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Abstract
We present a novel methodology for extracting and interpreting feature interactions from tree-based machine

learning models using logic programming. While traditional machine learning techniques often act as black boxes,

offering limited insight into the role of individual features in classification outcomes, our framework leverages the

inherently explainable nature of Answer Set Programming (ASP) to investigate the dependencies among features

encoded in decision structures. Rather than extracting explicit rules, we employ an arc-consistency-like reasoning

mechanism to constrain feature values in a way that explains the classification in a symbolic and interpretable

form. Our approach preserves the original predictive accuracy, while significantly enhancing transparency. We

demonstrate the effectiveness of the method on the task of classifying malicious Portable Executable (PE) files, a

challenging domain for explainability due to the opaque and low-level nature of its input features. Experimental

results highlight the potential of our ASP-based framework to advance explainable AI in cybersecurity contexts.
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1. Introduction

Malware prediction is a critical classification task in computer systems and software security. It plays

a crucial role in safeguarding sensitive data, protecting digital infrastructures, and maintaining the

integrity of software applications. The process involves identifying malicious programs and differentiat-

ing them from benign ones to prevent potential damage, theft, or disruption. One of the main challenges

of malware prediction lies in the inherent opaque nature of those programs. Malware developers

use advanced techniques to obfuscate code and descriptors, making it difficult to detect and analyze

their actual goals. Additionally, new variants of malware are frequently created through mutations

of existing malicious programs. These mutations enable malware to retain its malicious functionality

while enhancing its ability to evade detection by mimicking the characteristics of legitimate software.

Machine learning techniques involve training models on extensive datasets to recognize patterns and

anomalies indicative of malicious activity. Such approaches offer significant advantages in detecting

previously unseen threats and adapting to new attack methods. Nonetheless, deploying machine

learning solutions can be challenging due to substantial requirements for data collection and resource-

intensive computational analysis. Moreover, publicly available models are vulnerable to attacks, as

adversarial techniques can undermine their effectiveness, by leveraging the black-box nature of such

systems. These challenges have led to a growing demand for high-level descriptions of both malware

and benign files, as well as the features that distinguish them. Such insights could not only simplify

malware detection but also introduce a degree of explainability and interpretability.

In the context of artificial intelligence, explainability refers to a system’s ability to provide clear

and human-readable explanations for its decisions. Although the terms are used interchangeably,

interpretability slightly differs—referring to the understanding of the internal work and reasoning of a

machine learning model, rather than post-hoc explanations. Both explainability and interpretability
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are desirable and highly valued when working with critical systems, such as security, healthcare,

automotive, etc.

This work aims to interpret and explain machine learning models for malware prediction, by means

of logic programming techniques, in particular with Answer Set Programming (ASP). We build a logic

program on top of an already trained machine learning system, in order to gather learned information

and to output more abstract properties that become more interpretable for experts.

We introduce a method to convert learned information into a set of logic clauses and a program

that is able to explore features properties. In particular, we explore the space of predicted malware by

analyzing the relationships among the features that characterize these instances. We introduce a bound

analysis of features’ measures that is able to answer some insightful questions: (i) what is the minimal

subset of features in a benign file that, once modified, cause the model to classify it as malicious (ii)

what combinations of features are most indicative of a malicious classification, given a specified level of

confidence. The method implements an arc-consistency like procedure that searches for supports for

specific features bounds, where each run of consistency is performed by solving an ASP program.

In summary, our framework outputs sets of feature ranges that provide a compact representation of

particular configurations of recognized malware. This represents a comprehensive yet simple correlation

among features that does not emerge from learned models.

The framework was tested on a state-of-the-art dataset: we convert the learned model into logic

propositions, we show how to investigate the search space of features, and we depict features relations.

The programs are accessible for reproducibility purposes.
1

The paper discusses some related work in Section 2 and provides the necessary background in Sec-

tion 3. Section 4 describes the details of the methodology, while Section 5 reports on some experiments

that show the feasibility of the approach. Finally, Section 6 draws some conclusions.

2. Related Work

In the literature there are some reviews and evaluations on explainable post-hoc methods applied

to malware detection, with positive contribution to understanding the roles of key descriptors (e.g.,

[1, 2, 3]).

The most popular approaches are SHAP by [4] and LIME by [5]. SHAP (SHapley Additive exPlana-

tions) is a method that explains malware detection models by assigning each feature an importance value

based on its contribution to the prediction, helping to interpret why a file was classified as malicious or

benign. It is based on Shapley values from cooperative game theory. It treats each feature as a “player”

in a game and calculates its contribution to the prediction by considering all possible combinations of

features. This provides a theoretically grounded way to fairly attribute importance to each feature in the

model’s decision. LIME (Local Interpretable Model-agnostic Explanations) is based on local surrogate

modeling. It approximates the complex model around a specific prediction using a simple, interpretable

model (like linear regression), trained on perturbed samples of the input. This reveals which features

influenced that particular decision.

Logic Programming based methods have been considered in the literature as complementary to

machine learning approaches, with the aim of providing better high level models and interpretations on

the grounds of the learned (non explainable) knowledge. For example, [6] combines neural network with

ASP based high-level modeling to provide a more flexible semantic set of constraints about properties

derived from standard neural network trainings. Integrating symbolic and sub-symbolic methods

within neurosymbolic frameworks is a promising research avenue, applicable to various domains, as

exemplified by [7] and [8]. Other proposals are based on SAT/MaxSAT solvers, for example [9] use

abductive reasoning to produce minimal sets of explanations for machine learning methods. The

approach proposed here is neurosymbolic in nature.

In the field of malware detection, [10] reports on an ASP based model to track the dynamic evolution

of programs and detect malicious activities. In [11] a description logic learning method is applied to
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static analysis of malware. This proof of concept is able to form some predicates that characterize

malware properties. In comparison to our work, we build a logic-based explainability on top of an

off-the-shelf machine learning method, rather than using a class expression learner.

Our work builds on the ideas described in [12], where the authors present a framework to extract

relevant rules from tree-ensemble machine learning models, that provide post-hoc explanations for

models’ decisions with ASP models. Their work does not cover malware detection in the set of analyzed

domains, even if our ideas are general and can be applied to any domain. Moreover, we generalize

the approach and allow a reasoning about global relationships that are inferred from the whole tree

ensemble, rather than focusing on specific highly informative trees.

3. Background

3.1. Malware Prediction Problem

Malware refers to any software specifically designed to disrupt the normal operation of a computer

system, collect sensitive information, or gain unauthorized access to private resources. What defines a

malware is its malicious intent. The first documented malicious programs were viruses, i.e., programs

that can self-execute and self-replicate to spread without the user’s consent and knowledge. Self-
execution refers to the ability of the malicious program to inject its code into the execution path of

another program, while self-replication refers to the ability of replacing other executable files with

copies of itself.

Some viruses are programmed to damage the system by destroying software, deleting files, or

reformatting the hard drive. Others are not explicitly designed to harm the system but instead focus

on replication and visibility, often displaying textual, video, or audio messages. Even these seemingly

harmless viruses can negatively impact the user by consuming large amounts of memory, leading to

system crashes or data loss.

Malware analysis methods continue to advance, in order to keep pace with the evolving nature

of malicious software. These techniques are generally categorized into static and dynamic analyses.

Dynamic analysis is a method that allows for the observation and monitoring of malware behavior

during execution, within controlled runtime environments, like virtual machines or sandboxes. While

highly effective in revealing actual malware behaviors, it is often impractical due to the significant costs

in computational resource and time required to process large volumes of files, as well as the potential

security risks it may pose. Additionally, differences between real-world and virtual environments might

limit the reliability of dynamic analysis, as malware may only execute certain malicious functionalities

under specific real-world conditions not reproducible in the simulated environment.

In contrast, static analysis offers a safer and less costly method, by examining these programs without

actually running them. Unfortunately, code obfuscation techniques may undermine its reliability.

Moreover, [13] reports that many studies found that malware detection is either impossible or a

NP-complete problem. This negative outlook is strengthened by a very early insight of [14], who

proved that the general question: “Does program 𝑃 behave as a malware?” is undecidable. According to

Cohen, in fact, any decision procedure 𝐷 faces a logical antinomy: if 𝐷 recognizes 𝑃 as a virus, the

resulting preventive action would preclude 𝑃 from spreading, contradicting the very criterion that

defines a virus; if 𝐷 fails to recognize 𝑃 , the program is free to propagate, contradicting the assumption

that 𝐷 is sound. [15] further observed that polymorphism and metamorphism enable malware to

assume arbitrarily many syntactic forms, ruling out a complete and sound detector that raises no false

positives. Together, these results establish rigorous limits on what any static or dynamic analysis can

achieve in the general case of malware detection.

To overcome the limits of standard static analysis approaches, machine learning-based methods

provide valuable help. In fact, to tackle these challenges, the problem is redefined as malware prediction
rather than detection, and is frequently approached using machine learning algorithms, that estimate,

with a certain level of confidence, whether the program 𝑃 is malware. As a result, these techniques are

quickly becoming prominent in the field of static malware prediction.



3.2. Tree-Ensemble Algorithms

Ensemble learning consists in the joint training, with machine learning algorithms, of a combination

of two or more base models to obtain enhanced performance on a given task, such as classification or

regression. In tree-ensemble, the base models are decision trees. A classic example of tree-ensemble is

the Random Forest algorithm by [16]. [17] introduced Gradient Boosted Decision Trees (GBDT), which

led to more efficient and performing tree-ensembles like LightGBM [18], and XGBoost [19].

A decision tree is defined as a binary tree structure, where each internal node handles a split condition,

such as (𝑥 < 𝜏node) or (𝑥 ≥ 𝜏node) in case of numerical values 𝑥 evaluated against a threshold 𝜏node,

while leaves are associated to final decisions, such as 𝑠 ∈ {0, 1} for binary classification, or 𝑠 ∈ R for

predictions.

In classification tasks, such as malware detection, a dataset 𝐷 = [x1,x2, . . . ,x𝑃 ] consists of 𝑃 pro-

grams, each described by means of a vector of features. Feature names are denoted by f = (𝑓1, . . . , 𝑓𝑛),
while each vector x𝑖 has the same size 𝑛 and each of its elements x𝑖[𝑗], associated to the feature 𝑓𝑗 , has

a numerical, textual, or categorical domain, depending on the specificity of the feature semantics. We

assume from now on that non-numerical types are encoded with integers.

A tree-ensemble classifier for malware prediction uses 𝑘 ∈ N decision trees 𝑇𝑘 to compute a

probability score 𝜋𝑖 ∈ R for a given input x𝑖 to be malware. This probability is obtained by combining

individual scores 𝑠𝑘 ∈ R stored in each tree’s leaves, defined as 𝑠𝑘 = 𝑇𝑘(x𝑖). Since the same feature

can be considered in multiple trees, the probability associated to an input x𝑖 is a combination of scores

from every decision trees that compose the ensemble. In detail, the sum of such 𝑠𝑘 is then fed into an

activation function 𝜎, like the logistic sigmoid, to obtain the final probability 𝜋𝑖.

𝜋𝑖 = 𝜎

(︃
𝐾∑︁
𝑘=1

𝑇𝑘(xi)

)︃

Such a prediction can be evaluated by employing the standard Euclidean distance and verifying its

proximity to the actual binary label: ‖𝑦𝑖 − 𝜋𝑖‖ < 0.5, where 𝑦𝑖 ∈ {0, 1}, with 0 indicating a benign

file and 1 denoting a malicious file. The performance validation of correct and incorrect predictions is

based of classical accuracy, precision, recall, and F1 score of the classifier.

3.3. The PE file format

In this work, we consider specifically the problem of predicting whether a Portable Executable (PE) file is

a malware or not. The PE format
2

is the prevailing standard for executable files, dynamic-link libraries

(DLL), and device drivers on both 32-bit and 64-bit versions of the Microsoft Windows operating system.

The structure of the PE format consists of several standard headers, followed by one or more sections.

Among these headers, the Common Object File Format (COFF ) header provides key information about

the file, such as the target machine type, its nature (e.g., executable, DLL, or object file), and the number

of sections and symbols. The optional header, on the other hand, specifies additional details such as

the linker version, size of code and data sections, and the entry point address. The sections of a PE file

primarily contain executable code and initialized data, mapped by the Windows loader into memory for

execution and read/write operations. Among these, the most significant is the .text section, which

stores the actual executable code of the application. Other essential sections include the .data section,

responsible for initialized modifiable variables, the .rdata section, holding read-only data such as

constants and string literals, and the .bss section, dedicated to uninitialized variables. Additionally, the

.idata and .edata sections provide critical information regarding imported and exported functions,

especially important for DLL files. Finally, the .reloc section contains relocation details, allowing the

Windows loader to properly adjust memory addresses during runtime. While custom sections can be

added, these core sections are fundamental to the structure and execution of PE files.

2
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3.3.1. The EMBER dataset

The EMBER dataset [20] contains information on over one million samples of PE files, divided between

malware and benign software, represented through a set of static features, extracted using the LIEF

module.
3

The dataset consists of a collection of JSON files, each representing the features associated

with a single sample. These features are divided into nine main categories, briefly described in the Table

1. The feature values extracted from each program are used to build a feature vector. Along with this

Table 1
Main feature categories of the Ember dataset

Category Description

General Includes file size, virtual file size, number of exported and imported functions,
debug information presence, Thread Local Storage, resource table, relocations
table, number of signatures and symbols.

Header Contains COFF and optional header information. COFF headers include the
file image, target machine, and timestamp. Optional headers contain details
about the target subsystem, image versions, commit size, file identification,
and DLL/linker versions.

Imported Contains a list of functions imported from dynamic-link libraries.

Exported Address, name, and ordinal number of exported symbols. Most EXE files do
not have an export table, whereas DLL files usually do.

Sections Contains information about each section, including the name, virtual size,
physical size, entropy, and string lists.

Byte Histogram Indicates occurrences of each byte value (256 integer values) in the PE file.

Byte Entropy Histogram Entropy computed with a fixed-length window, statistical pairs using a sliding
window (byte, entropy value). The window length is 1024 bytes with a step
size of 256 bytes.

Strings Simple statistics on strings, including histograms, character entropy, average
length, number of strings, paths, URLs, registry keys, etc.

Data Directories Data directories table including export table, import table, resource direc-
tory, exception directory, security directory, relocation table, debug directory,
copyright information, pointer directory, TLS directory, load configuration
directory, bound import directory, import address table, delay loading, and
COM information.

vector, three additional informational elements are included: the SHA256 hash of the file, the month and

year the file was collected, and the ground truth, which indicates the correct label of the file (malicious,

benign, or unlabeled).

3.4. Answer Set Programming

Answer Set Programming (ASP) is a language that derives from the logic programming paradigm and

that stems from the idea of stable models [21]. Formally, a program 𝑃 in the language ASP is formed by

set of rules 𝑟 of the form:

𝑎0 ← 𝑎1, . . . , 𝑎𝑚, 𝑛𝑜𝑡 𝑎𝑚+1, . . . , 𝑛𝑜𝑡 𝑎𝑛

3
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where 0 ≤ 𝑚 ≤ 𝑛 and each element 𝑎𝑖, with 0 ≤ 𝑖 ≤ 𝑛, is an atom of the form 𝑝(𝑡1, . . . , 𝑡𝑘), 𝑝 is

a predicate symbol of arity 𝑘 and 𝑡1, . . . , 𝑡𝑘 are terms built using variables, constants and function

symbols. Negation-as-failure (naf) literals are of the form 𝑛𝑜𝑡 𝑎, where 𝑎 is an atom. Let 𝑟 be a rule,

we denote with ℎ(𝑟) = 𝑎0 its head, and 𝐵+(𝑟) = {𝑎1, . . . , 𝑎𝑚} and 𝐵−(𝑟) = {𝑎𝑚+1, . . . , 𝑎𝑛} the

positive and negative parts of its body, respectively; we denote the body with 𝐵(𝑟) = {𝑎1, . . . , 𝑛𝑜𝑡 𝑎𝑛}.
A rule is called a fact whenever 𝐵(𝑟) = ∅; a rule is a constraint when its head is empty (ℎ(𝑟) = false);

if 𝑚 = 𝑛 the rule is a definite rule. A definite program consists of only definite rules.

A term, atom, rule, or program is said to be ground if it does not contain variables. Given a program

𝑃 , its ground instance is the set of all ground rules obtained by substituting all variables in each rule with

ground terms. In what follows we assume atoms, rules and programs to be grounded. Let 𝑀 be a set of

ground atoms (false /∈𝑀 ) and let 𝑟 be a rule: we say that 𝑀 |= 𝑟 if 𝐵+(𝑟) ̸⊆𝑀 or 𝐵−(𝑟)∩𝑀 ̸= ∅ or

ℎ(𝑟) ∈𝑀 . 𝑀 is a model of 𝑃 if 𝑀 |= 𝑟 for each 𝑟 ∈ 𝑃 . The reduct of a program 𝑃 w.r.t. 𝑀 , denoted

by 𝑃𝑀
, is the definite program obtained from 𝑃 as follows: (i) for each 𝑎 ∈𝑀 , delete all the rules 𝑟

such that 𝑎 ∈ 𝐵−(𝑟), and (ii) remove all naf-literals in the the remaining rules. A set of atoms 𝑀 is an

answer set of a program 𝑃 if 𝑀 is the minimal model of 𝑃𝑀
. A program 𝑃 is consistent if it admits an

answer set.

The presence of aggregates [22] allows to express, e.g., constraints of cardinality in one of its simplest

forms: 𝑙{𝑝(𝑋) : 𝑡(𝑋)}𝑢, where 𝑙 and 𝑢 are respectively the lower and upper bounds for the cardinality

of the set containing atoms 𝑝, that are bounded to a condition 𝑡 that must hold true.

3.5. Arc Consistency

Arc consistency [23] is a fundamental concept at the basis of solvers for Constraint Satisfaction Problems

(CSPs). A constraint formalizes a relation among a set of variables 𝑋𝑖, with domain 𝐷𝑖 respectively.

For a binary constraint on variables 𝑋𝑖 and 𝑋𝑗 , a directed arc (𝑋𝑖→ 𝑋𝑗) is said to be arc-consistent

if for every value 𝑥 ∈ 𝐷𝑖, there exists at least one value 𝑦 ∈ 𝐷𝑗 such that the pair (𝑥, 𝑦) satisfies the

binary constraint between 𝑋𝑖 and 𝑋𝑗 . The value 𝑦 is called support for value 𝑥. If no support exists for

a value 𝑥, it can be safely removed from the domain 𝐷𝑖, simplifying the problem.

4. Methodology

4.1. Symbolic Rules Extraction

We describe the construction of ASP rules that approximate the behaviour of the tree-ensemble. The

training of a tree-ensemble outputs 𝑘 ∈ N base models {𝑇1, . . . , 𝑇𝑘} on a given dataset of benign and

malicious PE files, as detailed in Section 3.2. We build an ASP program that is able to capture the

activation of leaves of any tree, depending on the features’ values. This mapping is the basis for further

reasoning over the tree-ensemble. We first define an ASP rule Γℓ for each leaf ℓ of one of the trees 𝑇𝑖.

The rule’s body should become true whenever the branch of 𝑇𝑖 leading to ℓ contains split rules that are

verified by a specific set of features values. Each node in the branch stores a record ⟨𝑓𝑗 , <, 𝜏node⟩, where

𝑓𝑗 is the name of the 𝑗𝑡ℎ feature and 𝜏node is the learned threshold applied to the splitting. Operationally,

when the decision tree is evaluated against a specific vector of features x, the left child of such a node is

reached when (x[𝑗] < 𝜏node), while the right child when (x[𝑗] ≥ 𝜏node). Thus, each record is encoded

either as an atomic predicate less/2 or its negation not_less/2:

less(𝑓𝑗 , 𝜏node). not_less(𝑓𝑗 , 𝜏node).

For each tree, a recursive procedure constructs the conjunction of relational tests along a path 𝑝
from the root to every leaf ℓ, which form the body of the corresponding ASP rule. The complete rule Γℓ

implies the atom leaf(ℓ) if the branch is verified:

Γℓ ≡ leaf(ℓ) :-

⋀︁
node∈𝑝

⟨𝑓𝑗 ,□node, 𝜏node⟩.



where □node ∈ {<,≥} is the proper operator, depending on the branch selected.

The individual score of a leaf node ℓ is stored as a scalar value 𝑠ℓ ∈ R and corresponding fact is

added to the program:

score(ℓ, ⌊𝑠ℓ · 𝜅⌋).

where 𝜅 is a scaling factor applied to the leaf prediction 𝑠ℓ, since ASP only handles integer numbers.

Each feature 𝑓𝑗 is associated with a numerical domain [𝛼𝑗 , 𝛽𝑗 ] ⊆ R. The value x[𝑗] of a vector x
from the dataset takes values in such a domain. Therefore, each threshold 𝜏 belonging to any learned

node ⟨𝑓𝑗 , <, 𝜏⟩ is 𝛼𝑗 ≤ 𝜏 ≤ 𝛽𝑗 . Since domains can reach relevant sizes and given the grounding issues

when handling large combination of integers in predicates, we post-process less/2 and not_less/2
predicates to abstract away the actual numerical thresholds 𝜏 . We opt for a representation that enumer-

ates intervals of consecutive thresholds. Each actual feature’s value falls into a specific interval and we

the ASP program handles such intervals as decisional variables. For each feature 𝑓𝑗 , let 𝜏0 < · · · < 𝜏𝑚
be the ordered list of thresholds encountered in any split condition involving 𝑓𝑗 . The abstraction

mechanism proceeds as follows. A bijection Θ𝑓𝑗 : {𝜏0, . . . , 𝜏𝑚} → {1, . . . ,𝑚} is constructed for each

feature. Each numerical threshold 𝜏𝑖 is thereby encoded as the integer 𝑖+ 1. For 𝑓𝑗 , if x[𝑗] ∈ [𝜏𝑣−1, 𝜏𝑣),
then the correct encoded interval is mapped to Θ𝑓𝑗 (𝜏𝑣−1) = 𝑣

Domains and bounds can be specified in terms of coded intervals. The following facts are added for

each feature 𝑗, with 𝐹 = 𝑓𝑗 :

feature(𝐹 ). domain(𝐹, 1,𝑚). bounds(𝐹, 𝑙, 𝑢).

The predicate domain/3 defines the discrete interval {1, . . . ,𝑚}, representing the number of inter-

vals of thresholds for the feature. bounds/3 describes the range of values that are allowed at current

stage of exploration. While similar in form to domain/3, which is constant throughout the computation,

bounds/3 can be instantiated with different values (1 ≤ 𝑙 ≤ 𝑢 ≤ 𝑚), to restrict the range of admissible

values for 𝑓𝑗 .
We describe now the modeling of a feature vector x. Each feature name 𝐹 = 𝑓𝑗 is associated to

x[𝑗], which belongs to a specific interval of values chosen within current bounds. Since intervals are

encoded thanks to the bijection, possible assignment 𝐼 range between the bounds 𝑙 and 𝑢. We introduce

a predicate interval(𝐹, 𝐼) that represent this information.

The resulting code defines the set of available intervals that can be selected and the aggregate that

imposes the selection of exactly one option for each feature:

available_interval(𝐹,𝐿 .. 𝑈) :- feature(𝐹 ), bounds(𝐹,𝐿, 𝑈).

1 {interval(𝐹, 𝐼) : available_interval(𝐹, 𝐼)} 1 :- feature(𝐹 ).

Finally, the rule

less(𝐹,𝑁) :- interval(𝐹, 𝐼), domain(𝐹,𝐿, 𝑈), 𝐼 ≤ 𝑁, 𝑁 = 𝐿 .. 𝑈.

derives the predicate less/2 by comparing the assigned interval 𝐼 to each integer 𝑁 in the domain

of feature 𝑋 , as defined by domain/3. For every pair feature-value (𝑓𝑗 , 𝑣) such that 𝐼 ≤ 𝑣, the atom

less(𝑓𝑗 , 𝑣) is generated.

4.2. Sample scoring

Let Π be the ASP program generated by the procedure described in Section 4.1. Given a target probability

𝑝 ∈ (0, 1) for the malware class, we first define �̂� using the logit function, i.e., the inverse of the logistic

sigmoid activation, as follows

�̂� = log

(︂
𝑝

1− 𝑝

)︂



and scale the result by the same scale factor 𝜅 used for the leaf predictions. The resulting integer value

is encoded into a predicate logit/1 and added to Π.

In order to search for instances of malicious files with probability 𝑝, we sum the scores 𝑠ℓ associated

to leaves, and discard all models that provide different probabilities, using

:- #sum{𝑉 𝑎𝑙, 𝐿 : leaf(𝐿), score(𝐿, 𝑉 𝑎𝑙) } ≠ 𝑋, logit(𝑋).

This rule ensures that the total score accumulated from the derived leaf nodes matches the declared

logit value. For other applications, it can be useful to consider all feature vectors that score above the

target probability: in this case ̸= can be replaced by <.

The solving Π with an ASP solver identifies answer sets that enumerate admissible combination of

feature vectors (namely potential configurations of software). The bijection allows to retrieve from

ground interval(𝐹, 𝑣) the actual range of values [𝜏𝑣−1, 𝜏𝑣). Any value in the interval can be selected

to construct the feature vector that, according to the model, yields a probability 𝑝 of being classified as

malware.

4.3. Feature space exploration

We present two possible applications of program Π for gathering insightful information from the mod-

eled feature space. Note that the program is already able to manage the network of inter-dependencies

of features and thresholds among the trees, while selecting specific malware classification probabilities.

We first show how to investigate regions of the combinatorial space of feature vectors, to discover

relations among features that contain examples of malware predictions with fixed probability. Basically,

a multi-dimensional bounding box search identifies intervals that contain vectors of interest. Instead

of providing an exponential list of ground vectors with no provided insights, we analyze bounds of

intervals in the feature space that contain such vectors. The procedure resembles a 𝑁 dimension

quad-tree like division of the space and it is handled by a top-down refinement of bound intervals. This

analysis helps in understanding the density distribution of features, the relevance of features (large

intervals vs. small intervals of allowed values) and the regions with absence of examples.

Given a target probability 𝑝 ∈ (0, 1) for the malware class, an ASP Π is generated as described in

the previous sections. Initially, features bounds are set to the maximal extent. We set up a search tree

where each node is associated to an ASP program where bounds are updated. Practically, the search

tree resembles a propagation-labelling tree of constraint programming. At each tree level, we select a

feature, bisect its bound and solve the two associated problems for both bound partitions. The solution

of the program may lead to a failure, as arc consistency may fail after some bounds reduction in a

Constraint Satisfaction Problem resolution. In this case, the exploration backtracks and proceeds with

other parts of the search tree. All features are first bisected before considering them again, in order to

anticipate failures and avoid to enumerate failures associated to small bounds.

We now discuss another application that investigates the learned properties and studies the distance

between highly probable malware from benign files. In particular, we are able to highlight the minimal

changes of features of a clearly detected benign file to make it classified as a probable malware (or

viceversa). This allows to understand the weak separators in the ensemble-tree learning and highlight

potential strategies of attackers to bypass correct classification.

We implement a local search strategy in the feature vector space. We start from a specific instance x
with a low probability 𝐵 of being malware (e.g. taken from the malware dataset). We define a program Π
that contains the singleton bounds that describe the instance for each of its features 𝐹 (bounds(𝐹, 𝐼, 𝐼).,
with 𝐼 the interval that contains the actual feature value). We define a new high probability 𝑀 of being

malware and iteratively extend the bounds for each feature and set the corresponding logit(X) value

in Π. It is worth noting that Π has no answer sets, since the original probability and the selected one

are different.

The procedure iteratively looks for minimal extensions of bounds of each feature, to find a support

for an admissible vector. At each iteration 𝑘, feature 𝑓𝑘 is selected and its bound is temporarily relaxed

to its full extent (i.e. equal to domain/3). The smallest bound that contains potential solutions is
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Features domain
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Figure 1: Example of features domains (gray bars) and bounds (red bars). Bounds characterize a set of
combinations that characterize a highly probable malware.

computed, by turning Π into two optimization problems, where minimal and maximal interval for 𝑓𝑘
are searched respectively. This is encoded with: :∼ interval(𝑓𝑘, 𝐼).[op 𝐼], where op is either ‘-’ to

prioritize larger values of 𝐼 (for maximization), or ‘+’ to prioritize smaller ones (for minimization).

In the maximization (minimization) phase, if the model is found, the optimized value of 𝐼 is adopted

as the new upper (lower) bound for 𝑓𝑘. If no model exists, the upper (lower) bound is set the previous

maximum incremented (minimum decremented) by a step 𝛼. The program Π is updated accordingly.

Typically, the first iterations find no models, and the bounds are slowly incremented. If necessary,

multiple rounds on all features are performed. Eventually, the optimization that is able to find a solution

updates the bounds, so that a sample with probability 𝑀 is found.

5. Experiments and Results

The following section presents some practical results of the feature space exploration described above.

Note that this approach is generalizable and can be applied to run different types of investigations on

the ASP program built from the learned tree-ensemble.

All experiments were performed on a machine running Ubuntu 24.04.2 LTS, equipped with an AMD

Ryzen™ 7 8845HS processor, 8 cores, 16 threads and 16 GB of RAM. We used Clingo 5.6.2 [24] for ASP

and XGBoost
4

2.1.4, for gradient boosting tasks.

We train data from EMBER dataset, where static attributes from the General, Header, Strings,

and Data Directories categories were selected. This restriction was driven by the need of selecting

features that correspond to interpretable and high-level meaningful semantics for human analysts.

The XGBoost classifier, composed of 300 base models, was trained on the resulting vector represen-

tation. The learning rate hyperparameter was set to 0.1, with the maximum tree depth set to 7. The

binary cross-entropy was used as loss function. The classifier yielded a mean test accuracy of 92.10%
across 100 independent runs, with a standard deviation of 0.004, showing that generated models reliably

capture the underlying decision structure of the classification task. The fully trained ensemble was then

exported, producing a textual description of every tree, its split thresholds, and leaf scores.

4

XGBoost Documentation. Available online at xgboost.readthedocs.io/en/stable/index.html

xgboost.readthedocs.io/en/stable/index.html
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Figure 2: Depiction of the domain extension process. Gray bars represent domains after the extension. Green
dots represent the starting instance features’ values and red dots represent one admissible solution for target
probability.

The proposed methodology allowed the extraction of a number of rules ranging between 25,000 to

30,000, although this number can vary significantly depending on the training process. The grounding

of the base program Π took approximately 4 seconds and produced an output of 10.0 MB, while solving

required around 3 seconds. The approximations introduced for rule extraction and sample scoring have

a negligible impact on the final results. For 100 searched feature vectors, reclassified using the original

model, we measure a mean absolute error of 0.009 and standard deviation of 0.016.

Figure 1 presents an example of top-down refinement for a malware of probability 𝑝 = 0.9. Each

feature domain is shown with a gray bar, while the red subset highlights the bound, retrieved after

some iterations on bisection. The picture shows the result after 3 bisections for each feature. Depending

on the stage of the search, ASP programs take few seconds in the beginning, while for smaller bounds

the computation slows down when searching sparse and correct intervals that provide the required

probability. Depending on the size of the search space, detecting a failure can become expensive and, as

approximation, we stop the investigation if bounds become too small.

We also tested the bottom-up methodology for local search of domain supports in order to analyze

the minimal changes to features values to modify a predicted benign file to malware prediction. An

example output of this exploration process, whose resolution took around 4 minutes, is illustrated in

Figure 2, where the original sample has a malware probability 𝐵 = 0.1, and the final adjusted bounds

yield a sample with probability 𝑀 = 0.9. Green dots identify the features associated to the benign file,

the gray bars the extended domains throughout the local search and the red dots the first example that

solves the problem on extended bounds, according to probability 𝐵. Rather few features needed to be

altered, which could lead to relevant insights for domain experts.

6. Conclusions

This paper presents a practical methodology to investigate the high-level semantics learned by a tree-

ensemble. The idea of adding an explainability layer on top on a machine learning method is beneficial,

since higher level reasoning allows to investigate the learned space and to answer to some non trivial

questions (e.g., how to retrieve compact subsets of features ranges that identify specific classification



probabilities; what features should be changed to modify the classification of an instance). We tested

the methodology on malware detection domain, even if the approach can be easily adaptaed to other

domains that can be addressed by similar machine learning techniques. Results shows the soundness

of the approach, while computation times could be improved, e.g. implementing incremental solving

through the use of external predicates associated to the bounds updates, in order to recycle previous

computation (in the case of top down refinements).
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