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Abstract
This paper presents our work in progress about the integration of Probabilistic Logic Programming (PLP) with

Declarative Process Mining (DPM) to address uncertainty in business process management. Traditional DPM

approaches, such as DECLARE, use deterministic constraints to permit/forbid activities, but real-world processes

often involve incomplete or unreliable data. To bridge this gap, we recap our previous work on introducing

in a separate way probabilistic extensions for events, traces, and constraints inspired by PLP’s Distribution

Semantics. We present here an extension to our formal semantics to take into account at the same time uncertain

events and uncertain constraints in order to perform compliance of a trace versus a process model. Preliminary

experiments on a healthcare process demonstrate the approach’s feasibility but highlight scalability challenges

due to exponential complexity, that will be addressed in future work.
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1. Introduction

Research in Business Process Management (BPM) has led to innovative techniques for modeling, dis-

covering, and monitoring process executions. A business process is a structured series of activities that

delivers a product or service to a specific customer. These processes range from highly repetitive produc-

tion tasks (e.g., manufacturing line workflow, e-shop order fulfillment) to flexible, knowledge-intensive

activities (e.g., patient treatment in a hospital) [1]. Within this domain, Process Mining (PM) has

emerged as a promising field for extracting meaningful insights from logs generated by real-world

systems [2, 3]. This is achieved through the three main tasks of PM: discovery, conformance checking

and enhancement. At the core of these tasks lies the concept of a process model, a formal representation

of the behavioral logic of a business process, which specifies the admissible sequences of activities.

Traditional process models follow two main approaches: procedural and declarative. Procedural models

(like BPMN [4], Petri nets [5]) explicitly prescribe flows and adopt a closed approach where only

explicitly modeled behaviors are allowed. Declarative models [6], on the contrary, specify constraints

and adopt an open approach where anything not explicitly forbidden is permitted; an example is: “the

activity register order always takes place before the activity approve order". DECLARE [7] and DCR

Graphs [8] are the most notable examples of declarative languages for process modelling, with the

former being grounded on temporal logic, thus coming with a formal semantics.

While these approaches have proven effective in many scenarios, they often do not adequately handle

the uncertainty intrinsic to real-world domains. On one side, logs are just a partial incomplete view of

the reality; on the other side, the information in the log might be incomplete, partially specified, and

even non reliable. This has driven recent research towards integrating probability within PM techniques

at different levels: [9, 10, 11] address probabilistic traces and event data in procedural PM. [12] introduce

the ProbDeclare framework, where constraints are uncertain: uncertainty is characterized through a

frequentist notion of probability based on the ratio of traces in a log that are expected to satisfy the

constraint. This work is extended in [13], where a formal semantics to ProbDeclare is given and the
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authors explain how probabilistic constraints can be discovered from event data by means of existing

algorithms for declarative process discovery.

We follow a different route with respect to those works, by taking advantage of the developments

in the field of Probabilistic Logic Programming (PLP) in order to address uncertainty in the tasks of

declarative conformance checking (or compliance), process discovery, and model selection. Conformance

checking is the task of verifying whether a process execution complies with a predefined model. Process

discovery envisages the discovery of a (procedural or declarative) process model guided by the traces

that are recorded into an input log. Model selection is the identification of a preferable model in case

there are multiple output models from the process discovery task. In our case, uncertainty is quantified

by a probability value attached to constraints, process traces or events, telling how strong/important a

constraint is or the degree of our belief in a specific trace or event happening.

In this paper we focus on probabilistic declarative compliance, leaving the other two tasks for future

work. The overall research is performed in the context of the PRIN2022 project “Probabilistic declarative

process mining (PRODE)"
1
. The project will build a set of techniques that target the issues above

by means of new combinations of declarative Process Mining with probabilistic and combinatorial

approaches. We illustrate our recent work on probabilistic conformance checking based on PLP under

the Distribution Semantics (Section 3), where we defined probabilistic declarative process models,

probabilistic traces and probabilistic logs. Then, in Section 4, we present our current efforts towards

handling uncertainty both in process models and in process traces. Lastly, we identify future research

directions in Section 5.

2. Preliminaries

2.1. Process Mining

In Process Mining a trace or process instance represents a distinct execution of a process, potentially

repeated multiple times. A trace typically consists of a sequence of activity executions, each identified

by a distinct name and associated with temporal information that defines their order.

Definition 1 (Trace 𝑡 and Log ℒ). Given a finite set 𝒜 of symbols (i.e., activity names), a trace 𝑡 is a

finite, ordered sequence of symbols over 𝒜, i.e. 𝑡 ∈ 𝒜*
, where 𝒜*

is the infinite set of all the possible finite

sentences over 𝒜. A log ℒ is a finite set of traces.

For example, a trace can be represented as an ordered sequence 𝑡 = ⟨𝑎, 𝑏, 𝑐, 𝑑⟩, where the timestamps

of activities 𝑎, 𝑏, 𝑐, 𝑑 satisfy 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑎 < 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑏 < . . . < 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑑 to reflect the execution

order.

Example 1. Consider a process with activity set 𝒜 = {a, b, c, d}. An example log ℒ over 𝒜 may contain

the following traces:

ℒ = {𝑡1 = ⟨a, b, c⟩, 𝑡2 = ⟨a, b, a, d⟩, 𝑡3 = ⟨a, a, d⟩, 𝑡4 = ⟨a, b, c⟩}

Declarative Process Mining (DPM) is a subfield of PM that emphasizes flexibility over rigid procedural

workflows. Instead of defining exact execution paths, DPM specifies what must or must not happen

during a process execution through constraints.

Our work starts from the most representative declarative modeling formalism, DECLARE [7], which

provides a set of graphical constraint templates with a formal semantics given by 𝐿𝑇𝐿𝑓 logic [14]. Ex-

amples of such constraints are “activity a must eventually be followed by b” (which is called response(a,b))

or “activity a must be the first executed activity” (which is called init(a)). The semantics exploits the

idea that each DECLARE template can be mapped onto one (or more) logical formula 𝜙, and that logical

entailment can be used to define the notion of compliance of a trace 𝑡 w.r.t. to a constraint formula 𝜙.

1
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Definition 2 (Compliance of a Trace to a Constraint). A trace 𝑡 is compliant with a DECLARE constraint

if it satisfies the corresponding logical formula 𝜙, denoted as 𝑡 |= 𝜙. Conversely, if 𝑡 ⊭ 𝜙, we say 𝑡 violates

the constraint.

In the following, we extend this notion with respect to a set of constraints, i.e. a process model, that

we formally call Declarative Process Specification.

Definition 3 (Declarative Process Specification [15]). A Declarative Process Specification (DS) is a triple

𝐷𝑆 = (𝑇,𝒜, 𝐶), where:

• 𝑇 is a finite set of constraint templates, where each template is a predicate c(𝑥1, . . . , 𝑥𝑚) ∈ T on

variables 𝑥1, . . . , 𝑥𝑚 (with 𝑚 ∈ N the arity of c);

• 𝒜 is a finite set of activity names;

• 𝐶 is a finite set of constraints instantiated from 𝑇 over 𝒜. We will denote such constraints with

c(𝑎1, . . . , 𝑎𝑚), 𝑎1, . . . , 𝑎𝑚 ∈ 𝒜.

Definition 4 (Compliance of a trace versus a Declarative Process Specification). A trace is compliant

with a DS if it entails the conjunction of the formulas 𝜙𝑖 corresponding to the 𝑐𝑖 ∈ 𝐶 : 𝑡 |= 𝜙1 ∧ . . . ∧ 𝜙𝑛

where 𝑛 is the cardinality of 𝐶 .

2.2. Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) integrates LP with probability theory to handle uncertain

domains. The Distribution Semantics [16] is a widely adopted formalism for PLP, originally introduced

for PRISM and later adopted by many other languages. To describe the semantics we use as a reference

language the one called “Logic Programs with Annotated Disjunctions" (LPADs) [17].

Definition 5. A LPAD consists of annotated disjunctive clauses 𝐷𝑖 of the form:

ℎ𝑖1 : 𝑝𝑖1; . . . ;ℎ𝑖𝑛𝑖 : 𝑝𝑖𝑛𝑖 ← 𝑏𝑗1, . . . , 𝑏𝑗𝑚𝑗 ,

where each ℎ𝑖𝑛𝑖 is an atom, each 𝑏𝑗𝑚𝑗 is a literal, and 𝑝𝑖 ∈ [0, 1] are probabilities satisfying

∑︀𝑛𝑖
𝑘=1 𝑝𝑖𝑘 ≤ 1.

𝑏𝑖1, . . . , 𝑏𝑖𝑚𝑖 are literals and are indicated with 𝑏𝑜𝑑𝑦(𝐷𝑖). If

∑︀𝑛𝑖
𝑘=1 𝑝𝑖𝑘 < 1, the head implicitly

contains an extra atom 𝑛𝑢𝑙𝑙 that does not appear in the body of any clause and whose annotation is

1−
∑︀𝑛𝑖

𝑘=1 𝑝𝑖𝑘. Each clause represents a probabilistic choice among one of the head atoms, given that

𝑏𝑜𝑑𝑦(𝐷𝑖) holds. A LPAD program defines a probability distribution over normal logic programs called

worlds. A survey of the distribution semantics in PLP can be found in [18].

We consider here ground LPADs, and we denote by 𝑔𝑟𝑜𝑢𝑛𝑑(𝐿) the grounding of an LPAD 𝐿. An

atomic choice [19] is a triple (𝐷𝑖, 𝜃𝑗 , 𝑘) where 𝐷𝑖 ∈ 𝐿, 𝜃𝑗 is a substitution that grounds 𝐷𝑖 and

𝑘 ∈ {1, . . . , 𝑛𝑖} identifies one of the head atoms. (𝐷𝑖, 𝜃𝑗 , 𝑘) means that, for the ground clause 𝐷𝑖𝜃𝑗 ,
the head ℎ𝑖𝑘 was chosen. A set of atomic choices 𝜅 is consistent if only one head is selected from the

same ground clause; we assume independence between the different choices. A composite choice 𝜅 is

a consistent set of atomic choices [19]. The probability 𝑃 (𝜅) of a composite choice 𝜅 is the product of

the probabilities of the independent atomic choices, i.e. 𝑃 (𝜅) =
∏︀

(𝐷𝑖,𝜃𝑗 ,𝑘)∈𝜅 𝑝𝑖𝑘. A selection 𝜎 is a

composite choice that, for each clause 𝐷𝑖𝜃𝑗 in 𝑔𝑟𝑜𝑢𝑛𝑑(𝐿), contains an atomic choice (𝐷𝑖, 𝜃𝑗 , 𝑘). Let

us indicate with 𝑆𝐿 the set of all selections. A selection 𝜎 identifies a normal logic program 𝑤𝜎 defined

as 𝑤𝜎 = {(ℎ𝑖𝑘 ← 𝑏𝑜𝑑𝑦(𝐷𝑖))𝜃𝑗 |(𝐷𝑖, 𝜃𝑗 , 𝑘) ∈ 𝜎}. 𝑤𝜎 is called a (possible) world of 𝐿. Since selections

are composite choices, we can assign a probability to worlds: 𝑃 (𝑤𝜎) = 𝑃 (𝜎) =
∏︀

(𝐷𝑖,𝜃𝑗 ,𝑘)∈𝜎 𝑝𝑖𝑘.

We denote the set of all worlds of 𝐿 by 𝑊𝐿. 𝑃 (𝑊𝐿) is a probability distribution over worlds, i.e.,∑︀
𝑤∈𝑊𝐿

𝑃 (𝑤) = 1. A composite choice 𝜅 identifies a set of worlds 𝑤𝜅 = {𝑤𝜎|𝜎 ∈ 𝑆𝐿, 𝜎 ⊇ 𝜅}. The

set of possible worlds associated to a set of composite choices 𝐾 is 𝑊𝐾 =
⋃︀

𝜅∈𝐾 𝑤𝜅.



3. Probabilistic Event Data and Process Specifications

In this section we recap the results obtained so far in our recent works. All of them take inspiration

from the Distribution Semantics and allow to separately manage uncertainty at different levels: events,

traces, logs and process constraints.

Definition 6 (Probabilistic Event [20]). A Probabilistic Event is a couple Prob:EventDescription, where

EventDescription is a symbol describing an event (EventDescription ∈ 𝒜), while Prob ∈ [0, 1] is the

probability that the event happened. A probability value of 1 means the event happened, and we will refer

to it as “certain". Otherwise it represents the degree of our belief in the event happening.

Definition 7 (Probabilistic Trace [20]). A Probabilistic Trace is a trace where at least one event is

probabilistic.

Example 2. The trace: 𝑡 = ⟨0.9 : register_order, approve_order, schedule_delivery, invoice_customer⟩
describes the situation where 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟_𝑜𝑟𝑑𝑒𝑟 was not logged, however it is very probable that it happened

due to the standard process (the associated probability is high). 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟_𝑜𝑟𝑑𝑒𝑟 is a probabilistic event,

and 𝑡 is a probabilistic trace.

Definition 8 (Probabilistic Log [21]). A probabilistic log ℒ𝑝 is a log where at least one trace 𝑡 is annotated

with a probability 𝑝. A probability value of 1 means the trace certainly happened and the value will be

omitted.

Example 3. The probabilistic log ℒ𝑝 = {𝑡1, 0.9 : 𝑡2, 𝑡3} describes the case in which the process instances

𝑡1 and 𝑡3 were observed and recorded, while 𝑡2 was not observed but there is a high probability (0.9) that it

happened.

Definition 9 (Probabilistic Declarative Specification [22]). A Probabilistic Declarative Process Speci-

fication PDS is a Declarative Process Specification DS where each constraint c𝑖 ∈ 𝐷𝑆 is a probabilistic

constraint.

Example 4. The following PDS:

𝐶 = { 0.8 :: response(register_order, approve_order) (c1) }

includes one probabilistic constraint c1 which indicates that the fact that 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟_𝑜𝑟𝑑𝑒𝑟 is potentially

followed by 𝑎𝑝𝑝𝑟𝑜𝑣𝑒_𝑜𝑟𝑑𝑒𝑟 carries relatively high importance in the business process.

We will refer to constraints annotated with probability 𝑝𝑖 = 1 as crisp constraints. When every

constraint is crisp, the result is essentially a Declarative Specification. By taking inspiration from the

Distribution semantics, a PDS defines a probability distribution over regular (non-probabilistic) DSs

that correspond to worlds: c𝑖 may be chosen to be included in a world with probability 𝑝𝑖, or not

with probability 1 − 𝑝𝑖. In this way, we can assign a probability to each DS, that we indicate with

𝑃 (𝐷𝑆), given by the product of the probabilities of the selected probabilistic constraints c𝑖 and the

complement of the probabilities of the excluded constraints. This corresponds to a selection 𝜎 as defined

in subsection 2.2. The probability distribution over DSs guarantees that

∑︀
𝑖 𝑃 (𝐷𝑆𝑖) = 1.

In [22] we introduced how to compute the compliance of a certain trace versus a PDS:

Definition 10 (Compliance of a trace versus a PDS [22]). Given a PDS, the probability of compliance of

a trace 𝑡 w.r.t. a PDS is defined as:

𝐶𝑜𝑚𝑝(𝑡, 𝑃𝐷𝑆) =
∑︁

𝜎𝑖:𝑡|=𝐷𝑆𝑖

𝑃 (𝐷𝑆𝑖), (1)

where 𝐷𝑆𝑖 represents each deterministic specification induced by the selections 𝜎𝑖 over the PDS, and

𝑃 (𝐷𝑆𝑖) is the probability associated with each deterministic specification.



Example 5. Let us consider the following PDS:

𝐶 = { 0.8 :: response(register_order, approve_order) (c1)

0.9 :: init(register_order) (c2) }

Such a PDS leads to 4 selections and 4 possible worlds; so, 4 different regular DSs are possible, each one

corresponding to a world, as shown in Table 1.

Consider the trace 𝑡 = ⟨receive_order_request, register_order, approve_order⟩. 𝑡 is compliant with

𝐷𝑆2 and 𝐷𝑆4, i.e. those specifications that do not contain c2, since the first event of the trace is not

𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟_𝑜𝑟𝑑𝑒𝑟. 𝑡’s probability of compliance is 𝐶𝑜𝑚𝑝(𝑡, 𝑃𝐷𝑆) = 𝑃 (𝐷𝑆2)+𝑃 (𝐷𝑆4) = 0.08+0.02 =
0.1.

Selection DS 𝑃 (𝐷𝑆𝑖)

𝜎1 𝐷𝑆1 = {response(register_order, approve_order), init(register_order)} 𝑃 (𝐷𝑆1) = 0.8× 0.9 = 0.72
𝜎2 𝐷𝑆2 = {response(register_order, approve_order)} 𝑃 (𝐷𝑆2) = 0.8× 0.1 = 0.08
𝜎3 𝐷𝑆3 = {init(register_order)} 𝑃 (𝐷𝑆3) = 0.2× 0.9 = 0.18
𝜎4 𝐷𝑆4 = { } 𝑃 (𝐷𝑆4) = 0.1× 0.2 = 0.02

Table 1
Declarative Process Specifications generated by the PDS of Example 5.

4. Probabilistic Compliance of Uncertain Traces

In this section we propose our current work regarding the possibility to define the compliance of a

probabilistic trace with respect to a set of probabilistic constraints (a PDS). Recalling the Distribution

Semantics, for each probabilistic event in a probabilistic trace we can make an atomic choice, which

determines whether a probabilistic event appears or not in the trace, as follows:

Definition 11 (Atomic choice, Composite choice and Selection [20]). An atomic choice is a pair

(EventDescription𝑖, 𝑘) where EventDescription𝑖 is a probabilistic event appearing in the 𝑖-th position in

a probabilistic trace and 𝑘 ∈ {0, 1}. 𝑘 indicates whether EventDescription𝑖 is chosen to be included in a

world with probability 𝑝𝑖 (k=1), or not with probability 1− 𝑝𝑖 (k=0).

A Composite choice 𝜅(𝑡) is a consistent set of atomic choices over probabilistic events in 𝑡. The probability

of a composite choice is 𝑃 (𝜅(𝑡)) =
∏︀

(𝐸𝑣𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑖,1)∈𝜅 𝑝𝑖
∏︀

(𝐸𝑣𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑖,0)∈𝜅(1− 𝑝𝑖), where 𝑝𝑖
is the probability associated with EventDescription𝑖.

A Selection 𝜎(𝑡) over a probabilistic trace t is a composite choice containing an atomic choice

(EventDescription𝑖, 𝑘) for each probabilistic event in t. A selection 𝜎(𝑡) identifies a world 𝑤𝜎(𝑡) in this

way: 𝑤𝜎(𝑡) = {𝐸𝑣𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑖|(𝐸𝑣𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑖, 1) ∈ 𝜎(𝑡)}.

Example 6. Given the trace in Example 2, the possible selections are

𝜎1(𝑡) = {(register_order, 1)}, 𝜎2(𝑡) = {(register_order, 0)}

The corresponding possible worlds are:

𝑤𝜎1(𝑡) = ⟨register_order, approve_order, schedule_delivery, invoice_customer⟩

𝑤𝜎2(𝑡) = ⟨approve_order, schedule_delivery, invoice_customer⟩

Note that we ended up with a set of regular (non-probabilistic) traces, that correspond to the worlds

𝑤𝜎𝑖(𝑡).



Definition 12 (Probability of a Selection [20]). The probability of a selection 𝜎(𝑡) is defined as:

𝑃 (𝜎(𝑡)) =
∏︁

(𝐸𝑣𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑖,1)∈𝜎(𝑡)

𝑝𝑖
∏︁

(𝐸𝑣𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑖,0)∈𝜎(𝑡)

(1− 𝑝𝑖)

The probability of a selection corresponds to the probability of a world 𝑤𝜎(𝑡), i.e. 𝑃 (𝑤𝜎(𝑡)) = 𝑃 (𝜎(𝑡)).

Example 7. Given the trace in Example 2, the probabilities of the two corresponding worlds in Example 6

are: 𝑃 (𝑤𝜎1(𝑡)) = 0.9 and 𝑃 (𝑤𝜎2(𝑡)) = 0.1.

Now we introduce our idea of compliance of a probabilistic trace w.r.t. a Probabilistic Declarative

Process Specification. Given a PDS and the notion of compliance of a (certain) trace w.r.t. a PDS, as per

Definition 10, we can extend this notion to a probabilistic trace 𝑡 by considering the compliance of each

world 𝑤𝜎(𝑡) generated by the trace versus each Declarative Process Specification 𝐷𝑆 generated by the

PDS. The probability of compliance of 𝑡 w.r.t. the PDS will be calculated by summing up the products

between the probability of the world compliant with a DS and the probability of the DS itself.

Definition 13 (Compliance of a probabilistic trace versus a PDS). Given a a Probabilistic Declarative

Process Specification PDS and a Probabilistic Trace t, let us consider all the possible selections 𝜎𝑖 over the

PDS and all the possible selections 𝜎𝑖(𝑡) over t. Let us consider all the possible Declarative Specifications

𝐷𝑆𝑖 associated with 𝜎𝑖 and all the possible worlds 𝑤𝜎𝑖(𝑡) associated with 𝜎𝑖(𝑡).
We define the compliance Comp(t,PDS) of a probabilistic trace 𝑡 w.r.t. 𝑃𝐷𝑆 as:

𝐶𝑜𝑚𝑝(𝑡, 𝑃𝐷𝑆) =
∑︁
𝑤𝜎𝑖 (𝑡)
𝐷𝑆𝑖

{︃
𝑃 (𝑤𝜎(𝑡)) · 𝑃 (𝐷𝑆𝑖) if 𝑤𝜎𝑖(𝑡) is compliant with 𝐷𝑆𝑖,

0 otherwise.

Example 8. Consider the PDS from Example 5 and the probabilistic trace from Example 2. The total

number of combinations is 4 × 2 = 8, corresponding to the 4 DSs of Table 1 multiplied by the 2 worlds

𝑤𝜎1(𝑡), 𝑤𝜎2(𝑡) of Example 6, as shown in Table 2.

Trace DS Compliance Probability
register_order, approve_order, schedule_delivery, invoice_customer 𝐷𝑆1 True 0.9× 0.72 = 0.648
register_order, approve_order, schedule_delivery, invoice_customer 𝐷𝑆2 True 0.9× 0.08 = 0.072
register_order, approve_order, schedule_delivery, invoice_customer 𝐷𝑆3 True 0.9× 0.18 = 0.162
register_order, approve_order, schedule_delivery, invoice_customer 𝐷𝑆4 True 0.9× 0.02 = 0.018
approve_order, schedule_delivery, invoice_customer 𝐷𝑆1 False 0.1× 0.72 = 0.072
approve_order, schedule_delivery, invoice_customer 𝐷𝑆2 False 0.1× 0.08 = 0.008
approve_order, schedule_delivery, invoice_customer 𝐷𝑆3 False 0.1× 0.18 = 0.018
approve_order, schedule_delivery, invoice_customer 𝐷𝑆4 True 0.1× 0.02 = 0.002

Table 2
Compliance of the probabilistic trace of Ex. 2 w.r.t. the PDS of Example 5. The “compliance" column indicates if
the given trace is compliant w.r.t the given DS. The last column computes the product of the probability of every
𝑤𝜎𝑖

(𝑡) and every 𝑃 (𝐷𝑆𝑖).

The probability of compliance of 𝑡 is computed by summing the probabilities of the worlds where each non-

probabilistic trace is compliant with a DS: 𝐶𝑜𝑚𝑝(𝑡, 𝑃𝐷𝑆) = 0.648 + 0.072 + 0.162 + 0.018 + 0.002 =
0.902.

Compliance is not a binary outcome but a weighted evaluation over all possible DSs weighted by the

probability of the world generated by a probabilistic trace.

4.1. Preliminary Experimental Results

We used the same set-up presented in [22] both in terms of the algorithm [23] and the case study,

based on the ERAS
®

[24] colorectal-surgery protocol, from which we took inspiration for building a



process model with 21 constraints and a trace of 21 events representing a patient. All experiments were

executed on a Linux machine equipped with two AMD
®

EPYC 9124 16-core CPUs and a 60 GB Prolog

stack, with a 24-hour timeout per run. For each iteration 𝑘 (with 𝑘 = 1 to 21), we built a test case by

randomly selecting 𝑘 constraints in the PDS to be probabilistic (with user-defined probabilities), while

treating the remaining 21− 𝑘 constraints as crisp. Simultaneously, we consider 𝑘 events in the trace as

probabilistic (with a user-defined value), while keeping the remaining 21− 𝑘 as certain. Table 3 shows

execution times for computing the probability of compliance for the different configurations of the

experiments.

Experiment # of prob. constraints # of prob. events Time (s)

1 1 1 793.96
2 2 2 1450.72
3 3 3 3503.28
4 4 4 7896.75
5 5 5 17751.73
6 6 6 44133.15
7 7 7 T.O.

Table 3
Execution time (in seconds) for computing the probability of compliance of a trace with an increasing number
of probabilistic events versus an increasing number of probabilistic constraints (from 1 to 7). T.O. indicates a
time-out.

As expected, enumerating all possible combinations of regular traces versus regular DS leads to an

exponential trend in execution times as the number of probabilistic constraints together with the number

of probabilistic events increases. Currently we are studying how to perform an efficient computation of

the compliance without relying on this solution.

5. Conclusion and Future Work

In this paper we have presented our work in progress to evaluate compliance in declarative process

mining when uncertain information may affect both event logs and process models. Ongoing work

focuses on implementing a scalable solution for this task.

Future works include:

• exploiting the availability of positive and negative examples for process discovery: in many cases,

user experts provide traces with desired (positive) and undesired (negative) behaviour, but the

majority of the discovery approaches exploits only the positive set;

• developing discovery algorithms for learning declarative process models in uncertain domains,

in order to automatically associate probabilities to constraints;

• identifying preferable models for the user when performing the process discovery task, which

could output multiple models.

The project will build a set of techniques that target the issues above by means of new combinations of

declarative Process Mining with probabilistic and combinatorial approaches. The final aim is to produce

more verifiable and understandable explanations of its processes to an organization.
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