the NSP. ASP is a declarative programming paradigm that is particularly well-suited to model
problems characterized by complex constraints and multiple interacting components as demonstrated
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by the high number of its applications in both academic and industrial contexts [7, 8, 9, 10, 11]. Its
ability to represent non-monotonic reasoning and to express hard and soft constraints in a natural
and compact form makes it a powerful tool for addressing scheduling and planning problems [12].
Indeed, ASP has already been successfully applied to various problems in the healthcare domain [13, 14],
including the NSP itself, although in previous works the focus has been on different types of constraints
compared to those addressed in this study [15, 16].

As for the NSP variants considered in this paper, they were defined by two different hospital de-
partments in the city of Cosenza, Italy. The first department belongs to the Mariano Santo Hospital,
while the second is part of the Annunziata Hospital. Although the two departments present similar
scheduling requirements from a general point of view, there are several differences in the specific rules
and organizational needs that must be respected. In both cases, the objective is to generate cyclic
schedules, that is, schedules based on a repeating sequence of working days and rest days, in order to
ensure a balanced distribution of shifts over time. However, the internal policies of the two departments
differ, and therefore require separate modeling strategies.

The proposed ASP encodings allow us to generate complete monthly schedules that satisfy all the
required constraints, both common and department-specific. Thanks to the efficiency of modern ASP
solvers, specifically clingo [17] and wasp [18], we are able to obtain (optimal) solutions in a few seconds.
This confirms the applicability of ASP as a viable approach for supporting nurse scheduling in real
healthcare contexts, where flexibility and customizability are essential.

To summarize, the contribution of this work is twofold. First, we provide two concrete case studies
of the NSP arising in real-world contexts. Second, we show how ASP can be used to formalize and solve
them within a few seconds.

2. Nurse Scheduling Problem (NSP)

The NSP consists of assigning nurses to shifts over a predetermined period of time. In this section, we
describe the NSP as it arises in the two hospital departments considered in our study: one from Mariano
Santo Hospital and the other from Annunziata Hospital, both located in Cosenza, Italy. While the
general structure of the scheduling problem is similar in both cases, each department presents specific
operational needs and organizational constraints that must be taken into account when generating
feasible and acceptable schedules.

We begin by outlining a set of general rules and requirements that are common to both hospitals. These
include the definition of shift types, national labor regulations, and standard contractual obligations
that apply uniformly to the nursing staff. Then, we introduce the specific rules associated with each
department.

2.1. General Rules

The scheduling model is based on a set of predefined shifts, each with specific time intervals and
durations. The available shifts include: morning (08:00–14:00, 6 hours), afternoon (14:00–20:00, 6 hours),
night (20:00–00:00, 4 hours), and post-night (00:00–08:00, 8 hours). The night and post-night shifts are
always considered as a combined duty period, representing a full night shift of 12 consecutive hours.

The schedule must comply with several temporal and contractual constraints. A minimum rest period
of 11 hours is required between the end of one shift and the start of the next. The maximum number
of working hours allowed per day is 13. In some cases, a nurse may be assigned both morning and
afternoon shifts on the same day, which is referred to as a long call. On a weekly basis, nurses are
expected to work approximately 36 hours, a target that is monitored and enforced over the course of
the entire month rather than weekly.

Each nurse is entitled to 32 vacation days per year (30 in certain cases), with two weeks selected
by the administration and two weeks chosen by the employee. These vacation periods are commonly
managed in two-week blocks, known as quindicine.



As a general principle, a balanced shift rotation is encouraged, typically following the sequence:
morning → afternoon → night → post-night → rest. In any case, achieving an even distribution of
different shift types across the staff is considered beneficial. Regarding night shifts, a maximum of two
consecutive nights is allowed, although the preferred pattern is one night followed by a rest day.

2.2. Mariano Santo

Operational constraints also stem from the organizational structure of the hospital. The outpatient unit
operates, during both morning and afternoon, Monday through Friday and remains closed on holidays,
while the inpatient department (or ward) is open 24 hours a day, seven days a week. Some nurses
are permanently assigned to specific units due to personal or medical reasons. Others are restricted
from working in the inpatient department and can only be assigned to outpatient duties. There are
also nurses who are exempt from night shifts, while a portion of the staff is fully flexible and can be
scheduled in both units without restrictions.

Each unit has specific requirements concerning staffing levels. The baseline configuration assumes
one nurse per shift in the inpatient department (morning, afternoon, and night), and a minimum of seven
nurses in the outpatient unit during the morning shift, and two during the afternoon. Additionally, each
day two nurses are assigned to an “off-shift” status (not to be confused with rest days) meaning they
are available as reserve staff to cover any unforeseen needs. These off-shift assignments are scheduled
either for the entire month or on a weekly basis, depending on planning requirements.

2.3. Annunziata

The considered department at Annunziata Hospital is an inpatient unit that operates continuously, 24
hours a day, 7 days a week. The scheduling model for this unit is relatively regular, as it involves only
the ward, with no outpatient services. Each shift requires the presence of two nurses, which must be
ensured for every shift throughout the month.

From a constraint perspective, this scenario does not introduce significant complexity beyond the
general rules previously described. However, a particular requirement concerns one of the nurses,
who is married to another nurse working in a different department of the same hospital. According to
national regulations, spouses employed within the same institution must not be assigned to the same
shift or to consecutive shifts on the same day. For instance, if the spouse is assigned to the morning
shift, the nurse in question cannot be assigned to the afternoon shift; instead, they must either be on
rest or scheduled for the night shift.

An exception to this rule has been agreed upon by the individuals involved and is respected by both
departments: both nurses must work the same night shift. This exception simplifies coordination in
those cases, but the constraint remains valid for all other shifts. Since this constraint affects two distinct
departments, the heads of the respective units coordinate closely to ensure compliance. Typically, the
responsibility for adapting the schedule to accommodate this rule alternates monthly between the two
departments: one month the schedule is adjusted by the manager of one department, and the next
month by the other.

3. ASP Solution

In this section, we present the ASP encodings developed to model the nurse scheduling problems for
the two case studies considered in this work. The first concerns the Mariano Santo rehabilitation clinic,
while the second focuses on the Annunziata hospital. The ASP model for the Mariano Santo clinic is
introduced in Section 3.1, while the encoding for the Annunziata hospital is discussed in Section 3.2. In
the following, we assume the reader to be familiar with ASP syntax and semantics [6, 19].



3.1. Mariano Santo

The ASP model for the Mariano Santo clinic is divided into two parts. In Section 3.1.1, we describe the
data model used to represent the structure of the problem, including nurses and shifts. Section 3.1.2
then presents the ASP encoding that formalizes the scheduling logic and optimization criteria, based on
the defined data schema.

3.1.1. Data Model

The encoding uses several key predicates to model the nurse scheduling domain:

• shift(ID, TYPE, HOURS) defines a shift identified by ID, with type TYPE (e.g., morning, after-
noon, etc.) and associated with HOURS working hours.

• day(D) defines the days of the month under consideration.
• clinic_open(WEEK, DAY) indicates that the clinic is open during a given WEEK on specified DAY.
• nurse(ID) defines the set of nurses involved in the scheduling.
• nurse_rotation(NURSE_ID, ORDER, SHIFT_ID) encodes the predefined cyclic rotation for cer-
tain nurses, mapping their rotation order to specific shifts.

• rotation_length(N) defines the length of the rotation cycle.
• clinic_only(ID) indicates nurses who can only be assigned to outpatient (clinic) duties.
• reserve(ID) marks nurses who are on reserve and used to fill schedule gaps as needed.
• staff_per_shift(SHIFT_ID, N) specifies the required number of personnel for a shift type
within the outpatient unit.

• clinic_shifts(ID, TYPE, HOURS) includes the clinic-compatible shifts (excluding night and
postnight), with an additional “long” shift type.

• assign(NURSE, DAY, SHIFT, ORDER) models the assignment of a nurse to a specific shift on a
given day, according to their position in the cyclic rotation.

• result(NURSE, DAY, SHIFT) is the output predicate, collecting the assignments made for the
final schedule.

The following is the set of input facts provided to the problem.

shift(1, morning, 6). shift(2, afternoon, 6). shift(3, night, 4).
shift(4, postnight, 8). shift(5, vacation, 0). shift(6, rest, 0).
day(1..30). nurse(1..14). reserve(13..14). clinic_only(6..14).
clinic_open(1,1..4). clinic_open(2,7..11). clinic_open(3,14..18).
clinic_open(4,22..24). clinic_open(5,28..30). rotation_length(5).
nurse_rotation(1, 0, 1). nurse_rotation(2, 1, 2). nurse_rotation(3, 2, 3).
nurse_rotation(4, 3, 4). nurse_rotation(5, 4, 6).
staff_per_shift(1, 7). staff_per_shift(2, 2).

An example of the computed schedule is reported in Figure 1, where M, A, N, AN, V, R, L stand for
morning, afternoon, night, postnight, vacation, rest, and long, respectively.

3.1.2. ASP Encoding

In the following, we describe the meaning of each rule of the ASP encoding reported in Figure 2, using
the notation 𝑟𝑖 to refer to the rule appearing at line 𝑖 in the logic program.

Rule 𝑟1 initializes the rotation-based schedule for each nurse. Specifically, for any nurse X, this rule
assigns them to the shift S that corresponds to their position Ord in the predefined cyclic rotation. This
assignment is made for the first day of the planning period.

Rule 𝑟2 extends the cyclic schedule over the rest of the planning horizon. Given that a nurse X was
assigned to shift S with order Ord on day D, the rule computes the next order Ord2 (modulo the rotation
length Z) and assigns the corresponding shift NS on the following day D+1.



Figure 1: Example of a possible solution for the NSP variant considered in Mariano Santo hospital.

1 assign(X,1,S,Ord) :- nurse(X), nurse_rotation(X,Ord,S).

2 assign(X,D+1,NS,Ord2) :- assign(X,D,S,Ord), Ord2 = (Ord+1)\Z, rotation_length(Z),
nurse_rotation(_,Ord2,NS), day(D+1).

3 clinic_shifts(X, N, H) :- shift(X, N, H), X != 3, X != 4.
4 clinic_shifts(7, long, 12).
5 {assign(X,D,S) : clinic_shifts(S,_,_)} = 1 :- clinic_only(X), clinic_open(_,D).

6 :- #count{X: assign(X,D,S); X: assign(X,D,7)} != N, clinic_open(_,D), staff_per_shift(S,
N).

7 :- clinic_only(X), not reserve(X), clinic_open(W,_), #sum{H,D: assign(X,D,S),
clinic_open(W,D), clinic_shifts(S,_,H)} > 36.

8 :∼ reserve(N), day(D), not assign(N,D,5). [1@1,D,X]

9 result(X,D,N) :- assign(X,D,SID,_), shift(SID,N,_).
10 result(X,D,N) :- assign(X,D,SID), shift(SID,N,_).
11 #show result/3.

Figure 2: ASP Encoding for the Mariano Santo Hospital.

Rule 𝑟3 defines which shifts are considered valid for outpatient (clinic-only) nurses. Specifically, it
excludes night (X = 3) and postnight (X = 4) shifts from this category.

Rule 𝑟4 introduces a synthetic “long shift” of 12 hours, identified by ID 7 and labeled as long, which
is also available to outpatient-only nurses. This shift models a combined morning and afternoon shift.

Rule 𝑟5 states that, for each clinic-only nurse X, exactly one clinic-compatible shift must be assigned
on each day D when the clinic is open.

Rule 𝑟6 enforces that, for each clinic-open day D, the number of assigned nurses (counting both normal
and long shifts) must exactly match the required number N specified for shift type T. This is a global
cardinality constraint for staff coverage.

Rule 𝑟7 limits the total number of hours worked by non-reserve outpatient-only nurses in each open
clinic week W. The rule ensures that the sum of the durations H of assigned shifts does not exceed
36 hours. Note that this requirement is automatically enforced for nurses assigned to the inpatient
department, due to the use of cyclic rotation. Moreover, for nurses on reserve, this constraint is relaxed,
as they are deployed to fill staffing gaps as needed. However, in practice, it is unlikely that they will
exceed the allowed number of working hours.

Rule 𝑟8 is a weak constraint that penalizes the use of reserve nurses for any shift other than vacation
(shift 5). The solver attempts to minimize such occurrences, preferring solutions where reserves are
used only when strictly necessary.

Rule 𝑟9 and rule 𝑟10 are used to project the final output of the program. They collect all assignments,
whether produced by the rotation-based logic or not, under the atoms of the form result(⋅, ⋅, ⋅).



Figure 3: Example of a possible solution for the NSP variant considered in Annunziata hospital.

Finally, the directive at line 11 instructs the ASP solver to display only the result atoms in the
output, which represent the final schedule.

3.2. Annunziata

Concerning the Annunziata hospital, the data model is similar of the one for the Mariano Santo Hospital,
but we consider the additional atoms of the form unavailable(N,D,S), meaning that the nurse N
cannot be assigned to the shift S during the day D. The following is a set of the input facts provided to
the problem.

shift(1, morning, 6). shift(2, afternoon, 6). shift(3, night, 4).
shift(4, post-night, 8). shift(5, vacation, 0). shift(6, rest, 0).
day(1..30). nurse(1..12). reserve(11..12). cycle_length(5).
week(1,1..6). week(2,7..13). week(3,14..20). week(4,21..27). week(5,28..30).
nurse_rotation(1, 0, 1). nurse_rotation(2, 1, 2). nurse_rotation(3, 2, 3).
nurse_rotation(4, 3, 4). nurse_rotation(5, 4, 6).
nurse_rotation(6, 0, 1). nurse_rotation(7, 1, 2). nurse_rotation(8, 2, 3).
nurse_rotation(9, 3, 4). nurse_rotation(10, 4, 6).
required_staff_per_shift(1..4, 2).

Note that atoms of the form unavailable(N,D,S) are optional and depend on the work schedule of
the nurse’s spouse.

An example of the computed schedule is reported in Figure 3. As in the previous case, M, A, N, AN, V, R,
L stand for morning, afternoon, night, postnight, vacation, rest, and long, respectively.

The ASP encoding used in this hospital is reported in Figure 4 and described in the following.
Rule 𝑟1 is used to assign each nurse to a shift on day 1 based on their initial position in the predefined

rotation cycle, as specified by the predicate nurse_rotation/3.
Rule 𝑟2 ensures the daily progression of nurse assignments according to the rotation: after working

shift S at day D with order Ord, a nurse moves to the next shift NS corresponding to the incremented
order Ord2, cycling back according to the predefined cycle length.

Rule 𝑟3 defines a derived predicate result/3, which records the assignment of nurse N to shift SID
on day D, abstracting away the rotation order information.

Rule 𝑟4 imposes that exactly one shift must be assigned to each nurse on each day, ensuring that each
nurse has precisely one work assignment per day.

Rule 𝑟5 enforces the constraint that if a nurse is assigned a night shift (shift 3) on day D, they must be
assigned a post-night recovery shift (shift 4) on day D+1.

Rule 𝑟6 ensures that if a nurse is assigned a post-night shift (shift 4) on day D, then the previous day
D-1 must have been a night shift (shift 3).

Rule 𝑟7 requires that after a post-night shift (shift 4) on day D, the nurse must be assigned a rest day
(shift 6) on day D+1, enforcing proper recovery after night work.

Rule 𝑟8 verifies that for every day D and for every shift S, the number of nurses assigned matches the
required staffing levels, as specified by required_staff_per_shift/2.

Rule 𝑟9 introduces a weekly workload constraint: for each nurse N and each week W, the sum of the



1 assign(N,1,S,Ord) :- nurse(N), nurse_rotation(N,Ord,S).

2 assign(N,D+1,NS,Ord2) :- assign(N,D,S,Ord), Ord2 = (Ord+1)\Z, cycle_length(Z),
nurse_rotation(_,Ord2,NS), day(D+1).

3 result(N,D,SID) :- assign(N,D,SID,_).

4 {assign(N,D,S) : shift(S,_,_)} = 1 :- nurse(N), day(D).

5 :- assign(N,D,3), not assign(N,D+1, 4), day(D+1).
6 :- assign(N,D,4), not assign(N,D-1, 3), day(D-1).
7 :- assign(N,D,4), not assign(N,D+1, 6), day(D+1).

8 :- day(D), shift(S,_,_), required_staff_per_shift(S, V), #count{N : assign(N,D,S)} != V.
9 :- nurse(N), not reserve(N), week(W,_), #sum{H,D : assign(N,D,S), week(W,D),

shift(S,_,H)} > 36.

10 :- unavailable(N,D,S), assign(N,D,S).

11 :- nurse(N), #count{D: assign(N,D,3)} > 6.

12 :∼ not assign(N,D,S), result(N,D,S). [1@1,N,D]
13 :∼ reserve(N), day(D), not assign(N,D,5). [1@2,N,D]

14 #show assign/3.

Figure 4: ASP Encoding for the Annunziata Hospital.

hourly workload associated with their assigned shifts must not exceed 36 hours. As in the Mariano
Santo requirements, for nurses on reserve, this constraint is relaxed, as they are deployed to fill staffing
gaps as needed.

Rule 𝑟10 prohibits assignments that conflict with individual unavailabilities.
Rule 𝑟11 enforces a limit on the number of night shifts assigned to each nurse. Specifically, it prohibits

any answer set in which a nurse N is assigned to the night shift (identified as shift 3) on more than 6
days.

Rule 𝑟12 defines a weak constraint that penalizes missing assignments predicted by the previous
solution (captured by result/3), guiding the solver towards maintaining continuity with the cyclic
plan.

Rule 𝑟13 defines another weak constraint penalizing the failure to assign a reserve nurse to vacation
(shift 5) on a day, encouraging the use of reserves mainly for covering absences.

Finally, the directive #show assign/3 specifies that only the nurse-day-shift assignments should be
displayed in the output.

4. Experiments

In this section, we present the results of the experiments conducted on real-world data from the two
hospitals. The experimental analysis follows three main directions. The first one concerns changing
the heuristic options of the considered solvers: auto, frumpy, jumpy, handy, crafty, trendy, many for
clingo v.5.7.1 [17]; and moms, binary, watches, combination for wasp v.3.0.3 [20]. These heuristic
parameters influence how the solver performs the different operations during the computation of
an answer set, as variable selection, branching decisions, and restart policies. In general, no single
heuristic configuration is expected to perform optimally across all problem domains. Instead, certain
configurations tend to be more effective for specific classes of problems, making the choice of heuristics



Configuration Time (s)
clingo 69.161
clingo --configuration=auto 69.085
clingo --configuration=frumpy >300
clingo --configuration=jumpy 90.373
clingo --configuration=handy 3.612
clingo --configuration=crafty >300
clingo --configuration=trendy 6.845
clingo --configuration=many 69.189
clingo --opt-strategy=usc 3.316
clingo --opt-strategy=usc --configuration=auto 3.299
clingo --opt-strategy=usc --configuration=frumpy 1.904
clingo --opt-strategy=usc --configuration=jumpy 3.956
clingo --opt-strategy=usc --configuration=handy 4.927
clingo --opt-strategy=usc --configuration=crafty 2.053
clingo --opt-strategy=usc --configuration=trendy 2.554
clingo --opt-strategy=usc --configuration=many 3.315
clingo --parallel-mode=2 3.263
clingo --parallel-mode=4 4.604
clingo --parallel-mode=8 5.944
wasp 10.393
wasp --init-strategy=moms 8.757
wasp --init-strategy=binary 8.744
wasp --init-strategy=watches 10.560
wasp --init-strategy=combination 12.324
wasp --weakconstraints-algorithm=basic 17.856
wasp --weakconstraints-algorithm=basic --init-strategy=moms 14.591
wasp --weakconstraints-algorithm=basic --init-strategy=binary 14.288
wasp --weakconstraints-algorithm=basic --init-strategy=watches 15.540
wasp --weakconstraints-algorithm=basic --init-strategy=combination 16.736

Table 1
Execution times (in seconds) for various clingo and wasp configurations on the instance from Mariano Santo
hospital. Best results are highlighted in bold.

a critical factor in solver performance [21].
The second one consists of modifying the algorithms used to process weak constraints. Before

describe the main configurations, it is important to briefly recall the main algorithms used by the
solvers to compute optimal stable models. Indeed, weak constraints in ASP are typically handled using
either model-guided or unsatisfiable core-guided optimization algorithms. The two approaches differ
fundamentally in how they search for optimal solutions.

Model-guided algorithms incrementally explore the space of stable models, attempting to find
successively better solutions by enforcing stricter bounds on the cost. These algorithms are conceptually
simple and can quickly find feasible (suboptimal) models, but they often struggle to prove optimality,
especially in instances with a large or complex cost structure. In wasp, this approach is activated by
selecting the basic weak constraint algorithm using the option --weakconstraints-algorithm=basic.
In clingo, model-guided optimization is used by default when the --opt-strategy option is not
explicitly specified.

Unsatisfiable core-guided algorithms, on the other hand, operate by iteratively identifying unsatisfi-
able subsets (cores) of the problem that prevent further cost improvements. Each core represents a con-
flict that must be resolved to achieve a lower cost, and by systematically eliminating such cores, the solver
converges toward the optimal solution. This strategy tends to be significantly more effective in proving
optimality. In clingo, core-guided optimization is enabled by setting –-opt-strategy=usc. In wasp,
this is the default optimization strategy and is used whenever –-weakconstraints-algorithm=basic
is not specified. We refer the reader to [22] for an explanation and a comparison of the different



algorithms.
Finally, the third direction is about the effect of parallelism in clingo (as wasp does not support

parallel solving). When executed in parallel mode, clingo assigns a distinct configuration to each thread,
both in terms of search heuristics and weak constraint optimization strategies. This means that each
solver thread explores the search space using a different combination of parameters, such as decision
heuristics, restart policies, and optimization techniques (e.g., model-guided vs. unsatisfiable core-guided).
This design increases the diversity of the search and enhances the likelihood of quickly identifying
either high-quality feasible solutions or proving optimality. The parallel mode can be activated via
the option –-parallel-mode=n, where n specifies the number of threads to run concurrently. In our
experiments, we executed clingo with 2, 4, and 8 threads (--parallel-mode=2, --parallel-mode=4,
and --parallel-mode=8, respectively).

All experiments were executed on a MacBook Air equipped with an Apple M2 processor and 24 GB
of RAM. A timeout of 5 minutes was imposed for each run. Configurations that exceeded the timeout
are marked with a >300 indication in the table.

4.1. Mariano Santo

To evaluate the computational performance of our ASP encoding, we conducted an experiment on a
single instance related to the scheduling problem for the month of April at the Mariano Santo clinic.
The specific instance considered is reported in Section 3.1.1. The instance models a planning horizon of
30 days, corresponding to the month of April, with the clinic being closed during weekends, on Easter
Monday (April 21), and on April 25, which is a national holiday in Italy.

Table 1 reports the execution time required to find an optimal solution using various configurations
of the solvers clingo and wasp. It is important to note that a feasible solution was found within a
few seconds across all configurations; the reported times concern the effort necessary to guarantee
optimality.

Execution times vary significantly across configurations. As a general observation, algorithms based
on unsatisfiable cores achieve the best performance in both clingo and wasp, with clingo configured
with frumpy is able to find the optimal solution in less than 2 seconds, and wasp configured with the
init strategy set to binary is able to solve the instance in approximately 9 seconds. For clingo, all the
configurations are able to terminate within 5 seconds when the algorithm based on unsatisfiable cores
is enabled. Instead, the default algorithm obtains mixed results, as there are two cases (configurations
frumpy and crafty) where it is not able to terminate within 5 minutes. The best configurations in this
case are handy and trendy. Moreover, parallel solving in clingo is also quite efficient, particularly
with 2 threads.

For wasp, solving times were generally below 20 seconds across all configurations. The binary and
moms initialization strategies resulted in slightly faster solving times compared to the default, while the
use of the basic weak constraint algorithm increased the solving time, as seen in clingo.

4.2. Annunziata

Table 2 reports the execution times for the Annunziata hospital instance, evaluating the same solver
configurations as in the previous experiment. This instance corresponds to the dataset described in Sec-
tion 3.2, where we simulate the unavailability of nurse 1 using atoms of the form unavailable(N,D,S).
Specifically, the unavailability data were derived from the real work schedule of nurse 1’s spouse,
ensuring realistic constraints in the generated instance.

An interesting trend emerges from the results: configurations based on unsatisfiable core algorithms
(i.e., those using the --opt-strategy=usc flag in clingo or the default algorithm in wasp) consistently
solve the instance in less than two seconds. These include all clingo configurations combined with usc
as well as wasp with or without alternative initialization strategies. In particular, the fastest clingo
configuration was usc with crafty (0.703s), while the versions of wasp perform approximately the
same, with a slight advantage when the init strategy is set to watches (1.127s).



Configuration Time (s)
clingo >300
clingo --configuration=auto >300
clingo --configuration=frumpy >300
clingo --configuration=jumpy >300
clingo --configuration=handy >300
clingo --configuration=crafty >300
clingo --configuration=trendy >300
clingo --configuration=many >300
clingo --opt-strategy=usc 1.274
clingo --opt-strategy=usc --configuration=auto 1.274
clingo --opt-strategy=usc --configuration=frumpy 1.772
clingo --opt-strategy=usc --configuration=jumpy 0.861
clingo --opt-strategy=usc --configuration=handy 1.237
clingo --opt-strategy=usc --configuration=crafty 0.703
clingo --opt-strategy=usc --configuration=trendy 1.299
clingo --opt-strategy=usc --configuration=many 1.274
clingo --parallel-mode=2 0.526
clingo --parallel-mode=4 0.293
clingo --parallel-mode=8 0.248
wasp 1.463
wasp --init-strategy=moms 1.147
wasp --init-strategy=binary 1.154
wasp --init-strategy=watches 1.127
wasp --init-strategy=combination 1.193
wasp --weakconstraints-algorithm=basic >300
wasp --weakconstraints-algorithm=basic --init-strategy=moms >300
wasp --weakconstraints-algorithm=basic --init-strategy=binary >300
wasp --weakconstraints-algorithm=basic --init-strategy=watches >300
wasp --weakconstraints-algorithm=basic --init-strategy=combination >300

Table 2
Execution times (in seconds) for various clingo and wasp configurations on the instance from Mariano Santo
hospital. Best results are highlighted in bold.

In contrast, all model-guided optimization approaches, such as those enabled by the default con-
figurations of usc or wasp using the basic algorithm for weak constraints, failed to find the optimal
solution within the timeout. However, like in the previous experiment, these configurations were still
able to find a feasible (but not optimal) solution relatively quickly.

Additionally, we observe that enabling parallel solving in clingo also lead to good performance. The
best result was achieved with 4 threads (--parallel-mode=8), reaching optimality in 0.248 seconds,
confirming the benefit of concurrent search in core-based optimization.

Overall, this experiment confirms that for complex, highly constrained instances such as the Annun-
ziata scheduling problem, unsatisfiable core-based algorithms dominate in performance, both in clingo
and wasp. In contrast, model-guided techniques appear unsuitable for this instance when optimality is
required within tight time constraints.

5. Related Work

In recent years, a wide range of approaches have been proposed to tackle the NSP, each characterized
by different assumptions and constraints. The primary distinctions among these works concern (i) the
length of the planning horizon, (ii) the modeling of shifts, (iii) the staffing requirements per shift, and
(iv) the application of institutional or contractual constraints on nurses’ schedules. A detailed review of
these dimensions is provided in [3].

The variant of NSP presented in this work considers a one-month scheduling window, which is aligned



with the common planning periods adopted in operational practice, although some previous studies,
such as [23], have focused on longer horizons, including annual schedules. Unlike some models that
consider homogeneous or overlapping shifts, our approach explicitly distinguishes between morning,
afternoon, and night shifts, with strict non-overlapping constraints. In contrast, early formulations of
the problem often assumed a single type of shift or less granular temporal divisions [24].

Several computational approaches have been investigated for NSP, ranging from exact methods to
heuristic and metaheuristic techniques. Integer programming models remain a foundational strategy,
as seen in works such as [25, 26, 27]. Metaheuristic approaches have also proven effective, including
genetic algorithms [28], fuzzy logic-based formulations [29], and ant colony optimization [30].

More recently, attention has also been directed toward the use of declarative and hybrid methods for
nurse scheduling. For example, [31] explores a model of the Hybrid Salp Swarm Algorithm and Genetic
Algorithm (HSSAGA). In the context of workforce well-being, studies such as [1], [2], [32], and [33]
emphasize the impact of schedule quality on nurse satisfaction, performance and retention, highlighting
the importance of fairness and compatibility with personal life, including family constraints.

With respect to the use of ASP for solving the NSP, [15] proposed an ASP encoding tailored to a
real-world scenario described by an Italian hospital. Some of the constraints addressed in their work,
such as the number of nurses required per shift and the general organization of shift types, are similar
to those considered in this paper. However, their approach targets a one-year planning horizon and
does not incorporate cyclic rotation constraints as we do here.

Building on that work, [16] introduced an enhanced version of the encoding and developed a
rescheduling framework capable of adapting to unexpected changes in staff availability, thus enabling
more flexible shift management in dynamic environments.

For a comprehensive overview of the field, we refer the reader to the surveys [3, 4, 34, 35].

6. Conclusions

In this paper, we presented an ASP-based approach to solve two variants of the NSP, focusing on
real-case scenarios from Italian healthcare facilities. Our encodings capture both common scheduling
requirements and domain-specific constraints, demonstrating how ASP can be adapted to reflect diverse
organizational practices. The experimental analysis highlights a clear advantage of unsatisfiable core-
guided optimization strategies, which achieved optimal solutions in a fraction of the time required by
traditional model-guided approaches. In particular, clingo and wasp showed great performance when
appropriately configured, solving complex instances in a few seconds. These results suggest that ASP is
a viable and efficient solution for practical nurse rostering tasks, provided that appropriate encoding
techniques and solver configurations are adopted. Future work includes extending the approach to
additional departments within the two hospitals, where different scheduling preferences may apply
and the number of nurses to manage would significantly increase. Another promising direction is the
development of a web-based application to support scheduling managers in interactively selecting the
constraints to enforce. Moreover, the experimental evaluation could be expanded to cover longer time
horizons, such as multiple months, to better assess scalability and robustness. Finally, we aim to explore
approaches for recomputing the plan when it cannot be followed due to unexpected events, such as
last-minute absences or emergency reassignments.

Acknowledgments

Carmine Dodaro andMarcoMaratea were supported by the European Union - NextGenerationEU and by
the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), Mission
4, Component 2, Investment 1.5, project “RAISE - Robotics and AI for Socio-economic Empowerment”
(ECS00000035) under the project “Gestione e Ottimizzazione di Risorse Ospedaliere attraverso Analisi
Dati, Logic Programming e Digital Twin (GOLD)”, CUP H53C24000400006.



Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT-4o in order to: Grammar and spelling
check. After using these tool, the authors reviewed and edited the content as needed and take full
responsibility for the publication’s content.

References

[1] L. Yu, H. Zhou, J. Li, X. Yu, Shift work sleep disorder in nurses: a concept analysis, BMC Nursing
24 (2025). URL: https://doi.org/10.1186/s12912-024-02651-z. doi:10.1186/s12912-024-02651-z.

[2] L. Lessi, I. de Barbieri, M. Danielis, Addressing nursing resignation: Insights from qualitative
studies on nurses leaving healthcare organisations and the profession, Journal of Advanced
Nursing 81 (2025) 2290 – 2315. URL: https://doi.org/10.1111/jan.16546. doi:10.1111/jan.16546.

[3] E. K. Burke, P. D. Causmaecker, G. V. Berghe, H. V. Landeghem, The state of the art of nurse
rostering, J. Scheduling 7 (2004) 441–499. URL: https://doi.org/10.1023/B:JOSH.0000046076.75950.0b.
doi:10.1023/B:JOSH.0000046076.75950.0b.

[4] B. Cheang, H. Li, A. Lim, B. Rodrigues, Nurse rostering problems - a bibliographic survey, European
Journal of Operational Research 151 (2003) 447–460. URL: https://doi.org/10.1016/S0377-2217(03)
00021-3. doi:10.1016/S0377-2217(03)00021-3.

[5] M. Gelfond, V. Lifschitz, Classical Negation in Logic Programs and Disjunctive Databases, New
Generation Comput. 9 (1991) 365–386.

[6] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Commun. ACM 54
(2011) 92–103. URL: http://doi.acm.org/10.1145/2043174.2043195. doi:10.1145/2043174.2043195.

[7] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, AI Mag. 37 (2016)
53–68. URL: https://doi.org/10.1609/aimag.v37i3.2678. doi:10.1609/AIMAG.V37I3.2678.

[8] P. Schüller, Answer set programming in linguistics, Künstliche Intell. 32 (2018) 151–155. URL:
https://doi.org/10.1007/s13218-018-0542-z. doi:10.1007/S13218-018-0542-Z.

[9] A. A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, E. C. Teppan, Industrial applications of
answer set programming, Künstliche Intell. 32 (2018) 165–176. URL: https://doi.org/10.1007/
s13218-018-0548-6. doi:10.1007/S13218-018-0548-6.

[10] A. D. Palù, A. Dovier, A. Formisano, E. Pontelli, ASP applications in bio-informatics: A short
tour, Künstliche Intell. 32 (2018) 157–164. URL: https://doi.org/10.1007/s13218-018-0551-y. doi:10.
1007/S13218-018-0551-Y.

[11] E. Erdem, V. Patoglu, Applications of ASP in robotics, Künstliche Intell. 32 (2018) 143–149. URL:
https://doi.org/10.1007/s13218-018-0544-x. doi:10.1007/S13218-018-0544-X.

[12] T. C. Son, M. Balduccini, Answer set planning in single- and multi-agent environments, Kün-
stliche Intell. 32 (2018) 133–141. URL: https://doi.org/10.1007/s13218-018-0546-8. doi:10.1007/
S13218-018-0546-8.

[13] P. Cappanera, S. Caruso, C. Dodaro, G. Galatà, M. Gavanelli, M. Maratea, C. Marte, M. Mochi,
M. Nonato, M. Roma, Recent answer set programming applications to scheduling problems
in digital health, in: AI4CC-IPS-RCRA-SPIRIT, volume 3883 of CEUR Workshop Proceedings,
CEUR-WS.org, 2024. URL: https://ceur-ws.org/Vol-3883/paper3_RCRA8.pdf.

[14] M. Alviano, R. Bertolucci, M. Cardellini, C. Dodaro, G. Galatà, M. K. Khan, M. Maratea, M. Mochi,
V. Morozan, I. Porro, M. Schouten, Answer set programming in healthcare: Extended overview,
in: IPS-RCRA, volume 2745 of CEUR Workshop Proceedings, CEUR-WS.org, 2020. URL: https:
//ceur-ws.org/Vol-2745/paper7.pdf.

[15] C. Dodaro, M. Maratea, Nurse scheduling via answer set programming, in: LPNMR, volume
10377 of LNCS, Springer, 2017, pp. 301–307. URL: https://doi.org/10.1007/978-3-319-61660-5_27.
doi:10.1007/978-3-319-61660-5\_27.

[16] M. Alviano, C. Dodaro, M. Maratea, Nurse (re)scheduling via answer set programming, Intelligenza
Artificiale 12 (2018) 109–124. URL: https://doi.org/10.3233/IA-170030. doi:10.3233/IA-170030.

https://doi.org/10.1186/s12912-024-02651-z
http://dx.doi.org/10.1186/s12912-024-02651-z
https://doi.org/10.1111/jan.16546
http://dx.doi.org/10.1111/jan.16546
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
http://dx.doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1016/S0377-2217(03)00021-3
https://doi.org/10.1016/S0377-2217(03)00021-3
http://dx.doi.org/10.1016/S0377-2217(03)00021-3
http://doi.acm.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195
https://doi.org/10.1609/aimag.v37i3.2678
http://dx.doi.org/10.1609/AIMAG.V37I3.2678
https://doi.org/10.1007/s13218-018-0542-z
http://dx.doi.org/10.1007/S13218-018-0542-Z
https://doi.org/10.1007/s13218-018-0548-6
https://doi.org/10.1007/s13218-018-0548-6
http://dx.doi.org/10.1007/S13218-018-0548-6
https://doi.org/10.1007/s13218-018-0551-y
http://dx.doi.org/10.1007/S13218-018-0551-Y
http://dx.doi.org/10.1007/S13218-018-0551-Y
https://doi.org/10.1007/s13218-018-0544-x
http://dx.doi.org/10.1007/S13218-018-0544-X
https://doi.org/10.1007/s13218-018-0546-8
http://dx.doi.org/10.1007/S13218-018-0546-8
http://dx.doi.org/10.1007/S13218-018-0546-8
https://ceur-ws.org/Vol-3883/paper3_RCRA8.pdf
https://ceur-ws.org/Vol-2745/paper7.pdf
https://ceur-ws.org/Vol-2745/paper7.pdf
https://doi.org/10.1007/978-3-319-61660-5_27
http://dx.doi.org/10.1007/978-3-319-61660-5_27
https://doi.org/10.3233/IA-170030
http://dx.doi.org/10.3233/IA-170030


[17] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, P. Wanko, Theory solving
made easy with clingo 5, in: ICLP TCs, volume 52 of OASICS, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016, pp. 2:1–2:15. URL: https://doi.org/10.4230/OASIcs.ICLP.2016.2.
doi:10.4230/OASIcs.ICLP.2016.2.

[18] M. Alviano, C. Dodaro, N. Leone, F. Ricca, Advances in WASP, in: LPNMR, volume 9345 of
LNCS, Springer, 2015, pp. 40–54. URL: https://doi.org/10.1007/978-3-319-23264-5_5. doi:10.1007/
978-3-319-23264-5_5.

[19] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, M. Maratea,
F. Ricca, T. Schaub, Asp-core-2 input language format, Theory Pract. Log. Program. 20 (2020)
294–309. URL: https://doi.org/10.1017/S1471068419000450. doi:10.1017/S1471068419000450.

[20] M. Alviano, G. Amendola, C. Dodaro, N. Leone, M. Maratea, F. Ricca, Evaluation of disjunctive
programs in WASP, in: LPNMR, volume 11481 of LNCS, Springer, 2019, pp. 241–255. URL:
https://doi.org/10.1007/978-3-030-20528-7_18. doi:10.1007/978-3-030-20528-7\_18.

[21] C. Dodaro, Design and implementation of modern CDCL ASP solvers, Intelligenza Artificiale 18
(2024) 239–259. URL: https://doi.org/10.3233/IA-240019. doi:10.3233/IA-240019.

[22] M. Alviano, C. Dodaro, J. Marques-Silva, F. Ricca, Optimum stable model search: algorithms and
implementation, J. Log. Comput. 30 (2020) 863–897. URL: https://doi.org/10.1093/logcom/exv061.
doi:10.1093/LOGCOM/EXV061.

[23] P. Chan, G. Weil, Cyclical staff scheduling using constraint logic programming, in: PATAT,
volume 2079 of LNCS, Springer, 2000, pp. 159–175. URL: https://doi.org/10.1007/3-540-44629-X_10.
doi:10.1007/3-540-44629-X_10.

[24] H. E. Miller, W. P. Pierskalla, G. J. Rath, Nurse scheduling using mathematical programming,
Operations Research 24 (1976) 857–870. URL: https://doi.org/10.1287/opre.24.5.857. doi:10.1287/
opre.24.5.857.

[25] M. N. Azaiez, S. S. A. Sharif, A 0-1 goal programming model for nurse scheduling, Comput-
ers & OR 32 (2005) 491–507. URL: https://doi.org/10.1016/S0305-0548(03)00249-1. doi:10.1016/
S0305-0548(03)00249-1.

[26] J. F. Bard, H. W. Purnomo, Preference scheduling for nurses using column generation, European
Journal of Operational Research 164 (2005) 510–534. URL: https://doi.org/10.1016/j.ejor.2003.06.046.
doi:10.1016/j.ejor.2003.06.046.

[27] M. Narlı, O. Derse, Optimal crew scheduling in an intensive care unit: A case study in a university
hospital, Applied Sciences (Switzerland) 15 (2025). URL: https://doi.org/10.3390/app15073610.
doi:10.3390/app15073610.

[28] U. Aickelin, K. A. Dowsland, An indirect genetic algorithm for a nurse-scheduling problem,
Computers & OR 31 (2004) 761–778. URL: https://doi.org/10.1016/S0305-0548(03)00034-0. doi:10.
1016/S0305-0548(03)00034-0.

[29] S. Topaloglu, H. Selim, Nurse scheduling using fuzzy modeling approach, Fuzzy Sets and Systems
161 (2010) 1543–1563. URL: http://dx.doi.org/10.1016/j.fss.2009.10.003. doi:10.1016/j.fss.2009.
10.003.

[30] W. J. Gutjahr, M. S. Rauner, An ACO algorithm for a dynamic regional nurse-scheduling problem
in austria, Computers & OR 34 (2007) 642–666. URL: https://doi.org/10.1016/j.cor.2005.03.018.
doi:10.1016/j.cor.2005.03.018.

[31] M. Q. H. Abadi, S. Rahmati, A. Sharifi, M. Ahmadi, HSSAGA: designation and scheduling of nurses
for taking care of COVID-19 patients using novel method of hybrid salp swarm algorithm and
genetic algorithm, Appl. Soft Comput. 108 (2021) 107449. URL: https://doi.org/10.1016/j.asoc.2021.
107449. doi:10.1016/J.ASOC.2021.107449.

[32] A. Mystakidis, C. Koukaras, P. Koukaras, K. Kaparis, S. G. Stavrinides, C. Tjortjis, Optimizing
nurse rostering: A case study using integer programming to enhance operational efficiency and
care quality, Healthcare (Switzerland) 12 (2024). URL: https://doi.org/10.3390/healthcare12242545.
doi:10.3390/healthcare12242545.

[33] H. Wynendaele, E. Peeters, P. Gemmel, D. Myny, J. Trybou, Unravelling the ideal roster: A
cross-sectional study of nurse shift preferences using multivariate analysis, Journal of Advanced

https://doi.org/10.4230/OASIcs.ICLP.2016.2
http://dx.doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1017/S1471068419000450
http://dx.doi.org/10.1017/S1471068419000450
https://doi.org/10.1007/978-3-030-20528-7_18
http://dx.doi.org/10.1007/978-3-030-20528-7_18
https://doi.org/10.3233/IA-240019
http://dx.doi.org/10.3233/IA-240019
https://doi.org/10.1093/logcom/exv061
http://dx.doi.org/10.1093/LOGCOM/EXV061
https://doi.org/10.1007/3-540-44629-X_10
http://dx.doi.org/10.1007/3-540-44629-X_10
https://doi.org/10.1287/opre.24.5.857
http://dx.doi.org/10.1287/opre.24.5.857
http://dx.doi.org/10.1287/opre.24.5.857
https://doi.org/10.1016/S0305-0548(03)00249-1
http://dx.doi.org/10.1016/S0305-0548(03)00249-1
http://dx.doi.org/10.1016/S0305-0548(03)00249-1
https://doi.org/10.1016/j.ejor.2003.06.046
http://dx.doi.org/10.1016/j.ejor.2003.06.046
https://doi.org/10.3390/app15073610
http://dx.doi.org/10.3390/app15073610
https://doi.org/10.1016/S0305-0548(03)00034-0
http://dx.doi.org/10.1016/S0305-0548(03)00034-0
http://dx.doi.org/10.1016/S0305-0548(03)00034-0
http://dx.doi.org/10.1016/j.fss.2009.10.003
http://dx.doi.org/10.1016/j.fss.2009.10.003
http://dx.doi.org/10.1016/j.fss.2009.10.003
https://doi.org/10.1016/j.cor.2005.03.018
http://dx.doi.org/10.1016/j.cor.2005.03.018
https://doi.org/10.1016/j.asoc.2021.107449
https://doi.org/10.1016/j.asoc.2021.107449
http://dx.doi.org/10.1016/J.ASOC.2021.107449
https://doi.org/10.3390/healthcare12242545
http://dx.doi.org/10.3390/healthcare12242545


Nursing 81 (2025) 1829 – 1844. URL: https://doi.org/10.1111/jan.16373. doi:10.1111/jan.16373.
[34] C. M. Ngoo, S. L. Goh, S. Sze, N. R. Sabar, S. Abdullah, G. Kendall, A survey of the nurse

rostering solution methodologies: The state-of-the-art and emerging trends, IEEE Access 10
(2022) 56504–56524. URL: https://doi.org/10.1109/ACCESS.2022.3177280. doi:10.1109/ACCESS.
2022.3177280.

[35] D. Allen, H. Strange, N. Jacob, A. M. Rafferty, How can we optimise nurse staffing systems?
insights from a comparative document analysis of 10 widely used models and focused interpretative
review of implementation experiences, International Journal of Nursing Studies 167 (2025). URL:
https://doi.org/10.1016/j.ijnurstu.2025.105056. doi:10.1016/j.ijnurstu.2025.105056.

https://doi.org/10.1111/jan.16373
http://dx.doi.org/10.1111/jan.16373
https://doi.org/10.1109/ACCESS.2022.3177280
http://dx.doi.org/10.1109/ACCESS.2022.3177280
http://dx.doi.org/10.1109/ACCESS.2022.3177280
https://doi.org/10.1016/j.ijnurstu.2025.105056
http://dx.doi.org/10.1016/j.ijnurstu.2025.105056

	1 Introduction
	2 Nurse Scheduling Problem (NSP)
	2.1 General Rules
	2.2 Mariano Santo
	2.3 Annunziata

	3 ASP Solution
	3.1 Mariano Santo
	3.1.1 Data Model
	3.1.2 ASP Encoding

	3.2 Annunziata

	4 Experiments
	4.1 Mariano Santo
	4.2 Annunziata

	5 Related Work
	6 Conclusions

