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Abstract
In this work we present a tool for the automatic attribution of emotions to astronauts speeches obtained from the
NASA Mission Transcript Collection. While, at the current state of affairs, we do not have yet a quantitative
evaluation of such tool, we present - as a proof of concept - some qualitative analysis showing the potential
usefulness of our approach. The broader objective of this work is providing an intelligent system for monitoring
the psycho-physical condition of an astronaut during an aerospace missions. This system exploits a commonsense
reasoning framework based on the logic TCL, a probabilistic extension of Description Logics of typicality able
to deal with the conceptual combination of prototypical descriptions, i.e. commonsense representations of
given concepts. Starting from an ontological formalization of emotions based on the Plutchik model, known
as ArsEmotica, the system exploits the logic TCL to automatically generate novel commonsense semantic
representations of compound emotions (e.g. Love as derived from the combination of Joy and Trust according to
Plutchik). The generated emotions have then been applied for emotion attribution in the context of aerospace
missions, in order to classify transcriptions of astronaut’s speeches in the corresponding emotions.
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1. Introduction

The problem of assessing the physical condition and emotional states of astronauts during space missions
has become critically important in recent years. What might appear to be a straightforward task can,
in reality, prove to be unfeasible for a very simple reason: the methodology employed to evaluate the
astronaut’s psycho-physical state could itself contribute to a deterioration of that state. For example,
an astronaut might feel overwhelmed by the excessive workload imposed by the tasks assigned to
him at that moment: forcing him, for instance, to answer questions or interact with an app in order
to monitor his condition could increase the level of stress he is already experiencing. It is therefore
essential that such assessments be carried out without introducing additional stress for the subject.
Moreover, the crew of an aerospace mission need to wear appropriate helmets and equipment, reducing
the physical space available for sensors and measuring devices. In other words, the astronaut should be
appropriately monitored in a non-intrusive manner that does not interfere with their activities. The
system must, in effect, be transparent.

The tasks that astronauts need to continuously carry out are often physically or mentally challenging.
This can have an impact on their psycho-physical state, leading to negative outcomes ranging from
reduced performance to deadly risks. Previous works targeted the mental workload, stress and fatigue
of the crew members as crucial aspects in order to anticipate critical performance drops and to improve
training techniques [1, 2, 3, 4, 5, 6, 7]. We envision a multimodal system able to take into account as
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many physiological and psychological data as possible and combine them in a representation of the
state of the astronaut, which should be produced in real time and presented as an intuitive output. The
tool we present in this paper is intended as a component of such a system: given the sentences uttered
by the astronauts, it detects their emotional content. This analysis requires no other sensor than the
microphones that are already on board.

Sentiment analysis, an important area in natural language processing, has evolved from traditional
techniques to deep learning approaches, notably transformer-based models. The field now extends
beyond polarity classification to the recognition of specific emotions like joy, anger, and fear, despite
challenges such as ambiguity, cultural differences, and the scarcity of fine-grained annotated data.
Emotions have long been recognized as fundamental to human experience across cultures. Two primary
modeling approaches exist: dimensional models, which explore continuous and physiological aspects
of emotions [8, 9, 10], and categorical models, which capture conscious emotional states [11, 12, 13].
Recent advances include deep neural networks for affective state detection, leading to the development
of annotated corpora, ontologies, and lexicons [14, 15, 16]. Attention-based neural models, such as the
bidirectional CNN-RNN with attention [17], have shown state-of-the-art results on datasets ranging
from long reviews to short texts like tweets. The affective content of text encompasses emotion,
sentiment, mood, personality, and interpersonal stance [18]. This complexity has driven recent work
toward fine-grained analysis, including the prediction of emotion and sentiment intensity or activation
[19, 20], often using ensemble methods that combine deep learning with traditional features.

Depending on the specific research goals addressed, one could be interested in issuing a discrete label
describing the affective state expressed (frustration, anger, joy, etc.) to address different contexts of
interaction and tasks. Both basic emotion theories, in the Plutchik-Ekman [12] tradition, and dimensional
models of emotions, have provided a precious theoretical grounding for the development of lexical
resources [21, 22, 23, 24, 25] and computational models for emotion extraction. However, there is a
general tendency to move towards richer, finer-grained models, possibly including complex emotions,
especially in the context of data-driven and task-driven approaches, where restricting the automatic
detection to a small set of basic emotions would fall short to achieve the objective.

In [26, 27], the authors introduce a system for emotion attribution and recommendation, employing
a white box approach to emotion classification based on the human-like conceptual combination frame-
work proposed in the TCL logic [28, 29]. In this work, we adopt a similar approach in order to perform
emotion attribution in aerospace missions by exploiting the ontology of the Plutchik emotion model
introduced in [26]. We refer to the ArsEmotica Ontology and to the NRC Emotion Intensity Lexicon [19],
that provides a list of English words, each with real-values representing intensity scores for the eight
basic emotions of Plutchik’s theory. The generation process building the knowledge base of emotions in
the TCL logic unfolds in two main steps. First, the system constructs a prototypical description of basic
emotions using the logic TCL, with typicality inclusions of the form T(BasicEmotion) ⊑ Property .
These basic emotions are the eight defined in Plutchik’s model. In the second step, the system analyzes
an utterance to assign the most appropriate emotion. The utterance is first processed by a tokenizer,
which extracts relevant words. The system then checks whether the utterance contains terms associated
with basic emotions. If such terms are found, their individual scores are retrieved and summed for each
of the eight basic emotions. This results in a score distribution that indicates the presence of specific
emotions. A similar method is used to detect combined emotions: the system searches for terms derived
from the combination of two basic emotions, and aggregates their scores accordingly.

The overall objective is to develop a system capable of assessing the astronaut’s psycho-physical
state and issuing appropriate alerts in the event that a potentially hazardous situation is detected—such
as the astronaut being excessively stressed, frightened, angry, or disoriented—without introducing
additional tasks or, consequently, additional stress for the astronaut during the mission. The use of
wearable devices that monitor physiological parameters (e.g., blood pressure, heart rate, etc.) is thus
complemented by an intelligent system capable of detecting the astronaut’s emotional states.



2. A Typicality Description Logic for Concept Combination

The automatic generation of novel concepts within a knowledge base (also known as knowledge invention
process) can be obtained, as happens in humans [30, 28], by exploiting a process of commonsense
conceptual combination. Such ability is associated to creative thinking and problem solving, however,
it still represents an open challenge in Artificial Intelligence [31]. Dealing with this problem, indeed,
requires, from an AI perspective, the harmonization of two conflicting requirements that are hardly
accommodated in symbolic systems [32]: the need for a syntactic and semantic compositionality (typical
of logical systems) and the one concerning the exhibition of typicality effects. According to a well-
known argument [33], in fact, prototypes (i.e. commonsense conceptual representations based on
typical properties) are not compositional. The argument runs as follows: consider a concept like pet
fish. It results from the composition of the concept pet and of the concept fish. However, the prototype
of pet fish cannot result from the composition of the prototypes of a pet and a fish: e.g., a typical pet is
furry and warm, a typical fish is grayish, but a typical pet fish is neither furry and warm nor grayish
(typically, it is red). The pet fish phenomenon is a paradigmatic example of the difficulty to address
when building formalisms and systems trying to imitate this combinatorial human ability.

In this work, we exploit the nonmonotonic Description Logic TCL (typicality-based compositional
logic), introduced in [28, 29], which is able to account for this type of human-like concept combination.
Other works have already shown how such logic can be used to model complex cognitive phenomena
[30], goal-directed creative problem solving [34, 35, 36] and to build intelligent applications for compu-
tational creativity [37]. In particular, we show how it can be used as a tool for the generation of novel
compound emotions and, as a consequence, for the suggestion of novel emotion-related contents. In
TCL, “typical” properties can be directly specified by means of a “typicality” operator T enriching the
underlying Description Logic (from now on, DL for short), and a TBox can contain inclusions of the form
T(𝐶) ⊑ 𝐷 to represent that “typical 𝐶s are also 𝐷𝑠”. As a difference with standard DLs, in the logic
TCL one can consistently express exceptions and reason about defeasible inheritance as well. Typicality
inclusions are also equipped by a real number 𝑝 ∈ (0.5, 1] representing the probability/degree of belief
in such a typical property: this allows us to define a semantics inspired to the DISPONTE semantics
[38] characterizing probabilistic extensions of DLs, which in turn is used in order to describe different
scenarios where only some typicality properties are considered. Given a KB containing the description
of two concepts 𝐶𝐻 and 𝐶𝑀 occurring in it, we then consider only some scenarios in order to define a
revised knowledge base, enriched by typical properties of the combined concept 𝐶 ⊑ 𝐶𝐻 ⊓ 𝐶𝑀 by
also implementing a heuristics coming from the cognitive semantics.

By relying on TCL, as in [26], we first automatically build prototypes of existing basic emotions by
extracting information about concepts or properties relying on the ArsEmotica ontology enriched with
the NRC Emotion Intensity Lexicon [19]: this lexicon associates, in descending order of frequency,
words to emotional concepts. In this setting, words with the highest frequencies of association to
emotional concepts have been used as typical features of the basic emotions in the Plutchik model. Such
prototypes of basic emotions have been formalized by means of a TCL knowledge base, whose TBox
contains both rigid inclusions of the form

BasicEmotion ⊑ Concept ,

in order to express essential desiderata but also constraints, as an example Joy ⊑ PositiveEmotion as
well as prototypical properties of the form

𝑝 :: T(BasicEmotion) ⊑ TypicalConcept ,

representing typical concepts of a given emotion, where 𝑝 is a real number in the range (0.5, 1],
expressing the frequency of such a concept in items belonging to that emotion: for instance, 0.72 ::
T(Surprise) ⊑ Delight is used to express that the typical feature of being surprised contains/refers to
the emotional concept Delight with a frequency/probability/degree of belief of the 72%.

The logic TCL [30] combines three main ingredients. The first one relies on the DL of typicality
𝒜ℒ𝒞+TR introduced in [39], which allows to describe the prototype of a concept. In this logic, “typical”



properties can be directly specified by means of a “typicality” operator T enriching the underlying DL,
and a TBox can contain inclusions of the form T(𝐶) ⊑ 𝐷 to represent that “typical 𝐶s are also 𝐷𝑠”.
As a difference with standard DLs, in the logic 𝒜ℒ𝒞 +TR one can consistently express exceptions and
reason about defeasible inheritance as well. For instance, a knowledge base can consistently express
that “normally, singers can sing”, whereas “trappers usually cannot sing” by T(Singer) ⊑ CanSing
and T(Trapper) ⊑ ¬CanSing , given that Trapper ⊑ Singer . The semantics of the T operator is
characterized by the properties of rational logic [40], recognized as the core properties of nonmonotonic
reasoning. 𝒜ℒ𝒞 +TR is characterized by a minimal model semantics corresponding to an extension
to DLs of a notion of rational closure as defined in [40] for propositional logic: the idea is to adopt a
preference relation over 𝒜ℒ𝒞 +TR models, where intuitively a model is preferred to another one if it
contains less exceptional elements, as well as a notion of minimal entailment restricted to models that
are minimal with respect to such preference relation. As a consequence, T inherits well-established
properties like specificity and irrelevance: in the example, the logic 𝒜ℒ𝒞 + TR allows us to infer
T(Singer ⊓ LongHair) ⊑ CanSing (having long hair is irrelevant with respect to being able to sing
or not) and, if one knows that Tony is a typical trapper, to infer that he cannot sing, giving preference
to the most specific information.

A second ingredient consists of a distributed semantics similar to the one of probabilistic DLs known
as DISPONTE [41], which allows labeling inclusions T(𝐶) ⊑ 𝐷 with a real number between 0.5 and 1,
which represents its degree of belief/probability, under the assumption that each axiom is independent
from each others. Degrees of belief in typicality inclusions allow defining a probability distribution over
scenarios: roughly speaking, a scenario is obtained by choosing, for each typicality inclusion, whether
it is considered as true or false. In a slight extension of the above example, we could have the need to
represent that both the typicality inclusions about singers and trappers have a degree of belief of 80%,
whereas we also believe that, normally, singers are also able to play an instrument with a higher degree
of 95%, with the following KB:

(1) Trapper ⊑ Singer
(2) 0.8 :: T(Singer) ⊑ CanSing
(3) 0.8 :: T(Trapper) ⊑ ¬CanSing
(4) 0.95 :: T(Singer) ⊑ PlayInstrument

In this case, we consider eight different scenarios, representing all possible combinations of typicality
inclusion: as an example, {((2), 1), ((3), 0), ((4), 1)} represents the scenario in which (2) and (4) hold,
whereas (3) does not. Obviously, (1) holds in every scenario, since it represents a rigid property, not
admitting exceptions. We equip each scenario with a probability depending on those of the involved
inclusions: the scenario of the example has probability 0.8×0.95 (since 2 and 4 are involved) ×(1−0.8)
(since 3 is not involved) = 0.152 = 15.2%. Such probabilities are then taken into account in order to
choose the most adequate scenario describing the prototype of the combined concept.

As a third element of the proposed formalization is a method inspired by cognitive semantics [42] for
the identification of a dominance effect between the concepts to be combined: for every combination,
we distinguish a HEAD, representing the stronger element of the combination, and a MODIFIER. The
basic idea is: given a KB and two concepts 𝐶𝐻 (HEAD) and 𝐶𝑀 (MODIFIER) occurring in it, we consider
only some scenarios in order to define a revised knowledge base, enriched by typical properties of the
combined concept 𝐶 ⊑ 𝐶𝐻 ⊓ 𝐶𝑀 .

Let us now present the logic TCL more precisely. The language of TCL extends the basic DL 𝒜ℒ𝒞 by
typicality inclusions of the form T(𝐶) ⊑ 𝐷 equipped by a real number 𝑝 ∈ (0.5, 1] – observe that the
extreme 0.5 is not included – representing its degree of belief, whose meaning is that “we believe with
degree/probability 𝑝 that, normally, 𝐶s are also 𝐷s” 1

1The reason why we only allow typicality inclusions equipped with probabilities 𝑝 > 0.5 is due to our effort of integrating
two different semantics: typicality based logic and DISPONTE. In particular, as detailed in [30] this choice seems to be the
only one compliant with both formalisms. On the contrary, it would be misleading to also allow low degrees of belief for
typicality inclusions, since typical knowledge is known to come with a low degree of uncertainty.



Definition 2.1 (Language of TCL). We consider an alphabet of concept names C, of role names R, and
of individual constants O. Given 𝐴 ∈ C and 𝑅 ∈ R, we define:

𝐶,𝐷 := 𝐴 | ⊤ | ⊥ | ¬𝐶 | 𝐶 ⊓ 𝐶 | 𝐶 ⊔ 𝐶 | ∀𝑅.𝐶 | ∃𝑅.𝐶

We define a knowledge base 𝒦 = ⟨ℛ, 𝒯 ,𝒜⟩ where: (i) ℛ is a finite set of rigid properties of the form
𝐶 ⊑ 𝐷; (ii) 𝒯 is a finite set of typicality properties of the form 𝑝 :: T(𝐶) ⊑ 𝐷 where 𝑝 ∈ (0.5, 1] ⊆ R
is the degree of belief of the typicality inclusion; (iii) 𝒜 is the ABox, i.e. a finite set of formulas of the form
either 𝐶(𝑎) or 𝑅(𝑎, 𝑏), where 𝑎, 𝑏 ∈ O and 𝑅 ∈ R.

A model ℳ in TCL extends standard 𝒜ℒ𝒞 ones by a preference relation among domain elements as in
the DL of typicality [39]. In this respect, 𝑥 < 𝑦 means that 𝑥 is “more normal” than 𝑦, and that typical
members of a concept 𝐶 are the minimal elements of 𝐶 with respect to <. An element 𝑥 ∈ ∆ℐ is a
typical instance of 𝐶 if 𝑥 ∈ 𝐶ℐ and there is no 𝐶-element in ∆ℐ more normal than 𝑥. Formally:

Definition 2.2 (Model of TCL). A model ℳ is any structure ⟨∆ℐ , <, .ℐ⟩ where: (i) ∆ℐ is a non empty
set of items called the domain; (ii) < is an irreflexive, transitive, well-founded and modular (for all 𝑥, 𝑦, 𝑧
in ∆ℐ , if 𝑥 < 𝑦 then either 𝑥 < 𝑧 or 𝑧 < 𝑦) relation over ∆ℐ ; (iii) .ℐ is the extension function that maps
each atomic concept 𝐶 to 𝐶ℐ ⊆ ∆ℐ , and each role 𝑅 to 𝑅ℐ ⊆ ∆ℐ × ∆ℐ , and is extended to complex
concepts as follows: (¬𝐶)ℐ = ∆ℐ ∖ 𝐶ℐ ; (𝐶 ⊓ 𝐷)ℐ = 𝐶ℐ ∩ 𝐷ℐ ; (𝐶 ⊔ 𝐷)ℐ = 𝐶ℐ ∪ 𝐷ℐ ; (∃𝑅.𝐶)ℐ =
{𝑥 ∈ ∆ℐ | ∃(𝑥, 𝑦) ∈ 𝑅ℐ such that 𝑦 ∈ 𝐶ℐ}; (∀𝑅.𝐶)ℐ = {𝑥 ∈ ∆ℐ | ∀(𝑥, 𝑦) ∈ 𝑅ℐ we have 𝑦 ∈ 𝐶ℐ};
(T(𝐶))ℐ = 𝑀𝑖𝑛<(𝐶

ℐ), where 𝑀𝑖𝑛<(𝐶
ℐ) = {𝑥 ∈ 𝐶ℐ | ∄𝑦 ∈ 𝐶ℐ s.t. 𝑦 < 𝑥}.

A model ℳ can be equivalently defined by postulating the existence of a function 𝑘ℳ : ∆ℐ ↦−→ N,
where 𝑘ℳ assigns a finite rank to each domain element [39]: the rank of 𝑥 is the length of the longest
chain 𝑥0 < · · · < 𝑥 from 𝑥 to a minimal 𝑥0, i.e. such that there is no 𝑥′ such that 𝑥′ < 𝑥0. The rank
function 𝑘ℳ and < can be defined from each other by letting 𝑥 < 𝑦 if and only if 𝑘ℳ(𝑥) < 𝑘ℳ(𝑦).

Definition 2.3. Let 𝒦 = ⟨ℛ, 𝒯 ,𝒜⟩ be a KB. Given a model ℳ = ⟨∆ℐ , <, .ℐ⟩, we assume that .ℐ is
extended to assign a domain element 𝑎ℐ of ∆ℐ to each individual constant 𝑎 of O. We say that: (i) ℳ
satisfies ℛ if, for all 𝐶 ⊑ 𝐷 ∈ ℛ, we have 𝐶ℐ ⊆ 𝐷ℐ ; (ii) ℳ satisfies 𝒯 if, for all 𝑞 :: T(𝐶) ⊑ 𝐷 ∈ 𝒯 ,
we have that 2 T(𝐶)ℐ ⊆ 𝐷ℐ , i.e. 𝑀𝑖𝑛<(𝐶

ℐ) ⊆ 𝐷ℐ ; (iii) ℳ satisfies 𝒜 if, for each assertion 𝐹 ∈ 𝒜, if
𝐹 = 𝐶(𝑎) then 𝑎ℐ ∈ 𝐶ℐ , otherwise if 𝐹 = 𝑅(𝑎, 𝑏) then (𝑎ℐ , 𝑏ℐ) ∈ 𝑅ℐ .

Even if the typicality operator T itself is nonmonotonic (i.e. T(𝐶) ⊑ 𝐸 does not imply T(𝐶 ⊓𝐷) ⊑
𝐸), what is inferred from a KB can still be inferred from any KB’ with KB ⊆ KB’, i.e. the resulting logic
is monotonic. As already mentioned, in order to perform useful nonmonotonic inferences, in [39] the
authors have strengthened the above semantics by restricting entailment to a class of minimal models.
Intuitively, the idea is to restrict entailment to models that minimize the atypical instances of a concept.
The resulting logic corresponds to a notion of rational closure on top of 𝒜ℒ𝒞 +TR. Such a notion is a
natural extension of the rational closure construction provided in [40] for the propositional logic. This
nonmonotonic semantics relies on minimal rational models that minimize the rank of domain elements.
Informally, given two models of KB, one in which a given domain element 𝑥 has rank 2 (because for
instance 𝑧 < 𝑦 < 𝑥), and another in which it has rank 1 (because only 𝑦 < 𝑥), we prefer the latter, as
in this model the element 𝑥 is assumed to be “more typical” than in the former. Query entailment is
then restricted to minimal canonical models. The intuition is that a canonical model contains all the
individuals that enjoy properties that are consistent with KB. This is needed when reasoning about the
rank of the concepts: it is important to have them all represented.

Given a KB 𝒦 = ⟨ℛ, 𝒯 ,𝒜⟩ and given two concepts 𝐶𝐻 and 𝐶𝑀 occurring in 𝒦, the logic TCL allows
defining a prototype of the combined concept 𝐶 as the combination of the HEAD 𝐶𝐻 and the MODIFIER

2It is worth noticing that here the degree 𝑞 does not play any role. Indeed, a typicality inclusion T(𝐶) ⊑ 𝐷 holds in a model
only if it satisfies the semantic condition of the underlying DL of typicality, i.e. minimal (typical) elements of 𝐶 are elements
of 𝐷. The degree of belief 𝑞 will have a crucial role in the application of the distributed semantics, allowing the definition of
scenarios as well as the computation of their probabilities.



𝐶𝑀 , where the typical properties of the form T(𝐶) ⊑ 𝐷 (or, equivalently, T(𝐶𝐻 ⊓ 𝐶𝑀 ) ⊑ 𝐷) to be
ascribed to the concept 𝐶 are obtained by considering blocks of scenarios with the same probability, in
decreasing order starting from the highest one. We first discard all the inconsistent scenarios, then:

• we discard those scenarios considered as trivial, consistently inheriting all the properties from
the HEAD from the starting concepts to be combined. This choice is motivated by the challenges
provided by task of commonsense conceptual combination itself: in order to generate plausible
and creative compounds, it is necessary to maintain a level of surprise in the combination. Thus
both scenarios inheriting all the properties of the two concepts and all the properties of the HEAD
are discarded, since they prevent this surprise;

• among the remaining ones, we discard those inheriting properties from the MODIFIER which are
in conflict with properties that could be consistently inherited from the HEAD;

• if the set of scenarios of the current block is empty, i.e. all the scenarios have been discarded either
because trivial or because the MODIFIER is preferred, we repeat the procedure by considering
the block of scenarios having the immediately lower probability.

Remaining scenarios are those selected by the logic TCL. The ultimate output of our mechanism is a
knowledge base in the logic TCL whose set of typicality properties is enriched by those of the compound
concept 𝐶 . Given a scenario 𝑤 satisfying the above properties, we define the properties of 𝐶 as the
set of inclusions 𝑝 :: T(𝐶) ⊑ 𝐷, for all T(𝐶) ⊑ 𝐷 that are entailed from 𝑤 in the logic TCL. The
probability 𝑝 is such that:

• if T(𝐶𝐻) ⊑ 𝐷 is entailed from 𝑤, that is to say 𝐷 is a property inherited either from the HEAD
(or from both the HEAD and the MODIFIER), then 𝑝 corresponds to the degree of belief of such
inclusion of the HEAD in the initial knowledge base, i.e. 𝑝 : T(𝐶𝐻) ⊑ 𝐷 ∈ 𝒯 ;

• otherwise, i.e. T(𝐶𝑀 ) ⊑ 𝐷 is entailed from 𝑤, then 𝑝 corresponds to the degree of belief of such
inclusion of a MODIFIER in the initial knowledge base, i.e. 𝑝 : T(𝐶𝑀 ) ⊑ 𝐷 ∈ 𝒯 .

The knowledge base obtained as the result of combining concepts 𝐶𝐻 and 𝐶𝑀 into the compound
concept 𝐶 is called 𝐶-revised knowledge base, and it is defined as follows:

𝒦𝐶 = ⟨ℛ, 𝒯 ∪ {𝑝 : T(𝐶) ⊑ 𝐷},𝒜⟩,

for all 𝐷 such that either T(𝐶𝐻) ⊑ 𝐷 is entailed in 𝑤 or T(𝐶𝑀 ) ⊑ 𝐷 is entailed in 𝑤, and 𝑝 is defined
as above. As an example, consider the following version of the above mentioned Pet-Fish problem. Let
KB contains the following inclusions:

Fish ⊑ LivesInWater (1)
0.6 :: T(Fish) ⊑ Greyish (2)
0.8 :: T(Fish) ⊑ Scaly (3)
0.8 :: T(Fish) ⊑ ¬Affectionate (4)
0.9 :: T(Pet) ⊑ ¬LivesInWater (5)
0.9 :: T(Pet) ⊑ LovedByKids (6)
0.9 :: T(Pet) ⊑ Affectionate (7)

representing that a typical fish is greyish (2), scaly (3) and not affectionate (4), whereas a typical pet
does not live in water (5), is loved by kids (6) and is affectionate (7). Concerning rigid properties,
we have that all fishes live in water (1). The logic TCL combines the concepts Pet and Fish , by using
the latter as the HEAD and the former as the MODIFIER. The prototypical Pet-Fish inherits from
the prototypical fish the fact that it is scaly and not affectionate, the last one by giving preference
to the HEAD since such a property conflicts with the opposite one in the modifier (a typical pet is
affectionate). The scenarios in which all the three typical properties of a typical fish are inherited by
the combined concept are considered as trivial and, therefore, discarded, as a consequence the property
having the lowest degree (Greyish with degree 0.6) is not inherited. The prototypical Pet-Fish inherits



from the prototypical pet only property (6), since (5) conflicts with the rigid property (1), stating that
all fishes (then, also pet fishes) live in water, whereas (7) is blocked, as already mentioned, by the
HEAD/MODIFIER heuristics. Formally, the Pet ⊓ Fish-revised knowledge base contains, in addition to
the above inclusions, the following ones:

0.8 :: T(Pet ⊓ Fish) ⊑ Scaly (3’)
0.8 :: T(Pet ⊓ Fish) ⊑ ¬Affectionate (4’)
0.9 :: T(Pet ⊓ Fish) ⊑ LovedByKids (6’)

In [30] it has been also shown that reasoning in TCL remains in the same complexity class of standard
𝒜ℒ𝒞 Description Logics.

3. The Ontological Model of Emotions

In this work, we have applied the TCL reasoning framework to the generation of new compound
emotions by starting from the affective ontological knowledge base named ArsEmotica, as well as
for attributing the most adequate emotion to astronaut’s speeches. Intuitively, given the ArsEmotica
knowledge base equipped with the prototypical descriptions of basic emotions, we exploit the reasoning
capabilities of the logic TCL in order to generate new derived emotions as the result of the creative
combination of two (or even more) basic or derived ones. Moreover, an item of the tested dataset
belongs to the new generated emotion if it contains all the rigid properties as well as at least the 30%
of the typical properties of such a derived emotion.

More in detail, the affective knowledge leveraged by the TCL logic is encoded in an ontology of
emotional categories based on Plutchik’s psychological circumplex model [11], called ArsEmotica3 and
includes also concepts from the Hourglass model [43]. The ontology structures emotional categories in
a taxonomy, which currently includes 32 emotional concepts. The design of the taxonomic structure
of emotional categories, of the disjunction axioms and of the object and data properties mirrors the
main features of Plutchik model. As already mentioned, such model can be represented as a wheel of
emotions (see Figure 1) and encodes the following elements:

• Basic or primary emotions: Joy, Trust, Fear, Surprise, Sadness, Disgust, Anger, Anticipation; in the
color wheel, this is represented by differently colored sectors.

• Opposites: basic emotions can be conceptualized in terms of polar opposites: Joy versus Sadness,
Anger versus Fear, Trust versus Disgust, Surprise versus Anticipation.

• Intensity: each emotion can exist in varying degrees of intensity; in the wheel, this is represented
by the vertical dimension.

• Similarity: emotions vary in their degree of similarity to one another; in the wheel, this is
represented by the radial dimension.

• Complex emotions: a complex emotion is a composition of two basic emotions; the pair of basic
emotions involved in the composition is called a dyad. Looking at the Plutchik wheel, the eight
emotions in the blank spaces are compositions of similar basic emotions, called primary dyads.
Pairs of less similar emotions are called secondary dyads (if the radial distance between them is
2) or tertiary dyads (if the distance is 3), while opposites cannot be combined.

We have chosen to encode the Plutchik model in the ontology for several reasons: (i) it is well-
grounded in psychology and general enough to guarantee a wide coverage of emotions; (ii) the Plutchik
wheel of emotions is perfectly compliant with the generative model underlying the TCL logic; (iii) it
encodes interesting notions, e.g. emotional polar opposites, which can be exploited for finding novel,
non obvious relations among contents.

3The ArsEmotica ontology is available here: http://130.192.212.225/fuseki/ArsEmotica-core and queryable via SPARQL
endpoint at: http://130.192.212.225/fuseki/dataset.html?tab=query&ds=/ArsEmotica-core

http://130.192.212.225/fuseki/ArsEmotica-core
http://130.192.212.225/fuseki/dataset.html?tab=query&ds=/ArsEmotica-core


Figure 1: The Wheel of Emotion of the Plutchik Model

Within the ArsEmotica ontology, the class Emotion is the root for all the emotional concepts. The
Emotions hierarchy includes all the 32 emotional categories presented as distinguished labels in the
model. In particular, the Emotion class has two disjoint subclasses: BasicEmotion and ComplexEmotion.
Basic emotions of the Plutchik model are direct sub-classes of BasicEmotion. Each of them is specialized
again into two subclasses representing the same emotion with weaker or stronger intensity (e.g. the
basic emotion Joy has Ecstasy and Serenity as sub-classes). Therefore, we have 24 emotional concepts
subsumed by the BasicEmotion concept. Instead, the class CompositeEmotion has 24 subclasses,
corresponding to the primary (Love, Submission, Awe, Disapproval, Remorse, Contempt, Aggressiveness
e Optimism), secondary (Hope, Guilt, Curiosity, Despair, Unbelief, Envy, Cynicism e Pride) and tertiary
(Anxiety, Delight, Sentimentality, Shame, Outrage, Pessimism, Morbidness, Dominance) dyads. Other
relations in the Plutchik model have been expressed in the ontology by means of object properties: the
hasOpposite property encodes the notion of polar opposites; the hasSibling property encodes the notion
of similarity and the isComposedOf property encodes the notion of composition of basic emotions.
Moreover, a data type property hasScore was introduced to link each emotion with an intensity value
mapped into the Hourglass model.

The devised model allows inferring complex emotions from basic ones by exploiting simple SWRL
rules (i.e. if-then clauses) allowing to infer, from the isComposedOf property connecting Basic and
Composite Emotions, the fact that if an agent feels two emotions (suppose for a given item), and if
these emotions jointly constitute a Composite Emotion, then the latter emotion will be automatically
assigned to the agent in order to better describe his/her aesthetic experience.

Due to the need of modeling the links between words in a language and the emotions they refer to,
the ArsEmotica Ontology is also integrated with the ontology framework LExicon Model for ONtologies
(LEMON) [44]. In particular, such integration allows differentiating explicitly between the language
level (lexicon-based) and the conceptual one in representing the emotional concepts [45]. Within
this enriched framework, it is possible to associate a plethora of emotional words, with the encoding
of language information, to the corresponding emotional concepts. In this work, we have used the
ArsEmotica model of emotional concepts with the NRC Emotion Intensity Lexicon mentioned above
[19]. Such lexicon provides a list of English words, each with real-values representing intensity scores
for the eight basic emotions of Plutchik’s theory. The lexicon includes close to 10, 000 words including



terms already known to be associated with emotions as well as terms that co-occur in Twitter posts
that convey emotions. The intensity scores were obtained via crowdsourcing, using best-worst scaling
annotation scheme. For our purposes, we considered the most frequent terms available in such lexicon
(and associated to the basic emotions of the Plutchik wheel) as typical features of such emotions. In this
way, once the prototypes of the basic emotional concepts were formed, the TCL reasoning framework
was used to generate the compound emotions.

Let us now provide some details about the construction of the ontology of emotions in TCL. As in [26],
prototypes generation proceeds in two steps: in the first one, the system builds a prototypical description
of basic emotions in the language of the logic TCL, in order to describe their typical properties. In detail,
a knowledge base in the logic TCL characterized by typicality inclusions of the form

𝑝 :: T(BasicEmotion) ⊑ Property

where BasicEmotion is one of the eight basic emotions of the Plutchik model: Joy, Trust, Fear, Surprise,
Sadness, Disgust, Anger, and Anticipation. As an example, consider the basic emotion Joy . The words
having the highest scores are happiness (0.98), bliss (0.97), to celebrate (0.97), jubilant (0.97), ecstatic
(0.95), and euphoria (0.94). Therefore, the knowledge base generated will contain, among others, the
following inclusions:

Joy ⊑ ¬Holocaust
0.98 :: T(Joy) ⊑ Happiness
0.97 :: T(Joy) ⊑ Bliss
0.97 :: T(Joy) ⊑ Celebrating
0.97 :: T(Joy) ⊑ Jubilant
0.95 :: T(Joy) ⊑ Ecstatic
0.94 :: T(Joy) ⊑ Elation

As a second step, the system exploits the above described reasoning mechanism of such a Description
Logic in order to combine the prototypical descriptions of pairs of basic emotions, generating the
prototypical description of compound emotions by using the same logical procedure of the pet-fish
problem. As an example, let us consider the combination of the above basic emotion Joy with Fear ,
whose prototypical description is as follows:

0.96 :: T(Fear) ⊑ Kill
0.95 :: T(Fear) ⊑ Annihilate
0.95 :: T(Fear) ⊑ Terror
0.98 :: T(Fear) ⊑ Torture
0.97 :: T(Fear) ⊑ Terrorist
0.97 :: T(Fear) ⊑ Horrific

In order to obtain a description of the compound emotion Guilt as the result of the combination of
the two basic emotions (Joy ⊓ Fear ) in the logic TCL, the system combines the two basic emotions by
implementing a variant of CoCoS [46], a Python implementation of reasoning services for the logic TCL

in order to exploit efficient DLs reasoners for checking both the consistency of each generated scenario
and the existence of conflicts among properties, following the line of the system DENOTER [47] and
DEGARI [26]. CoCoS generates scenarios and chooses the selected one(s) by exploiting the translation
of an 𝒜ℒ𝒞 +TR knowledge base into standard 𝒜ℒ𝒞 introduced in [39] and adopted by the system
RAT-OWL [48]. CoCoS makes use of the above mentioned library owlready24, which allows relying
on the services of efficient DL reasoners, e.g. the HermiT reasoner.

CoCoS is embedded in DEGARI and allows one: i) to include the logical descriptions of the concepts
to be combined; ii) to select which among the concepts has to be intended as HEAD and as MODIFIER(s);
iii) to choose how many typical properties one wants to inherit in the scenarios that will be selected by

4https://pythonhosted.org/Owlready2/
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TCL. In addition to presenting the selected scenario with typical properties of the combined concept,
CoCoS also allows the users to select alternative scenarios, ranging from more trivial to more surprising
ones. More in detail, the system considers both the available choices for the HEAD and the MODIFIER,
and it allows restricting its concern to a given and fixed number of inherited properties. The combined
emotion Guilt has the following TCL description (concept Joy ⊓ Fear ):

0.98 :: T(Joy ⊓ Fear) ⊑ Happiness
0.97 :: T(Joy ⊓ Fear) ⊑ Celebrating
0.97 :: T(Joy ⊓ Fear) ⊑ Bliss
0.98 :: T(Joy ⊓ Fear) ⊑ Torture
0.97 :: T(Joy ⊓ Fear) ⊑ Terrorist
0.97 :: T(Joy ⊓ Fear) ⊑ Horrific

Obviously, rigid properties of basic emotions (if any) are inherited by the compound emotion (in the
example, Joy ⊓ Fear ⊑ ¬Holocaust ), and this retain the system from considering any inconsistent
typical properties even if they have the highest probability.

It is worth noticing that the properties of the derived emotion are still expressed in the language of
the logic TCL, therefore the combined emotion, Guilt in the example, can be further combined with
another emotion, in order to iterate the procedure.

4. The Tool for Emotion Attribution in Aerospace Missions

In this section we describe the system exploiting the logic TCL on the ArsEmotica knowledge base in
order to detect the emotions of astronauts involved in aerospace missions. In order to detect the most
adequate emotion to assign to a given utterance, the systems computes the following steps:

• Utterances are first processed by a tokenizer, whose objective is to extract relevant words. The
first step is about determining whether an utterance contains (or not) terms used to describe
basic emotions and identifying them.

• When the system finds some of these terms in an utterance, it considers the score each term
has paired, and it sums up all the scores for each of the eight basic emotions. This way we get
indicative values concerning which basic emotions are found in each utterance. It’s possible to
implement a more suitable function rather than the sum, for example a weighted mean considering
the total number of words in the utterance we are analyzing.

• A very similar process is carried out in order to identify combined emotions: instead of looking for
the basic emotion’s terms, this time the system looks for the terms obtained from the combination
of the two basic emotions, considering their scores.

Transcriptions belong to real missions and are taken from NASA Mission Transcript Collection5.
It is worth mentioning that we classify some terms used to look for emotions as “technical”, meaning
the pilots using those specific terms are referring to concepts that we do not consider interesting in our
analysis: as an example, the word “Buzz” appears in the description of the emotion Anticipation, but in
the mission Apollo 11 Buzz Aldrin was one of the astronauts involved, so in this specific case we avoid
this term in the emotion attribution. To fix this, we have adopted a list of terms (it can also be empty)
for the system to ignore during the analysis.

Preliminary results seem to be promising. On the one hand, we observed that the system is able to
correctly identify the emotions to be attributed to each processed text. On the other hand, we have
found that all the derived emotions, obtained through combinations, are used to label at least one
utterance, which supports the idea that the proposed approach may be useful for the intended purpose.

As an example, let us consider the transcription of an utterance by the Lunar module pilot (LMP)
of the Apollo 11 mission. The system produces the following json. The first three fields exhibit the

5https://historycollection.jsc.nasa.gov/JSCHistoryPortal/history/mission_trans/mission_transcripts.htm
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information extracted by the transcription under consideration (“time”, “speaker” and “text”), then the
“occurrences” field shows the relevant terms found in the text. Next, we have a simple word counter
regarding the “text” field. After that, the system shows the score obtained for the utterance by each of
the eight basic emotions, as well as by combined emotions, along with the matched words:

{
"time": "00 01 25 44",
"speaker": "LMP",
"text": "Sun is bright, isn’t it? ... It’s a pretty nice camera,

to tell you the truth.",
"occurrences": ["sun", "pretty", "truth"],
"word_count": 15,
"anger-NRC-Emotion-Intensity-Lexicon-v1": 0.0,
"joy-NRC-Emotion-Intensity-Lexicon-v1": 0.735,
"fear-NRC-Emotion-Intensity-Lexicon-v1": 0.0,
"anticipation-NRC-Emotion-Intensity-Lexicon-v1": 0.859,
"sadness-NRC-Emotion-Intensity-Lexicon-v1": 0.0,
"surprise-NRC-Emotion-Intensity-Lexicon-v1": 0.172,
"trust-NRC-Emotion-Intensity-Lexicon-v1": 1.649,
"disgust-NRC-Emotion-Intensity-Lexicon-v1": 0.0,
"combined_emotions": [
{
"emotion": "anticipation-trust",
"matched_words": [{"word": "truth", "score": 0.844}]

},
{
"emotion": "trust-anticipation",
"matched_words": [{"word": "truth", "score": 0.844}]

}
]

}

In this example, the basic emotion with the highest score is Trust, whose representation in ArsEmotica
contains the following inclusions :

0.906 :: T(Trust) ⊑ Truthfulness
0.883 :: T(Trust) ⊑ Trusted
0.844 :: T(Trust) ⊑ Truth
0.438 :: T(Trust) ⊑ Sun
0.367 :: T(Trust) ⊑ Pretty

It is easy to understand that the presence of words “sun”, “truth” and “pretty” in the analyzed text are
responsible of an high score given the description here above, where the last three typicality inclusions
exhibit such properties, even with high probabilities. In this example, the fact that also the score for the
emotion Anticipation is significant, it follows that the two compound emotions suggested by the system
are Anticipation-Trust and Trust-Anticipation, whose descriptions in ArsEmotica follow:

0.859 :: T(Trust ⊓Anticipation) ⊑ Anticipation
0.859 :: T(Trust ⊓Anticipation) ⊑ Excited
0.820 :: T(Trust ⊓Anticipation) ⊑ Excitement
0.820 :: T(Trust ⊓Anticipation) ⊑ Anticipate
0.844 :: T(Trust ⊓Anticipation) ⊑ Truth

0.906 :: T(Anticipation ⊓ Trust) ⊑ Truthfulness
0.883 :: T(Anticipation ⊓ Trust) ⊑ Trusted
0.867 :: T(Anticipation ⊓ Trust) ⊑ Trustworthy
0.844 :: T(Anticipation ⊓ Trust) ⊑ Honor
0.844 :: T(Anticipation ⊓ Trust) ⊑ Truth



As a further example, consider the following transcription by the Command module pilot (CMP):

{
"time": "05 11 04 25",
"speaker": "CMP",
"text": "Well, you know, - well, just looking at that one sample,

it was - I’m surprised you didn’t have a lot more dust. Now you saw
dust during descent, I think, around 40 feet, something like that,

30 feet maybe.",
"occurrences": ["surprised","descent","like"],
"word_count": 38,
"anger-NRC-Emotion-Intensity-Lexicon-v1": 0.0,
"joy-NRC-Emotion-Intensity-Lexicon-v1": 0.0,
"fear-NRC-Emotion-Intensity-Lexicon-v1": 0.391,
"anticipation-NRC-Emotion-Intensity-Lexicon-v1": 0.0,
"sadness-NRC-Emotion-Intensity-Lexicon-v1": 0.377,
"surprise-NRC-Emotion-Intensity-Lexicon-v1": 0.867,
"trust-NRC-Emotion-Intensity-Lexicon-v1": 0.484,
"disgust-NRC-Emotion-Intensity-Lexicon-v1": 0.0,
"combined_emotions": [
{
"emotion": "anticipation-surprise",
"matched_words": [
{

"word": "surprised",
"score": 0.867

}
]

},
{
"emotion": "surprise-anticipation",
"matched_words": [
{
"word": "surprised",
"score": 0.867

}
]

}
]

}

In this example, the compound emotions with the highest scores are Anticipation-Surprise and Surprise-
Anticipation, even if Fear, Sadness and Trust have higher scores among basic ones. This is a consequence
of the application of reasoning mechanisms of the logic TCL, which allows to obtain the following
description of such compound emotions.

0.906 :: T(Anticipation ⊓ Surprise) ⊑ Explode
0.906 :: T(Anticipation ⊓ Surprise) ⊑ Flabbergast
0.898 :: T(Anticipation ⊓ Surprise) ⊑ Explosion
0.883 :: T(Anticipation ⊓ Surprise) ⊑ Ambush
0.867 :: T(Anticipation ⊓ Surprise) ⊑ Surprised

0.906 :: T(Surprise ⊓Anticipation) ⊑ Explode
0.906 :: T(Surprise ⊓Anticipation) ⊑ Flabbergast
0.898 :: T(Surprise ⊓Anticipation) ⊑ Explosion
0.883 :: T(Surprise ⊓Anticipation) ⊑ Ambush
0.867 :: T(Surprise ⊓Anticipation) ⊑ Surprised

Running on the transcription of the Apollo 11 flightcrew communications as recorded on the command
module, containing a total of 4914 utterances, our system identified at least one of the eight basic
emotions in 1665 utterances. The system also identified complex emotions in 7 utterances.



5. Conclusions and Future Works

In this work, we introduced a tool for the automatic identification of emotions characterizing astronauts’
speeches during missions. The system is based on the Description Logic of typicality TCL, introduced in
[28, 29] as a probabilistic extension of the basic formalism able to deal with the combination of concepts.
Intuitively, the system checks words/concepts belonging to astronaut’s utterances with the properties
characterizing both basic and derived emotions described in the language of the TCL logic, by also
considering probabilities equipping each typicality inclusion as suitable weights of such properties. The
ontology with typicality and probabilities describing emotions and related properties, called ArsEmotica
[26], is based on Plutchik’s psychological circumplex model [11].

The study is supported by a very preliminary evaluation conducted on reports from real missions
contained in the dataset NASA Mission Transcript Collection6, although the results are de-
cidedly encouraging. Our goal is to conduct a more structured evaluation of the system, on the one
hand by comparing the system’s classification with a zero-shot classification using well-known Large
Language Models, and on the other by performing further tests using the results of mission simulations.

This work is intended as the first step towards an intelligent system for the autonomous detection of
the psycho-physical state of astronauts and aerospace crew members in general. Our goal is to develop
a multimodal system able to take into account different physiological signals (heart rate, heart rate
variability, eye tracking, keystroke dynamics, speech, etc.). The present work only uses textual data,
taking advantage of the availability of official transcripts from space missions and the wide experience
in textual analysis of the Natural Language Processing community. Since our envisioned system is
intended to be used in real time, other aspects of the astronauts’ speech could be used to feed the
analysis: prosodic, spectral and wavelet features can be informative about the intentions of the speaker
and of their emotional state [49].

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.
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