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Abstract
This paper investigates the evolution from a medical appointment scheduling framework based on Answer Set
Programming (ASP) integrated with Blueprint Personas to a more cognitively rich, agent-based scheduling system
employing the L-DINF epistemic logic framework. We illustrate how agent-oriented models incorporating beliefs,
intentions, and dynamic reasoning capabilities can effectively enhance or replace the persona-based constraint
optimization traditionally used. Key advantages of the L-DINF model, such as improved adaptability, enhanced
explainability, and more human-like decision-making, are emphasized. Furthermore, a structured translation
methodology from static personas into dynamic epistemic agents is proposed, accompanied by a modular logical
architecture supporting real-time, responsive scheduling.
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1. Introduction

The scheduling of medical appointments remains a significant challenge due to the inherent com-
plexity of balancing limited resources, patient urgency, and individualized preferences. Traditional
manual scheduling methods and simple heuristic-based solutions [1, 2] often do not accommodate this
complexity, resulting in inefficiencies, prolonged waiting times, and compromised care quality.
In an earlier paper recently accepted, we introduced a scheduling framework based on Answer Set

Programming (ASP), a declarative, logic-based paradigm that is well suited for constraint satisfaction
and combinatorial optimization [3, 4, 5, 6, 7], enriched with Blueprint Personas [8]. These personas
encode structured representations of patients, capturing socio-clinical characteristics, preferences, and
accessibility constraints, thereby enabling a form of patient-aware scheduling.

Although ASP with Blueprint Personas proved effective for static scheduling problems, its limitations
become evident in dynamic settings. Personas are, by design, static abstractions and do not support
real-time reasoning, belief updates, or proactive behavior. As a result, they cannot easily accommodate
changing availability, evolving preferences, or unforeseen disruptions in clinical operations.
To address these limitations, we explore the integration of L-DINF, a logic-based framework for

modeling intelligent agents with epistemic capabilities such as beliefs, intentions, preferences, and
contextual reasoning over actions and environmental changes [9, 10, 11, 12]. Rather than replacing ASP,
we propose an integration with the L-DINF framework to enable proactive behavior, intention review,
belief-driven planning, and agent coordination, features crucial for modern, responsive healthcare
systems.
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We show how the cognitive properties of L-DINF can be layered on top of the ASP scheduling
backbone, supporting dynamic adaptation without the need to recompute entire schedules. The
resulting hybrid architecture retains the ASP’s optimization strength while enriching it with real-time
reasoning and explainability.
This paper presents a structured methodology for translating Blueprint Personas into epistemic

agents, articulates the rationale for the integration of L-DINF into ASP-based systems, and demonstrates
how such integration addresses the limitations of purely static models. We argue that this hybrid
approach is particularly well-suited to the healthcare domain, where scheduling must be responsive to
constant change.

The paper is organized as follows: Section 2 reviews the Personas and L-DINF frameworks; Section 3
elaborates on the motivation to integrate epistemic agents into persona-based scheduling; Section 4
analyzes the feasibility of this integration; Section 5 details the translation of personas into L-DINF
agents; Section 6 provides a running example; and Section 7 summarizes our findings and outlines
future research directions.

2. Background

2.1. Blueprint Personas

Blueprint Personas, originally introduced in digital health transformation projects, act as structured
archetypes representing prototypical patients. They combine clinical information (e.g., chronic condi-
tions), social context (e.g., dependency on caregivers), cognitive attributes, and digital literacy levels
[8]. When embedded in ASP models, these personas enable individualized constraint modeling while
preserving scalability across patient populations.

In our framework, appointment scheduling is modeled as a constraint satisfaction problem (CSP) with
embedded optimization goals. Each appointment must satisfy a set of hard constraints (e.g., resource
availability, physical accessibility) while optimizing soft constraints such as patient preferences for time,
clinic, and physician.

It is important to note that the examples presented in this section are purely illustrative. Personas in
our system should be understood as abstract ontological templates, conceptual structures that define
variables and relationships related to the patient. These templates are instantiated using real patient
data, EHR (Electronic Health Records), and system-level parameters, which populate the factual layer
of the ASP model.
Each persona defines a structured combination of clinical status, socio-environmental context, and

digital capabilities. This layer of abstraction allows the system to reason over complex, human-centered
scheduling needs without hard-coding per-patient logic. Specifically, a patient persona may include
attributes such as: personal identity and geographical location, physical or mobility conditions (e.g.,
disability status), clinic preferences or accessibility needs, sensory sensitivities (e.g., noise or light
sensitivity), preferences over physician specialization and experience, preferred time windows for
appointments and distance or travel time to clinics. These high-level profiles are encoded as ASP facts,
forming the basis for reasoning:

1 patient(p1, "Mario", "Rossi", "L'Aquila").
2 disabled(p1).
3 preference(p1, c3).
4 sensory_preference(p1, "noise").
5 doctor_preference(p1, "GP", "chronic_diseases", 10).
6 appointment_preference(p1, c3, 1850, 2000).
7 distance(p1, c3, 15).

Listing 1: Patient Profile with Preferences and Constraints

Clinician personas are modeled in the same way. They include attributes such as medical expertise,
experience, and operational limitations, enabling the system to consider staffing constraints and match



appropriate providers to patient needs, in fact each visit is identified by: name, cost and classification
indicating its chronicity (0 = non-chronic, 1 = chronic):

1 doctor(m1, "Marco", "Bianchi", 52, "L'Aquila", "GP").
2 doctor_experience(m1, "GP", 25).
3 doctor_experience(m1, "chronic_diseases", 5).
4

5 visit_type(v1, "Cardiology", "Heart Attack", 0, 0, 0).
6 visit_cost(v1, 1000).
7 required_sessions(v1, 2).
8 session_interval(v1, 14, 28).

Listing 2: Doctor Profile and Medical Expertise

This ontology-based modeling allows the system to infer constraints and utility values for scheduling
in a way that is both medically sound and personalized. It also enables scenario-based validation, where
synthetic patients are simulated to test how the system handles edge cases or vulnerable populations.
In the ASP encoding, inference rules transform base facts into utility values and feasibility checks,

guiding the solver toward optimal, patient-centered outcomes. Preferences are modeled as soft rules,
contributing weighted terms to the objective function.
For instance, a patient’s preference for a particular doctor type is captured by a scoring rule:

1 appointment_preference_effect(Patient, Time, Clinic, 1) :-
2 patient(Patient, _, _, _),
3 clinic(Clinic, _),
4 availability(Clinic, _, _, Time),
5 appointment_preference(Patient, _, Start, End),
6 X = (((Time \ 86400) * 3600) * 100) + (((Time \ 3600) / 60) / 3) * 5,
7 X <= End, X >= Start.

Listing 3: Effect of Patient Preference on Doctor Assignment

Other utility-generating rules model preferences related to clinic selection, time windows, and
environmental sensitivity. Collectively, these soft constraints steer the optimization process toward
maximizing user satisfaction and care appropriateness.

In parallel, hard constraints define the space of valid solutions by enforcing rules grounded in clinical,
operational, and ethical requirements. These constraints ensure the feasibility of assignments.
For example, the following constraint ensures that patients are scheduled for the exact number of

sessions required for a particular treatment:

1 Sessions { appointment(Patient, Clinic, Doctor, Visit, Time) :
2 availability(Clinic, Doctor, Visit, Time) } Sessions :-
3 need(Patient, Visit, _),
4 required_sessions(Visit, Sessions).

Listing 4: Choice Rule for Appointment Allocation Based on Patient Needs

Additional constraints—such as time slot exclusivity, priority handling, clinic capacity, and service
delivery modes—are implemented to ensure system realism. For full access to the rules, we provide our
codebase online1.

2.2. Logical Framework: L-DINF

The logical framework L-DINF, that we illustrate in this subsection, allows the modeling of group
dynamics of cooperative agents. Consequently, one can model agents that can form groups and support
each other in performing collective mental actions [13, 14]. Moreover, agents can consider preferences
about performing one action instead of another [15]. The logical framework also encompasses the

1https://github.com/DawidPado/An-ASP-based-Solution-to-the-Medical-Appointment-Scheduling-Problem/tree/main
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possibility for agents to have roles within their group of agents. Roles determine which actions each
agent is enabled by its group to perform [16]. A mental action is considered executable if at least one
agent of the group can perform the action, with the group’s approval and on behalf of the group. An
agent can join or leave a group whenever it wants (and, consequently, the role of an agent may change
as it joins another group).
The agents of a group can share their beliefs, so that any agent can access beliefs of other agents.

This ability opens up the possibility of modeling aspects of “Theory of Mind” [17]. For instance, an agent
can maintain a version (possibly outdated) of the mental state of other agents and perform inferences
about such knowledge.
It models agents not just as data structures but as intelligent entities capable of forming beliefs,

revising intentions, reasoning over equivalent actions, and adapting to environmental changes. This
makes L-DINF particularly well-suited for contexts like healthcare, where schedules must often respond
to evolving patient needs and real-world disruptions.

Below we illustrate the syntax and semantics of L-DINF, moreover a formal axiomatic system exists
for the logic’s core, and it is proven to be strongly complete, but that does not guarantee computational
tractability, reasoning in such a rich system is PSPACE-hard; for more detail refer to [9, 10, 11, 12].
L-DINF is a logic composed of a static component and a dynamic component. The first, called L-INF, is
a logic of explicit beliefs and background knowledge. The second component extends the static one
with dynamic operators that express the consequences of agents’ mental actions.

2.2.1. Syntax

A comprehensive exposition of the logical framework, encompassing its truth conditions, and axiomatic
structure, is provided in the referenced publication: https://ceur-ws.org/Vol-3428/paper10.pdf.

Let Atm = {𝑝, 𝑞, …} be a countable set of atomic propositions. The set 𝐴𝑡𝑚𝐴 is the set of the physical
actions that agents can perform, including “active sensing” actions (e.g., “let’s check whether it rains”,
“let’s measure the temperature”, etc.). Let Agt be a set of agents and Grp the set of groups of agents.

The language of L-DINF, denoted by ℒL-DINF, is defined by the following grammar:

𝜑, 𝜓 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜓 ∣ B𝑖𝜑 ∣ K𝑖𝜑 ∣
do𝑃𝐺(𝜙𝐴) ∣ doG(𝜙𝐴) ∣ can_doG(𝜙𝐴) ∣
intend𝐺(𝜙𝐴) ∣ exec𝐺(𝛼) ∣ pref _do𝑖(𝜙𝐴, 𝑑) ∣ pref _do𝐺(𝑖, 𝜙𝐴) ∣
[𝐺 ∶ 𝛼] 𝜑 ∣ Cl(𝜙𝐴, 𝜙′𝐴) ∣ fCl 𝑖(𝜙𝐴)

𝛼 ∶∶= +𝜑 ∣ ⊢(𝜑,𝜓 ) ∣ ∩(𝜑,𝜓 ) ∣ ↓(𝜑, 𝜓 ) ∣ ⊣(𝜑, 𝜓 )

where 𝑝 ranges over Atm, 𝜙𝐴, 𝜙′𝐴 ∈ 𝐴𝑡𝑚𝐴, 𝑖 ∈ Agt , 𝑑 ∈ ℕ, and 𝐺 ∈ Grp. Other Boolean operators are
defined from ¬ and ∧ in the standard manner.2 The language of mental actions of type 𝛼 is denoted by
ℒACT. The static part L-INF of L-DINF, includes only those formulas not having sub-formulas of the
form [𝐺 ∶ 𝛼] 𝜑.

Let us briefly describe the intended informal meaning of basic formulas of L-INF. As mentioned, we
are interested in modelling the reasoning of agents acting cooperatively. We consider the set of agents
as partitioned in groups: each agent 𝑖 ∈ Agt always belongs to a unique group in Grp. We assume that
all agents initially belong to an initial group. Any agent 𝑖, at any time, can perform a (physical) action
joinA(𝑖, 𝑗), for 𝑗 ∈ Agt , in order to change her group and join 𝑗’s group. The special case in which 𝑖 = 𝑗
denotes the action that allows agent 𝑖 to leave her current group and form the new singleton group {𝑖}.
The formula intend 𝑖(𝜙𝐴) indicates the intention of agent 𝑖 to perform the physical action 𝜙𝐴, in the

sense of the BDI agent model [18]. Formulas of this form can be part of agent’s knowledge base from
the beginning or it can be derived later. In this paper we do not cope with the formalization of BDI, for
which the reader may refer, e.g., to [19]. Hence, we will deal with intentions rather informally, also
assuming that intend𝐺(𝜙𝐴) holds whenever all agents of group 𝐺 intend to perform 𝜙𝐴.
2For simplicity, whenever 𝐺 = {𝑖} we will write 𝑖 as subscript in place of {𝑖}. So, for instance, we often write exec 𝑖(𝜙𝐴) instead
of exec{𝑖}(𝜙𝐴) and similarly for other constructs.

https://ceur-ws.org/Vol-3428/paper10.pdf


The formula doi(𝜙𝐴) indicates the actual execution of action 𝜙𝐴 by agent, automatically recorded
by the new belief do𝑃𝑖 (𝜙𝐴) (postfix “𝑃” standing for “past” action). Note that, we do not provide an
axiomatization for do (and similarly for doG , that indicates the actual execution of 𝜙𝐴 by the group of
agents 𝐺). In fact, we assume that in any concrete implementation of the logical framework, do𝑖 and
doG are realized by means of a semantic attachment [20], that is, a procedure which connects an agent
with its external environment in a way that is unknown at the logical level. The axiomatization only
concerns the relationship between doing and being enabled to do.
The expressions can_doi(𝜙𝐴) and pref _do𝑖(𝜙𝐴, 𝑑) are closely related to doi(𝜙𝐴). In particular,

can_doi(𝜙𝐴) must be seen as an enabling condition, indicating that the agent 𝑖 is enabled to perform the
action 𝜙𝐴, while pref _doi(𝜙𝐴, 𝑑) indicates the level 𝑑 of preference/willingness of agent 𝑖 to perform 𝜙𝐴.
The formula pref _doG(𝑖, 𝜙𝐴) indicates that agent 𝑖 exhibits the maximum level of preference on

performing action 𝜙𝐴 within all group members. Notice that, if a group of agents intends to perform
an action 𝜙𝐴, this will entail that the entire group intends to do 𝜙𝐴, that will be enabled to be actually
executed only if at least one agent 𝑖 ∈ 𝐺 can do it, i.e., it can derive can_doi(𝜙𝐴).
The formula Cl(𝜙𝐴, 𝜙′𝐴) denoted the equivalence of the two physical actions 𝜙𝐴 and 𝜙′𝐴. Intuitively,

this means that in the specific practical context at hand, the two actions have “something in common”,
i.e., for instance, they use similar resources, perform in a similar way, can be used by an agent to
obtain equivalent results, etc. Notice that the predicate Cl induces a partition of 𝐴𝑡𝑚𝐴 in a collection of
equivalence classes.
Agents modeled through L-DINF deal with two kind of memories, namely, a working memory used

to represent beliefs, i.e., facts and formulas acquired via perceptions during an agent’s operation, and
a long-term memory used to model agent’s background knowledge. Such knowledge is assumed to
satisfy omniscience principles, such as: closure under conjunction and known implication, closure under
logical consequence, and introspection.

Background knowledge of an agent 𝑖 is specified by means of the modal operator K𝑖, which is actually
the usual S5 modal operator often used to model knowledge. The fact that background knowledge is
closed under logical consequence is justified because we conceive it as a kind of stable and reliable
knowledge base. The modal operator B𝑖, instead, is used to represent the beliefs of agents 𝑖 kept in
𝑖’s working memory. The contents of the working memory is determined by the mental actions 𝑖
has executed. We assume the background knowledge to include: facts/formulas known by the agent
from the beginning, and facts the agent subsequently decided to store in its long-term memory (via
a decision-making mechanism not covered here) after processing them in its working memory. We
therefore assume that background knowledge is irrevocable, in the sense of being stable over time.

Whenever an agent wants to perform a physical action 𝜙′𝐴, it can exploit the equivalence described by
the facts of the form Cl(𝜙𝐴, 𝜙′𝐴) to execute a most convenient action 𝜙𝐴 (in terms of resources requires,
preferences, etc.) drawn from the equivalence class of 𝜙′𝐴. The formula fCl 𝑖(𝜙𝐴) indicates that 𝜙𝐴 is the
more convenient action among those in the set {𝜙′𝐴|Cl(𝜙𝐴, 𝜙

′
𝐴)}.

The formulas exec𝐺(𝛼) express executability of mental actions by a group 𝐺 (which is a consequence
of the fact that any member of the group is able to perform the action). They have to be read as: “𝛼 is a
mental action that an agent in 𝐺 can perform”.
A formula of the form [𝐺∶𝛼] 𝜑, where 𝛼 must be a mental action, states that “𝜑 holds after action 𝛼

has been performed by at least one of the agents in 𝐺, and all agents in 𝐺 have common knowledge
about this fact”.

Let us now introduce the dynamic component of the framework. Borrowing from [15, 21], we
distinguish five types of mental actions 𝛼 that capture some of the dynamic properties of explicit beliefs
and background knowledge. +𝜑, ↓(𝜑, 𝜓 ), ∩(𝜑,𝜓 ), ⊣(𝜑, 𝜓 ), and ⊢(𝜑,𝜓 ). These actions characterize the
basic operations of belief formation through inference:

• +𝜑: learning perceived belief: the mental operation that serves to form a new belief from a
perception 𝜑. A perception may become a belief whenever an agent becomes “aware” of the
perception and takes it into explicit consideration.



• ↓(𝜑, 𝜓 ) is the mental action which consists in inferring 𝜓 from 𝜑, where 𝜓 is an atom: an agent,
believing that 𝜑 is true and having in its long-term memory that 𝜑 implies 𝜓 , starts believing that
𝜓 is true.

• ∩(𝜑,𝜓 ) is the mental action which closes the beliefs 𝜑 and belief 𝜓 under conjunction. Namely,
∩(𝜑,𝜓 ) characterizes the mental action of deducing 𝜑 ∧ 𝜓 from 𝜑 and 𝜓.

• ⊣(𝜑, 𝜓 ), where 𝜑 and 𝜓 are atoms, is the mental action that performs a simple form of “belief
revision”, i.e., it removes 𝜓 from the belief set, in case 𝜑 is believed and, according to the background
knowledge, ¬𝜓 is logical consequence of 𝜑.

• ⊢(𝜑,𝜓 ), where 𝜓 is an atom; by means of this mental action, an agent believing that 𝜑 is true (i.e.,
it is in the working memory) and that 𝜑 implies 𝜓, starts believing that 𝜓 is true. This last action
operates exclusively on the working memory without recovering anything from the background
knowledge.

2.2.2. Semantics

Many relevant aspects of an agent’s behaviour are specified in the definition of L-INF model, including
what mental and physical actions an agent can perform, what is the cost of an action and what is the
budget that the agent has at its disposal, what is the degree of preference of the agent to perform each
action, what is the degree of preference of the agent to use a particular resource. This choice has the
advantage of keeping the complexity of the logic under control and making these aspects modular.
Definitions 2.1 and 2.2 introduce the notion of L-INF model, which is then used to introduce semantics
of the static fragment L-INF. A model 𝑀 is composed of two parts. A core part 𝒞𝑀 and a collection of
packages 𝒫𝑀. More specifically:

Definition 2.1. The core part 𝒞𝑀 of a model 𝑀 is a tuple (𝑊 , 𝑁 ,ℛ, 𝑉 , 𝑆), where

• 𝑊 is a set of worlds (or situations);
• ℛ = {𝑅𝑖}𝑖∈Agt is a collection of equivalence relations on 𝑊: 𝑅𝑖 ⊆ 𝑊 × 𝑊;

• 𝑁 ∶ Agt × 𝑊 ⟶ 22
𝑊
is a neighborhood function such that, for each 𝑖 ∈ Agt , each 𝑤, 𝑣 ∈ 𝑊, and

each 𝑋 ⊆ 𝑊 these conditions hold:

(C1) if 𝑋 ∈ 𝑁(𝑖, 𝑤) then 𝑋 ⊆ {𝑣 ∈ 𝑊 ∣ 𝑤𝑅𝑖𝑣},
(C2) if 𝑤𝑅𝑖𝑣 then 𝑁(𝑖, 𝑤) = 𝑁(𝑖, 𝑣);

• 𝑉 ∶ 𝑊 ⟶ 2Atm is a valuation function;

• 𝑆 ∶ 𝑊 ⟶ 2{do𝐺(𝜙𝐴),do
𝑃
𝑖 (𝜙𝐴)|𝜙𝐴∈Atm𝐴,𝑖∈Agt ,𝐺∈Grp} is a valuation function for formulas of the forms

do𝐺(𝜙𝐴) and do
𝑃
𝑖 (𝜙𝐴).

To simplify the notation, let 𝑅𝑖(𝑤) denote the set {𝑣 ∈ 𝑊 ∣ 𝑤𝑅𝑖𝑣}, for 𝑤∈𝑊. The set 𝑅𝑖(𝑤) identifies
the situations that agent 𝑖 considers possible at world 𝑤. It is the epistemic state of agent 𝑖 at 𝑤. In
cognitive terms, 𝑅𝑖(𝑤) can be conceived as the set of all situations that agent 𝑖 can retrieve from its
long-term memory and reason about. While 𝑅𝑖(𝑤) concerns background knowledge, 𝑁(𝑖, 𝑤) is the set
of all facts that agent 𝑖 explicitly believes at world 𝑤, a fact being identified with a set of worlds. Hence,
if 𝑋 ∈ 𝑁(𝑖, 𝑤) then, the agent 𝑖 has the fact 𝑋 under the focus of its attention and believes it. We say
that 𝑁(𝑖, 𝑤) is the explicit belief set of agent 𝑖 at world 𝑤. Constraint (C1) imposes that agent 𝑖 can
have explicit in its mind only facts which are compatible with its current epistemic state. Moreover,
according to constraint (C2), if a world 𝑣 is compatible with the epistemic state of agent 𝑖 at world
𝑤, then agent 𝑖 should have the same explicit beliefs at 𝑤 and 𝑣. In other words, if two situations are
equivalent as concerns background knowledge, then they cannot be distinguished through the explicit
belief set. This aspect of the semantics can be extended in future work to allow agents make plausible
assumptions.

The packages of a model can be thought as modular extensions of the core part. Each package is used
to specify a specific feature, such as preferences, costs, executability, etc. Ideally, each package, (may)



correspond to some syntactic element of the syntax of L-INF. The connection between the syntactic
elements and the corresponding package will be established by a suitable component of the semantics
(so be seen). The following are some possible packages. Note that we are focusing on those of interests
for the purposes of this paper. Plainly, the designer of a particular MAS may decide to include only part
of the following packages or even to add/model other features (also providing a suitable adaptation of
the notion of truth).

Definition 2.2. Given a core model 𝒞𝑀 = (𝑊 , 𝑁 ,ℛ, 𝑉 , 𝑆), the packages 𝒫𝑀 are:
executability for mental actions

• 𝐸 ∶ Agt × 𝑊 ⟶ 2ℒACT is an executability function of mental actions such that, for each 𝑖 ∈ Agt and
𝑤, 𝑣 ∈ 𝑊, it holds that:

(D1) if 𝑤𝑅𝑖𝑣 then 𝐸(𝑖, 𝑤) = 𝐸(𝑖, 𝑣);
budget and costs for mental actions

• 𝐵1 ∶ Agt × 𝑊 ⟶ ℕ is a budget function such that, for each 𝑖 ∈ Agt and 𝑤, 𝑣 ∈ 𝑊, the following holds

(E1) if 𝑤𝑅𝑖𝑣 then 𝐵1(𝑖, 𝑤) = 𝐵1(𝑖, 𝑣);
• 𝐶1 ∶ Agt × ℒACT × 𝑊 ⟶ ℕ is a cost function such that, for each 𝑖 ∈ Agt , 𝛼 ∈ ℒACT, and 𝑤, 𝑣 ∈ 𝑊, it
holds that:

(F1) if 𝑤𝑅𝑖𝑣 then 𝐶1(𝑖, 𝛼, 𝑤) = 𝐶1(𝑖, 𝛼, 𝑣);
executability for physical actions

• 𝐴 ∶ Agt × 𝑊 ⟶ 2𝐴𝑡𝑚𝐴 is an executability function for physical actions such that, for each 𝑖 ∈ Agt and
𝑤, 𝑣 ∈ 𝑊, it holds that:

(G1) if 𝑤𝑅𝑖𝑣 then 𝐴(𝑖, 𝑤) = 𝐴(𝑖, 𝑣);
budget and costs for physical actions

• 𝐵2 ∶ Agt × 𝑊 ⟶ Amounts is a budget function for physical action, such that, for each 𝑖 ∈ Agt , and
𝑤, 𝑣 ∈ 𝑊, it holds that:

(E2) if 𝑤𝑅𝑖𝑣 then 𝐵2(𝑖, 𝑤) = 𝐵2(𝑖, 𝑣);
• 𝐶2 ∶ Agt × AtmA × 𝑊 ⟶ Amounts is a cost function for physical action, such that, for each 𝑖 ∈ Agt ,
𝜙𝐴 ∈ AtmA, and 𝑤, 𝑣 ∈ 𝑊, it holds that:

(F2) if 𝑤𝑅𝑖𝑣 then 𝐶2(𝑖, 𝜙𝐴, 𝑤) = 𝐶2(𝑖, 𝜙𝐴, 𝑣);
agents’ roles

• 𝐻 ∶ Agt × 𝑊 ⟶ 2𝐴𝑡𝑚𝐴 is an enabling function for physical actions such that, for each 𝑖 ∈ Agt and
𝑤, 𝑣 ∈ 𝑊, it holds that:

(G2) if 𝑤𝑅𝑖𝑣 then 𝐻(𝑖, 𝑤) = 𝐻(𝑖, 𝑣);
preferences on physical actions

• 𝑃 ∶ Agt × 𝑊 × AtmA ⟶ ℕ is a preference function for physical actions 𝜙𝐴 such that, for each 𝑖 ∈ Agt
and 𝑤, 𝑣 ∈ 𝑊, it holds that:

(H1) if 𝑤𝑅𝑖𝑣 then 𝑃(𝑖, 𝑤, 𝜙𝐴) = 𝑃(𝑖, 𝑣 , 𝜙𝐴);
For each 𝑖 and 𝑤, the function 𝑃 induces a preference order ⪯𝑖,𝑤 on Atm𝐴, such that 𝜙𝐴 ⪯𝑖,𝑤 𝜙′𝐴 iff
𝑃(𝑖, 𝑤, 𝜙𝐴) ≤ 𝑃(𝑖, 𝑤, 𝜙′𝐴).

equivalence of physical actions

• 𝑄 ∶ AtmA × 𝑊 ⟶ 2𝐴𝑡𝑚𝐴 is a function describing a partition of 𝐴𝑡𝑚𝐴 in equivalence classes (i.e., 𝑄
associates each physical action with its equivalence class), such that for each 𝑖 ∈ Agt and 𝑤, 𝑣 ∈ 𝑊, it
holds that:

(I1) if 𝑤𝑅𝑖𝑣 then 𝑄(𝜙𝐴, 𝑤) = 𝑄(𝜙𝐴, 𝑣);



• 𝐹 ∶ Agt × 𝑊 × ℒACT ⟶ ℒACT is a selector function for physical actions that, given 𝑖 and 𝑤, selects
one physical action 𝐹(𝑖, 𝑤, 𝜙𝐴) from the equivalence class of 𝜙𝐴. Namely, it holds that 𝐹(𝑖, 𝑤, 𝜙𝐴) ∈
𝑄(𝜙𝐴, 𝑤) ∧ ∀ 𝜙′𝐴 ∈ 𝑄(𝜙𝐴, 𝑤) 𝜙′𝐴 ⪯𝑖,𝑤 𝜙𝐴. For each 𝑖 ∈ Agt and 𝑤, 𝑣 ∈ 𝑊, it holds that:

(I2) if 𝑤𝑅𝑖𝑣 then 𝐹(𝑖, 𝑤, 𝜙𝐴) = 𝐹(𝑖, 𝑣 , 𝜙𝐴).

Let us briefly describe the intended features shaped by the packages introduced by Def. 2.2. Notice
that the concrete implementation, in a real MAS, the specification of some packages might depend on
other packages (for example, in what follows we will describe a possible implementation of 𝐹 that relies
on the function 𝑃).

For an agent 𝑖, 𝐸(𝑖, 𝑤) is the set of mental actions that 𝑖 can execute at world 𝑤. To execute a mental
action, 𝑖 has to pay the cost 𝐶1(𝑖, 𝛼, 𝑤). 𝐵1(𝑖, 𝑤) is the budget that 𝑖 has (in 𝑤) to perform mental actions.
As mentioned, concerning physical actions, we are interested in modeling situations where performing
an action may require multiple resources. Hence, the cost 𝐶2(𝑖, 𝜙𝐴, 𝑤) of an action 𝜙𝐴 (for agent 𝑖 in
world 𝑤) is a tuple in Amounts, while the available budget is described by 𝐵2(𝑖, 𝑤). For an agent 𝑖, the set
of physical actions it can execute at 𝑤 is 𝐴(𝑖, 𝑤). Equivalence between physical actions is determined
by function 𝑄. That is, 𝑄(𝜙𝐴, 𝑤) is the set of physical actions that are equivalent to 𝜙𝐴 in 𝑤. Roles of
agents (that, as we will see, affects the capability of agents in a group to execute actions) is described
through 𝐻. Namely, 𝐻(𝑖, 𝑤) is the set of physical actions that agent 𝑖 is enabled by its group to perform
(recall that, at each time instant, an agent belongs to a single group). Agent’s preference on execution
of physical actions is determined by the function 𝑃. For an agent 𝑖, and a physical action 𝜙𝐴, the value of
𝑃(𝑖, 𝑤, 𝜙𝐴) should be intended as a degree of willingness of agent 𝑖 to execute 𝜙𝐴 at world 𝑤. Analogously
to property (C2) imposed in Def. 2.1, the constrain (D1) imposes that agent 𝑖 always knows which mental
actions it can perform and those it cannot, but if two situations/worlds are equivalent as concerns
background knowledge, then they cannot be distinguished through the executability of actions. Similar
“indistinguishability’ requirements are imposed for each package by conditions (E1), (F1), (F2), (G1),
(H1), (G2), (E2), (I1), and (I2).

Let us give some hints on how the functions 𝑃 and 𝐹might be actually implemented in a concrete MAS.
As concerns 𝑃, we assume defined (e.g., by the MAS designer) a preference relation among (equivalent)
actions, for any agent 𝑖. In practice, this relation might be obtained by exploiting some specific reasoning
module. Some possibilities in this sense are described in [22, 23]. Similarly, as for all packages, a specific
module in the MAS implementation may be devoted to realize the selector function 𝐹. Here we outline
a simple option in defining 𝐹, relying on the availability of functions 𝐵2, 𝐶2, and 𝑄. Given an agent 𝑖, a
world 𝑤, and an action 𝜙𝐴, let 𝒜 = {𝜙′𝐴|𝜙

′
𝐴 ∈ 𝑄(𝜙𝐴, 𝑤) ∧ 𝐶2(𝑖, 𝜙′𝐴, 𝑤) ≤ 𝐵2(𝑖, 𝑤)} and 𝒜 ′ ⊆ 𝒜 such that

for each 𝜙′𝐴 ∈ 𝒜 ′ the value sum(𝐶2(𝑖, 𝜙′𝐴, 𝑤)) is minimal among the elements of 𝒜. Finally, select the
preferred element to be the ⪯𝑖,𝑤-maximal element of 𝒜 ′ (i.e., the action 𝜙″𝐴 with the larger value of
𝑃(𝑖, 𝑤, 𝜙″𝐴). In case of multiple options, any deterministic criterion can be applied).

3. Motivation for the Integration

The decision to integrate Blueprint Personas with the L-DINF framework stems from both theoretical
and practical considerations. While Blueprint Personas provide a powerful abstraction for representing
patient profiles within ASP-based scheduling systems, their utility is limited by their inherently static
and declarative nature. Once instantiated, these personas remain fixed, unable to evolve or adapt in
response to contextual changes. ASP solvers, though highly efficient in producing globally optimized
schedules, operate in a centralized and one-shot manner. As a result, they struggle to accommodate the
frequent and often unpredictable disruptions that characterize real-world healthcare environments.
The introduction of the L-DINF framework is not intended to replace ASP, but rather to augment

it. L-DINF conceptualizes patients (and other agents) as cognitively capable entities endowed with
beliefs, intentions, and the ability to engage in ongoing deliberation. These agents are capable of
dynamically perceiving environmental changes, such as a clinic becoming unavailable, and updating
their internal states accordingly. This agent-based reasoning adds a layer of adaptability and proactivity



that complements ASP’s static optimization, enabling systems to respond in real time without requiring
full recomputation. So, the ASP program may be scheduled for periodic execution to ensure overall
optimization, whereas the L-DINF framework can be utilized to manage run-time changes.
More specifically, L-DINF enriches the scheduling process through the following capabilities:

• Dynamic Adaptation: Agents revise beliefs and intentions on the fly, enabling local adjustments
without re-running the entire ASP program.

• Enhanced Explainability: Agent decisions are grounded in explicit reasoning chains involving
beliefs, preferences, and inferred intentions.

• Personalized Scheduling: Cognitive profiles support individualized, goal-directed planning
beyond rule-based parameter matching.

• Social Coordination: Through formal group dynamics, agents can coordinate, delegate, and
share resources, capabilities that are difficult to express declaratively in ASP alone.

While the integration of L-DINF introduces challenges, including increased logical complexity
and computational cost in large-scale deployments, its advantages in flexibility, responsiveness, and
transparency make it particularly valuable in dynamic settings. Importantly, in scenarios where
scheduling constraints are stable and well-defined, ASP remains the most efficient and suitable choice.
Thus, our proposal is not to abandon ASP, but to extend it. The incorporation of L-DINF offers a

synergistic enhancement, leveraging ASP’s optimization strengths while overcoming its limitations in
adaptivity and reasoning. This hybrid approach enables more resilient, explainable, and patient-centered
scheduling solutions that are better aligned with the complex demands of modern healthcare systems.

4. Why the Substitution from Blueprint Personas to L-DINF Agents Is
Possible

In this section, we argue that the substitution of Blueprint Personas with L-DINF agents in appointment
scheduling systems is not only feasible but also conceptually coherent. This is due to the fact that the
fundamental components of a persona, such as preferences, constraints, and goals, can be structurally
and semantically mapped into the epistemic constructs provided by the L-DINF framework. However,
while some elements map easily, others require non-trivial adaptation due to the shift from static
declarative models to autonomous cognitive agents.

4.1. Components That Map Easily

• Declarative Attributes→ Beliefs (𝐵𝑖)
Blueprint Personas include static descriptors such as location, disability status, or sensory prefer-
ences. These are analogous to explicit beliefs in L-DINF. Since these attributes are not meant to
evolve during execution but form the basis for reasoning, they can be directly encoded as agent
beliefs. This mapping is straightforward because the semantics in both models are declarative.
Example:

1 ASP: disabled(p1).
2 L-DINF: B_i(disabled(p1)). i is an agent who manages the reservations

• Preferences→ Preference Functions (pref _do𝑖, 𝑃(𝑖, 𝑤, 𝜙𝐴))
Preferences in ASP (e.g., for doctors, time slots, or clinics) are modeled as weighted rules or
soft constraints. In L-DINF, preferences are formalized using pref _do𝑖 and scored by a function
𝑃(𝑖, 𝑤, 𝜙𝐴) that quantifies the desirable action of a particular agent 𝑖 in the world 𝑤. This allows
agents to rank alternatives in a principled way, much like ASP optimizers—but grounded in agent
beliefs. Example:

1 ASP: appointment_preference(p1, c3, 1850, 2000).
2 L-DINF: B_p1(appointment_time_preference(c3, 1850, 2000)).
3 pref_do_p1(slot(c3, t1), 8).



• Constraints→ Feasibility Rules (can_do𝑖)
Constraints in ASP, such as distance limits or accessibility conditions, are often specified as hard
constraints. In L-DINF, these are interpreted as feasibility conditions that determine whether
an agent can perform a given action. This mapping is logical and local: it preserves the original
semantics while embedding it in agent-specific reasoning. Example:

1 can_do_p1(slot(c3, t1)) <--accessible(c3) and distance(c3)<20.

4.2. Components that Require Adaptation

• Soft Optimization → Local Intentional Reasoning: In ASP, soft constraints are globally
optimized via solvers like Clingo, producing a solution that minimizes a cost function. In L-DINF
instead, agents must reason locally over their preferences and constraints to select the most
suitable action. This requires restructuring the optimization logic into modular, distributed
reasoning procedures.

• Static Personas → Dynamic Agents: Blueprint Personas are static input structures. Once
declared, they do not change during runtime. In L-DINF, agents can update beliefs based on
environmental perception and modify their intentions accordingly. This demands the modeling
of inference rules that govern how belief updates propagate through the agent’s decision process.

• One-shot Decision Making→ Ongoing Deliberation: ASP computes a single solution per
run. L-DINF, by contrast, supports ongoing deliberation and dynamic replanning. This means
that agents can abandon intentions if conditions change or generate new ones in response to
updated knowledge. This shift requires modeling the agent’s decision lifecycle, including intend,
drop, and replace operations.

• No Social Context→ Group Reasoning and Negotiation: Personas in ASP are individual and
isolated. L-DINF allows agents to join groups, share beliefs, and coordinate actions. Implement-
ing this requires defining group membership rules, shared knowledge bases, and collaborative
preference negotiation mechanisms. While powerful, this introduces a layer of complexity not
present in ASP.

Persona Element L-DINF Equivalent Effort to Adapt
Static attributes (e.g., location) Beliefs (𝐵𝑖) Easy
Preferences (doctor, time) pref _do𝑖, 𝑃(𝑖, 𝑤, 𝜙𝐴) Easy
Access/distance constraints Feasibility rules (can_do𝑖) Easy
Soft constraints Local reasoning and selection Moderate
Behavioral adaptation Intention updates, inference High
Multi-agent behavior Group dynamics (joinA, 𝐾𝐺) High

L-DINF provides a more expressive and adaptive framework that retains the strengths of the original
personas while extending their functionality into autonomous, intelligent scheduling agents. Synthesiz-
ing we can think of using for translation of all the modules this pseudo code:

1 forall patient P:
2 B_P(prefers_clinic = C) <-- preference(P, C)
3 pref_do_P(slot(C, T), D) <-- appointment_preference(P, C, S, E) and T in [S, E]
4 B_P(sensory_sensitive(S)) <-- sensory_preference(P, S)
5 B_P(doctor_preference(T, S, Y)) <-- doctor_preference(P, T, S, Y)
6 B_P(distance_to_clinic(C, D)) <-- distance(P, C, D)



5. General Schema for Translating Blueprint Personas into L-DINF
Agents

The following schema outlines how elements from a Blueprint Persona defined in ASP can be translated
into formal components of the L-DINF framework. Each transformation associates declarative or
preference-based information from the persona with a corresponding logical construct in the agent’s
epistemic model.

Blueprint Persona (ASP) L-DINF Representation
patient(P, …) agent identity
disabled(P) 𝐵𝑖(disabled(P)) i is an agent who manages the

reservations
preference(P, C) 𝐵𝑖(prefers_clinic = 𝐶)
appointment_preference(P, C,
S, E)

𝐵𝑖(appointment_time_preference(𝐶, 𝑆, 𝐸))

sensory_preference(P,
``noise'')

𝐵𝑖(sensory_noise_sensitive)

doctor_preference(P, T, S,
Y)

𝐵𝑖(doctor_preference(𝑇 , 𝑆, 𝑌 ))

distance(P, C, D) 𝐵𝑖(distance_to_clinic(𝐶, 𝐷))
need(P, V, N) intend 𝑖(n_sessions(𝑉 )) ∧ constraint(𝑁 )
availability(C, T) can_do𝑖(slot(𝐶, 𝑇 ))
alternative(C1, T1, C2, T2) Cl(slot(𝐶1, 𝑇 1), slot(𝐶2, 𝑇 2))

6. Use Case: Mario, a proactive patient Agent

We consider a patient named Mario, who suffers from a chronic condition and is sensitive to noise.
Initially, Mario prefers morning appointments at Clinic C1, which is located near his home. His
medical profile and preferences are encoded as a traditional ASP-style persona in section 2.1. In
transitioning to an L-DINF-based representation, Mario is modeled as a cognitive agent endowed with
epistemic capabilities, specifically, beliefs, preferences, and intentions,which allow for autonomous and
context-aware reasoning. The initial mental state of the agent is represented through the following
beliefs:

1 B_mario(prefers_clinic = c1).
2 B_mario(appointment_time_preference(c1, 0800, 1000)).
3 B_mario(sensory_noise_sensitive).
4 B_mario(doctor_preference("GP", "chronic_diseases", 10)).
5 B_mario(distance_to_clinic(c1, 12)).

Preferred time slots are expressed using preference functions:

1 B_mario(pref_do_mario(slot(c1, 0830), 9)).

Mario is able to attend this slot if the clinic is accessible and within his mobility budget:

1 B_mario(can_do_mario(slot(c1, 0830)) <-- accessible(c1) and distance(c1)< 20).

A key advantage of the L-DINF framework emerges when environmental changes are introduced.
Suppose Mario perceives that Clinic C1 has become inaccessible, expressed as a perceptual update:
+¬𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒(𝑐1). Based on an epistemic inference rule, he is able to derive a revised belief about his
action feasibility: ⊢(¬𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒(𝑐1),¬𝑐𝑎𝑛_𝑑𝑜_𝑚𝑎𝑟𝑖𝑜(𝑠𝑙𝑜𝑡(𝑐1, 0830))). This triggers a goal revision process.
Recognizing the infeasibility of his original plan, Mario searches for alternative, equivalent actions: he
knows that 𝑠𝑙𝑜𝑡(𝑐1, 0830) and 𝑠𝑙𝑜𝑡(𝑐2, 0930) are equivalent action and his degree of willingness for the
second action is 8 (𝑃(𝑚𝑎𝑟𝑖𝑜, 𝑤, 𝑠𝑙𝑜𝑡(𝑐2, 0930)) = 8.); we also know that he prefers the second action so as
to form the fact 𝑓 𝐶𝑙_𝑚𝑎𝑟𝑖𝑜(𝑠𝑙𝑜𝑡(𝑐2, 0930)). This is expressed as follows:



1 B_mario(Cl(slot(c1, 0830), slot(c2, 0930))).
2 B_mario(fCl_mario(slot(c2, 0930))).
3 B_mario(intend_mario(slot(c2, 0930))).

Initially, Mario belongs to a singleton group: 𝐺1 = {𝑚𝑎𝑟𝑖𝑜} and 𝐾𝐺1 = ∅. Anna, an-
other patient agent, is part of a group scheduled for Clinic C2: 𝐺2 = {𝑎𝑛𝑛𝑎} and 𝐾𝐺2 =
{𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒(𝑐2), 𝑔𝑟𝑜𝑢𝑝_𝑠𝑙𝑜𝑡(𝑐2, 0930), 𝑑𝑜𝑐𝑡𝑜𝑟_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑐2)}. Mario joins Anna’s group using the group
action primitive 𝑑𝑜_𝑚𝑎𝑟𝑖𝑜(𝑗𝑜𝑖𝑛𝐴(𝑚𝑎𝑟𝑖𝑜, 𝑎𝑛𝑛𝑎)) and after this operation 𝐺2 = {𝑎𝑛𝑛𝑎, 𝑚𝑎𝑟 𝑖𝑜}. Mario now
has access to the shared group knowledge base, and he can revise his beliefs and confirm his new
intention:

1 B_mario(accessible(c2)).
2 B_mario(can_do_mario(slot(c2, 0930))).
3 B_mario(do_mario(slot(c2, 0930))).

Mario has autonomously revised his beliefs, intentions, and group membership in response to
environmental changes. He selects an equivalent action, joins a relevant group, and executes a feasible
alternative. This proves the flexibility and expressiveness of the L-DINF agent model.

7. Conclusions

In this work, we have explored the integration of the L-DINF epistemic logic framework into medical
appointment scheduling systems originally based on ASP and Blueprint Personas. Rather than replacing
ASP, our goal is to enhance its declarative and optimization-oriented strengths with the capacity of L-
DINF for cognitive reasoning, agent-level deliberation, and adaptive behavior. This integration addresses
the limitations of static persona models by enabling agents to revise beliefs, reformulate intentions, and
coordinate with others in response to real-time contextual changes. By embedding cognitive constructs
such as beliefs, preferences, and intentions into scheduling agents, the L-DINF framework introduces
significant advantages in terms of dynamic adaptability, personalized decision making, and transparent
reasoning. Agents modeled in L-DINF are not only responsive to environmental disruptions but also
capable of proactively participating in collaborative planning through shared group knowledge and
structured delegation mechanisms.
We have proposed a structured translation methodology that transforms Blueprint Personas into

epistemic agent models; while this extension introduces additional modeling and computational com-
plexity, particularly in large-scale deployments, the resulting increase in system intelligence, flexibility,
and robustness demonstrates its value in realistic and dynamic healthcare environments. We have
also shown that the ability to reason dynamically and deliberate continuously allows L-DINF agents
to operate effectively within uncertain and evolving clinical scenarios. Future work will involve im-
plementing this hybrid ASP + L-DINF architecture in real-world systems, validating its performance
through empirical studies, and demonstrating its practical feasibility across diverse scheduling contexts.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools to generate content. They have used tools to
correct minor mistakes.
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