
Toward Executing Datalog on Big Data Platforms
Andrea Cuteri, Giuseppe Mazzotta

*
and Francesco Ricca

Department of Mathematics and Computer Science, University of Calabria, Rende, Italy

Abstract
Modern databases must be capable of querying massive volumes of data, as we live in the era of Big Data. At the

same time, Datalog, a logic language at the roots of database theory, remains a powerful formalism for expressing

complex queries in a declarative manner. In this paper, we move the first steps toward bridging these two worlds

in an innovative way. In particular, we introduce an approach that compiles stratified Datalog programs in Spark

jobs for execution on Big Data frameworks. Our approach aims at effectively combining the declarative nature of

logic rules with the scalability of modern distributed systems.

Keywords
Datalog, Big Data, Spark

1. Introduction

Modern databases are increasingly required to manage and process massive volumes of data generated

by diverse applications [1]. The continuous growth of data, both in size and complexity, has pushed

traditional systems beyond their limits, necessitating new architectural and computational approaches.

To efficiently store, retrieve, and analyze such vast datasets, modern databases often operate over large-

scale distributed clusters. This trend has accelerated research into scalable systems capable of handling

complex analytical tasks across distributed environments [2]. Consequently, designing efficient, fault-

tolerant, and highly performant database solutions has become a critical focus in both academia and

industry [1]. Among the prominent systems developed to address these challenges there, is Apache

Spark [3], a widely adopted platform for large-scale data analytics. Spark enables efficient in-memory

processing across distributed clusters, significantly accelerating the computation of complex analytics

tasks. Its flexible architecture supports a variety of workloads, ranging from simple queries to advanced

machine learning pipelines. However, implementing analytics in Spark often requires programmers to

manually express the evaluation of queries using imperative programming constructs [1].

On the other hand, declarative query languages offer higher-level abstractions that allow users to

specify what results they want without detailing how to compute them, leading to improved productivity

and reduced potential for programming errors compared to imperative approaches. In the database

landscape, Datalog has emerged as a foundational declarative language, deeply influencing both the

theoretical underpinnings and practical applications of database systems [4]. Datalog allows the

formulation of complex queries using a declarative logic-based formalism [5]. The limitations of

traditional Datalog evaluation systems in handling Big Data, due to their inability to leverage modern

distributed data management environments [6, 7], pave the way for a new generation of Datalog

engines designed on top of scalable platforms like Spark, possibly unlocking unprecedented potential

for declarative analytics at massive scale.

In this paper, we make a preliminary contribution toward this goal by presenting Datalog2Spark,

a system that explores the compilation of Datalog queries into Spark programs for evaluation over

computer clusters. In this first prototype, we focus on non-recursive Datalog programs with stratified

negation and incorporate some useful aggregation functions. Both extensions were conceived by

recognizing that (𝑖) the support of data types is fundamental in database systems, and (𝑖𝑖) it has been

CILC 2025: 40th Italian Conference on Computational Logic, June 25–27, 2025, Alghero, Italy
*
Corresponding author.

$ andrea.cuteri@unical.it (A. Cuteri); giuseppe.mazzotta@unical.it (G. Mazzotta); francesco.ricca@unical.it (F. Ricca)

� 0009-0000-7629-7347 (A. Cuteri); 0000-0003-0125-0477 (G. Mazzotta); 0000-0001-8218-3178 (F. Ricca)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:andrea.cuteri@unical.it
mailto:giuseppe.mazzotta@unical.it
mailto:francesco.ricca@unical.it
https://orcid.org/0009-0000-7629-7347
https://orcid.org/0000-0003-0125-0477
https://orcid.org/0000-0001-8218-3178
https://creativecommons.org/licenses/by/4.0/deed.en

observed how aggregation is crucial for effective data processing and analytics [6]. For this reason, we

first extend the Datalog language with constructs for type definitions, on the lines of previous studies [8].

Furthermore, we support some aggregation functions designed to enhance the expressive power and

practical utility of our tool. To assess the viability of our approach, we conducted a preliminary

experimental evaluation of our implementation, comparing it with two main-memory engines capable

of processing Datalog. The first system, dlv [9], is well known for extending a powerful Datalog engine

into a comprehensive logic programming platform for declarative reasoning under the Answer Set

Programming (ASP) paradigm. The second system, clingo [10], is an ASP solver that can also evaluate

Datalog programs, leveraging its support for the broader ASP language. Obtained results confirm the

viability of the approach, demonstrating its potential to bring the benefits of declarative programming

to Big Data analytics while delivering acceptable performance on single-server environments compared

to existing systems, and at the same time enabling seamless scale-out over modern distributed databases,

and capability of executing queries with aggregates that cannot be handled by compared systems.

The remaining of this paper is structured as follows. In section 2 we review the basics of Datalog and

Apache Spark. Section 3 presents an extension of the Datalog language as well as the novel compilation-

based technique implemented by Datalog2Spark. Section 4 provides an experimental analysis. Finally

Section 6 discusses related works and draws the conclusions.

2. Preliminaries

In this section we provide basic notions about Apache Spark and Datalog which are the core of the

contribution of this paper.

2.1. Spark

Apache Spark is a unified engine allowing for parallel data processing on distributed clusters [11]. Such

an engine provides a powerful, yet efficient, programming API, which allows distributed applications to

combine (possibly) multiple workflows such as streaming data analysis, machine learning, structured

data analysis, among others. The Spark programming API, available in different programming languages

such as Java, Python, Scala, and R, is built on top of Resilient Distributed Datasets (RDDs) [12]. An

RDD is an immutable and distributed in-memory dataset which represents the basic data abstraction in

Spark. RDDs have then been refined creating another data abstraction called Spark Dataset. A Spark

Dataset supports mainly two kinds of operations, namely transformations and actions. Transformations

are all those operations that, once applied on a Dataset, generate a new Dataset obtained by applying

the transformations to all the elements of the input Dataset. As examples, we can consider filtering,

projection, sorting among many others. Actions, instead, are those operations that consume elements

of an input Dataset to produce a specific result. As example consider counting or printing. One of the

most important features of the Spark programming API, and so of Datasets, is that transformations are

lazily evaluated. More precisely, Spark keeps track of the sequence of transformations (also known as

lineage) which define each Dataset. As soon as an action is invoked, Spark identifies the sequence of

transformations needed for computing the Dataset on which the action has been invoked, and creates

one or more jobs for carrying out the computation. A job is made of stages which are collections of tasks
that can be executed in parallel. Transformations of each job are transformed into a directed acyclic

graph (DAG) which defines dependency relations between transformations. Finally, Spark translates

the DAG into an optimized execution plan which is executed in order to compute the result of the

invoked action. This feature makes Spark applications very efficient, since Dataset are computed only

when they are needed, but at the same time also very fault tolerant, since transformations defining each

Dataset are stored and so they can be (partially) re-executed if some errors happen.

Example 1. Let us consider data reported in the following table:

rood_id timestamp measure
room_1 1 10
room_2 1 12
room_1 2 14
room_1 3 18

Assuming that the table is stored into a CSV file named sensors.csv, then the following spark application
reads this CSV file and finds all the available measurements for “room_1”.

S p a r k S e s s i o n s e s s i o n = S p a r k S e s s i o n . b u i l d e r () . g e t O r C r e a t e () ;

D a t a s e t <Row> s e n s o r s D a t a = s e s s i o n . r e a d ()
. schema (" room_id s t r i n g , t imes tamp i n t e g e r , measure i n t e g e r ")
. c s v (" s e n s o r s . c s v ") ;

int room1Measure s = s e n s o r s D a t a
. f i l t e r (s e n s o r s D a t a . c o l (" room_id ") . e q u a l T o (" room_1 "))
. show () ;

The first instruction builds the so called spark session which serves as entry point of all Spark func-
tionalities. By means of this session object, it is possible to read from different sources. In our case we
are reading the data from a source whose data follow a schema made of three columns, namely room_id,
timestamp, and measure; and it is represented by a CSV file. The resulting data defines a Spark Dataset
named sensorsData.

Then, sensorsData is used to print all the available measurements for room_1. To this end, first the filter
transformation is applied for filtering all the rows having room_1 as value of the column “room_id”, then
then the action show prints the result of our query.

The execution of a Spark application is typically done in parallel. More precisely, there is one driver

process and many worker processes. The driver process is responsible for managing the execution of

the Spark application and distributing the work across the workers (or executors). The executors carry

out the work that is assigned to them by the driver program. When Spark is executed on a cluster,

executors are scattered across the network and so the executors may be spawned on different physical

machines. However, Spark provides also a local mode, where executor processes are spawned on the

same machine but they use different CPU cores.

2.2. Datalog

Terms can be either variables or constants. Constants are strings starting with lowercase letter or

integers, while variables are strings stating with uppercase letter. An atom 𝑎 is an expression of the

form 𝑝(𝑡1, . . . , 𝑡𝑛) where 𝑝 is a predicate of arity 𝑛 and 𝑡1, . . . , 𝑡𝑛 are terms. An atom is ground if all

its terms are constants. A literal is either an atom 𝑎 or its negation 𝑛𝑜𝑡 𝑎, where 𝑛𝑜𝑡 denote negation

as failure. A literal of the form 𝑎 is said to be positive, while a literal of the form 𝑛𝑜𝑡 𝑎 is said to be

negative. Given a literal 𝑙 = 𝑎 (resp 𝑛𝑜𝑡 𝑎), 𝑙 denotes the complement of 𝑙, that is 𝑛𝑜𝑡 𝑎 (resp 𝑎). A rule is

an expression of the form ℎ← 𝑙1, . . . , 𝑙𝑛 where ℎ is an atom referred to as head, and 𝑙1, . . . , 𝑙𝑛 referred

to as body, is a conjunction of literals. Given a rule 𝑟, 𝐵𝑟 denotes the set of literals in the body of rule

𝑟, and 𝐻𝑟 the atom appearing in the head of 𝑟. Given a set of literals 𝑆, we denote 𝑆+
(resp 𝑆−

) the

set of positive (resp. negative) literals of 𝑆. A program Π is a set of rules. The dependency graph of

a program Π, 𝐺Π is a directed labeled graph where the nodes are predicates appearing in Π and the

set of the edges contains a positive (resp. negative) edge (𝑢, 𝑣) if there exists a rule 𝑟 ∈ Π such that

𝑣 ∈ 𝐻𝑟 and 𝑢 appears in 𝐵+
𝑟 (resp. in 𝐵−

𝑟). A program Π is said to be stratified if 𝐺Π does not contain

loops involving negative edges. A program is said to be recursive if 𝐺Π contains some loops.

In this paper we consider stratified programs that contain no loops in 𝐺Π.

Example 2. Let us consider sensors data from Example 1. In order to compute all the available measure-
ments we can write the following Datalog program:

𝑠𝑒𝑛𝑠𝑜𝑟(𝑟𝑜𝑜𝑚_1, 1, 10) ←
𝑠𝑒𝑛𝑠𝑜𝑟(𝑟𝑜𝑜𝑚_2, 1, 12) ←
𝑠𝑒𝑛𝑠𝑜𝑟(𝑟𝑜𝑜𝑚_1, 2, 14) ←
𝑠𝑒𝑛𝑠𝑜𝑟(𝑟𝑜𝑜𝑚_1, 3, 18) ←

𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠(𝑇,𝑀) ← 𝑠𝑒𝑛𝑠𝑜𝑟(𝑟𝑜𝑜𝑚_1, 𝑇,𝑀)

Here the facts over the 𝑠𝑒𝑛𝑠𝑜𝑟 predicate encode the ground truth about sensors measure. Then the rule
𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠(𝑇,𝑀) ← 𝑠𝑒𝑛𝑠𝑜𝑟(𝑟𝑜𝑜𝑚_1, 𝑇,𝑀) is used to derive all those measures relative to
“room_1” which are encoded by atoms over predicate 𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠, that are 𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠(1, 10),
𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠(2, 14), and 𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠(3, 18).

For further details we refer the reader to dedicate literature [5].

3. Compiling Datalog into Spark

To bridge Datalog and Spark worlds we provide a compilation-based approach aimed at compiling

Datalog programs into ad-hoc Spark applications which serve as parallel and large-scale evaluator for

the compiled programs. To this end, we first propose an extension of the base Datalog language in order

to support typed predicates and aggregation function; and then we present our compilation techniques.

3.1. Extended Datalog

Relational databases typically have a well defined schema in which columns of a given relation are

associated to a specific data type. However, predicates in Datalog programs do not enforce a fixed

schema. The lack of such restriction may introduce unexpected behavior when Datalog predicates

are mapped over Spark Datasets which impose a fixed schema. A natural way of filling this gap is to

extend the Datalog base language with ad-hoc type directives. A type directive is an expression of the

form #𝑡𝑦𝑝𝑒 𝑝𝑟𝑒𝑑_𝑛𝑎𝑚𝑒(𝑡𝑦𝑝𝑒1, ..., 𝑡𝑦𝑝𝑒𝑛), where 𝑝𝑟𝑒𝑑_𝑛𝑎𝑚𝑒 is a predicate name and 𝑡𝑦𝑝𝑒1, ..., 𝑡𝑦𝑝𝑒𝑛
represent terms’ data types. More precisely, supported data types are: numeric, for representing

integers and floats, and string for representing strings.

Example 3. Let us consider the Datalog program from Example 2, and the following type directives:

#𝑡𝑦𝑝𝑒 𝑠𝑒𝑛𝑠𝑜𝑟(𝑠𝑡𝑟𝑖𝑛𝑔, 𝑛𝑢𝑚𝑒𝑟𝑖𝑐, 𝑛𝑢𝑚𝑒𝑟𝑖𝑐)
#𝑡𝑦𝑝𝑒 𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠(𝑛𝑢𝑚𝑒𝑟𝑖𝑐, 𝑛𝑢𝑚𝑒𝑟𝑖𝑐)

By means of these two type directives we are imposing that, for the ground atoms over 𝑠𝑒𝑛𝑠𝑜𝑟 predicate,
terms must be respectively of type string, numeric, and numeric. Similarly for ground atoms over predicate
𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠, both terms must be of numeric type.

Type directives are not mandatory, and so for all those predicates for which a type directive does not exist,

terms are either considered as string (for input predicates) or their type is inferred during compilation

(for non-input predicates). By exploiting such typing mechanism, users can specify predicates’ schemas

which must be satisfied during query evaluation.

Another natural language extension is the usage of aggregation functions. Aggregates are widely

adopted in declarative formalisms and allow to specify complex query in a very compact and natural

way [13]. To this end, we consider standard aggregates defined in the ASPCore-2 as well as novel

aggregate functions which are also supported by the Spark programming API. More precisely, a symbolic
set is a pair of the form 𝑉 : 𝐶𝑜𝑛𝑗, where 𝑉 is a list of terms and 𝐶𝑜𝑛𝑗 is a conjunction of literals. A

ground set is a set of pair 𝑣 : 𝑐𝑜𝑛𝑗 the 𝑣 is a list of constants and 𝑐𝑜𝑛𝑗 is conjunction of ground literals. An

aggregate function is an expression of the form 𝑓(𝑆) where 𝑆 is either a symbolic or ground set and 𝑓 ∈

{#𝑐𝑜𝑢𝑛𝑡,#𝑠𝑢𝑚,#𝑚𝑖𝑛,#𝑚𝑎𝑥,#𝑎𝑣𝑔,#𝑚𝑒𝑑𝑖𝑎𝑛,#𝑠𝑡𝑑𝑑𝑒𝑣,#𝑣𝑎𝑟} is an aggregate function symbol.
Note that, #𝑎𝑣𝑔, #𝑚𝑒𝑑𝑖𝑎𝑛, #𝑠𝑡𝑑𝑑𝑒𝑣, and #𝑣𝑎𝑟 aggregate function symbols stand for descriptive

statistics in their mathematical terms (i.e., average, median, standard deviation and variance respectively).

An aggregate atom is an expression of the form 𝑓(𝑆) ≺ 𝑇 , where 𝑓(𝑆) is an aggregation function,

≺ ∈ {<,≤, >,≥,=} is a comparison operator and 𝑇 is a term that is called guard. An aggregate atom

𝑓(𝑆) ≺ 𝑇 is ground if 𝑆 is a ground set and 𝑇 is a constant.

In the extended Datalog language we allow the usage of aggregate atoms in rule bodies.

Example 4. Let us consider the Datalog program from Example 2. The following rule can used to derive
the atom 𝑞 (i.e., our query) if there are at least two measures available for “room_1”:

𝑞 ← #𝑐𝑜𝑢𝑛𝑡{𝑇,𝑀 : 𝑟𝑜𝑜𝑚1𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠(𝑇,𝑀)} ≥ 2

By means of such aggregate atoms it is possible to model more involved query requiring aggregations

which are very frequent in Big Data analytics context.

3.2. Compilation

We now describe how extended Datalog programs (i.e. Datalog programs with type directives and

aggregates) can be compiled into ad-hoc Spark applications. The idea behind our approach consists of

interpreting predicates of a Datalog program Π as Spark datasets and rules of Π as transformations

over such datasets. In particular, each predicate in Π is associated with a Spark dataset which has as

many columns as the arity of the predicate; whereas each rule is evaluated by means of multiple join

transformations between predicates appearing in the body and ad-hoc transformations for aggregate

atoms.

To compile rules containing aggregates we first apply a program rewriting technique which normalizes

rules containing aggregates into rules where each aggregate atom has exactly one literal in its body.

W.l.o.g., we assume each rule of an extended Datalog program contains at most one aggregate atom.

Let 𝑟 be a rule of the form ℎ← 𝑙1, . . . , 𝑙𝑛,#𝑓{𝑉 : 𝐶𝑜𝑛𝑗} ≻ 𝑇 then it is rewritten as follows:

𝑏𝑜𝑑𝑦𝑟(𝜏) ← 𝑙1, . . . , 𝑙𝑛
𝑎𝑔𝑔_𝑠𝑒𝑡𝑟(𝑉, 𝜌) ← 𝑏𝑜𝑑𝑦𝑟(𝜏), 𝐶𝑜𝑛𝑗

𝐻 ← 𝑏𝑜𝑑𝑦𝑟(𝜏),#𝑓{𝑉 : 𝑎𝑔𝑔_𝑠𝑒𝑡(𝑉, 𝜌)} ≻ 𝑇

where 𝜏 is the union of all the terms appearing in literals 𝐿1, . . . , 𝐿𝑛, and 𝜌 are those terms appearing

both in 𝐶𝑜𝑛𝑗 and 𝜏 . The following example should better clarify our rewriting.

Example 5. Let 𝑟 be the following rule:

ℎ(𝑋,𝐶)← 𝑎(𝑋,𝑌), 𝑏(𝑌,𝑍),#𝑐𝑜𝑢𝑛𝑡{𝑊 : 𝑐(𝑌,𝑊), 𝑑(𝑊,𝑍)} = 𝐶

Then our rewriting techniques transform 𝑟 in the following rules:

𝑏𝑜𝑑𝑦𝑟(𝑋,𝑌, 𝑍) ← 𝑎(𝑋,𝑌), 𝑏(𝑌, 𝑍)
𝑎𝑔𝑔_𝑠𝑒𝑡𝑟(𝑊,𝑌,𝑍) ← 𝑏𝑜𝑑𝑦𝑟(𝑋,𝑌, 𝑍), 𝑐(𝑌,𝑊), 𝑑(𝑊,𝑍)

ℎ(𝑋,𝐶) ← 𝑏𝑜𝑑𝑦𝑟(𝑋,𝑌, 𝑍),#𝑐𝑜𝑢𝑛𝑡{𝑊 : 𝑎𝑔𝑔_𝑠𝑒𝑡𝑟(𝑊,𝑌,𝑍)} = 𝐶

Intuitively, the first rule encodes the truth of the literals in the body 𝑟 without considering the aggregate
atoms by means of the predicate 𝑏𝑜𝑑𝑦𝑟 . Then, the second rule defines the join between literals in the body
of 𝑟 and the conjunction of literals in the aggregate atom by means of the 𝑎𝑔𝑔_𝑠𝑒𝑡𝑟 predicate. Finally, the
𝑏𝑜𝑑𝑦𝑟 and 𝑎𝑔𝑔_𝑠𝑒𝑡𝑟 predicates are used to reconstruct the original rule.

After rewriting all rules containing aggregates, the rewritten program is translated into a Spark

application. The resulting application serves as a solver for evaluating arbitrary instances of the

compiled program.

In order to describe the proposed compilation techniques, we proceed with the following example of

extended Datalog program that we refer to as Sensors:

Example 6.

𝑚𝑒𝑎𝑛𝑅(𝑅, 𝑇,𝑀𝑒𝑎𝑛) ← 𝑡(𝑇), 𝑟(𝑅),#𝑎𝑣𝑔{𝑀 : 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑅, 𝑇,𝑀)} = 𝑀𝑒𝑎𝑛.
𝑖𝑛𝑡(𝑇1, 𝑇2, 𝐵) ← 𝑡(𝑇2), 𝑡(𝑇1), 𝑖𝑛𝑡𝑆𝑖𝑧𝑒(𝐷), 𝐷 = 𝑇2− 𝑇1, 𝑎𝑡𝐿𝑒𝑎𝑠𝑡𝐶𝑟𝑖𝑡(𝐵).

𝑎𝑙𝑒𝑟𝑡𝐻(𝑇1, 𝑇2, 𝑅) ← 𝑖𝑛𝑡(𝑇1, 𝑇2, 𝐵), 𝑟(𝑅), 𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑅,𝑀𝑖𝑛,𝑀𝑎𝑥),
#𝑐𝑜𝑢𝑛𝑡{𝑇 : 𝑇 > 𝑇1, 𝑇 <= 𝑇2,𝑚𝑒𝑎𝑛𝑅(𝑅, 𝑇,𝑀),𝑀 > 𝑀𝑎𝑥} >= 𝐵.

𝑡𝑟𝑎𝑠ℎ(𝐵) ← 𝑎𝑙𝑒𝑟𝑡𝐻(𝑇1, 𝑇2, 𝑅), 𝑠𝑡𝑜𝑟𝑒𝑑(𝐵,𝑅, 𝑆,𝐸), 𝑇1 >= 𝑆, 𝑇2 <= 𝐸.

In this example, program instances are indeed sequences of measures made by sensors that are placed

in controlled environments called rooms, encoded by predicates 𝑚𝑒𝑎𝑠𝑢𝑟𝑒/3 and 𝑟𝑜𝑜𝑚/1, and batches

of products stored into rooms for a given amount of time, encoded by predicate 𝑠𝑡𝑜𝑟𝑒𝑑/4. Then, we aim

at identifying abnormal room conditions according to aggregated sensors’ measures. More precisely, a

room 𝑟 experiences an abnormal condition over an interval 𝐼 if the average measure of the sensors

in the room falls outside the comfort range (specified for 𝑟) for at least 𝑏 time points of the interval 𝐼 .

Finally, we determine which batches of products were stocked in a room under abnormal conditions.

Such products should be trashed. A batch 𝐵 of products stored in a room 𝑅 from time 𝑇1 to time 𝑇2
should be trashed if the room 𝑅 experienced some abnormal condition within time range 𝑇1− 𝑇2.

Let us consider the rule

𝑚𝑒𝑎𝑛𝑅(𝑅, 𝑇,𝑀𝑒𝑎𝑛)← 𝑡(𝑇), 𝑟(𝑅),#𝑎𝑣𝑔{𝑀 : 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑅, 𝑇,𝑀)} = 𝑀𝑒𝑎𝑛.

This rule is rewritten as follows:

𝑡𝑟(𝑇,𝑅) ← 𝑡(𝑇), 𝑟(𝑅).
𝑚𝑒𝑎𝑛𝑅(𝑅, 𝑇,𝑀𝑒𝑎𝑛) ← 𝑡𝑟(𝑇,𝑅),#𝑎𝑣𝑔{𝑀 : 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑅, 𝑇,𝑀)} = 𝑀𝑒𝑎𝑛.

Note that, in this case, the rewriting does not generate the rule defining 𝑎𝑔𝑔_𝑠𝑒𝑡𝑟 since the conjunction

inside the aggregate atom already contains exactly one literal.

These two rules are then compiled into Spark transformations. The rule 𝑡𝑟(𝑇,𝑅) ← 𝑡(𝑇), 𝑟(𝑅)
basically generates the cartesian product between time points and rooms. Thus, it can be compiled as

follows: first of all, the compiler prints the instructions for loading predicates 𝑡 and 𝑟 from CSV files

into two Spark Datasets; then the compiler prints the instruction that computes the cartesian product

between the two datasets and saves the result of this transformation in a new Dataset 𝑡𝑟. The following

code snippet reports the code generated by the Compiler for the rule 𝑡𝑟(𝑇,𝑅)← 𝑡(𝑇), 𝑟(𝑅).

Da ta se t <Row> t = s e s s i o n . r ead ()

. f o rmat (" c sv ")

. schema (" t 0 f l o a t ")

. l o a d (i n s t a n c e _ p a t h + " t . c sv ")

. d r o p D u p l i c a t e s () ;

Da ta se t <Row> r = s e s s i o n . r ead ()

. f o rmat (" c sv ")

. schema (" t 0 f l o a t ")

. l o a d (i n s t a n c e _ p a t h + " r . c sv ")

. d r o p D u p l i c a t e s () ;

Da ta se t <Row> t r = t . c r o s s J o i n (r) ;

At this point the Dataset 𝑡𝑟 can be used in the evaluation of the next rule. The rule

𝑚𝑒𝑎𝑛𝑅(𝑅, 𝑇,𝑀𝑒𝑎𝑛) ← 𝑡𝑟(𝑇,𝑅),#𝑎𝑣𝑔{𝑀 : 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑅, 𝑇,𝑀)} = 𝑀𝑒𝑎𝑛 computes the aver-

age of measures for each time point 𝑇 and each room 𝑅. For this rule, the compiler first prints the

instruction that loads the predicate 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 into a new Dataset and then prints the instruction for

computing the join between the Datasets 𝑡𝑟 and 𝑚𝑒𝑎𝑠𝑢𝑟𝑒. More precisely, such join is defined on the

equalities between (𝑖) the first term of 𝑡𝑟 and the second term of 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and (𝑖𝑖) the second term

of 𝑡𝑟 and the first term of 𝑚𝑒𝑎𝑠𝑢𝑟𝑒. The result of the join defines a new Dataset, namely trmeasure.

Then, the compiler prints the transformations for aggregating measures relative to each time point and

each room. More precisely, the trmeasure Dataset is first grouped by columns representing time and

room and then the measures of each group are aggregated using the average (avg) function. Finally,

the resulting Dataset is used to model the 𝑚𝑒𝑎𝑛𝑅 predicate which appear in the head of the rule. The

following snippet reports the compiled code describe above.

Da ta se t <Row> measure = s e s s i o n . r ead ()

. f o rmat (" c sv ")

. schema (" t 0 f l o a t , t 1 f l o a t , t 2 f l o a t ")

. l o a d (i n s t a n c e _ p a t h + " measure . c sv ")

. d r o p D u p l i c a t e s () ;

Da ta se t <Row> t r m e a s u r e = t r . a l i a s (" t r ")

. j o i n (

measure . a l i a s ("m") ,

c o l (" t r . t 0 ") . equa lTo ("m. t 1 ")

. and (c o l (" t r . t 1 ") . equa lTo ("m. t 0 "))

)

. s e l e c t (

c o l (" t r . t 1 ") . a s (" t 0 ") ,

c o l (" t r . t 0 ") . a s (" t 1 ") ,

c o l ("m. t 2 ")

) ;

Da ta se t <Row> meanR = t r m e a s u r e . groupBy (c o l (" t 0 ") , c o l (" t 1 "))

. agg (avg (" t 2 ") . a s (" t 2 ")) ;

All the remaining rules are first rewritten and then compiled by following the same idea described so

far. Thus, we avoid reporting the lengthy code would be generated for all the remaining rules.

3.3. Implementation

We implemented the Extended Datalog language and the compilation-based approach described above

in a novel system named Datalog2Spark, which is able to compile Extended Datalog programs into

Spark applications. The architecture of Datalog2Spark is illustrated in Figure 1.

Figure 1: System architecture

Datalog2Spark takes as input an Extended Datalog program, say Π, which is then analyzed and

rewritten by the Rewriter module. More precisely, the module reads all type directives which will be

instrumental in defining the schema of the resulting Spark Datasets. For all those input predicates for

which the user did not specify a type directive, the Rewriter module defines a type directive in which all

terms are assigned to the type string. Once input types have been defined, the Rewriter module proceeds

by inferring the types of remaining predicates and by checking that there are no type mismatches.

Whenever a mismatch occurs, the compilation aborts. The following example should clarify how both

type inference works and how mismatches are detected.

Example 7. Consider the following program Π:

𝑞(𝐷,𝑇𝑜𝑡) ← 𝑚(𝐷),#𝑠𝑢𝑚{𝑄,𝑀 : 𝑝(𝑀,𝐷,𝑄)} = 𝑇𝑜𝑡.

And the following type directive:

#𝑡𝑦𝑝𝑒 𝑝(𝑠𝑡𝑟𝑖𝑛𝑔, 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑛𝑢𝑚𝑒𝑟𝑖𝑐)

Input predicates of Π are 𝑚 and 𝑝. However, there is one type directive for the predicate 𝑝 and so, the
Rewriter module introduces a default directive for 𝑚 of the form #𝑡𝑦𝑝𝑒 𝑚(𝑠𝑡𝑟𝑖𝑛𝑔).

At this point, terms of all input predicates have a precise type and so, the Rewriter proceeds by checking
that such types do not lead to a mismatch.

More precisely, for the predicate 𝑞, the Rewriter infers the type directive #𝑡𝑦𝑝𝑒 𝑞(𝑠𝑡𝑟𝑖𝑛𝑔, 𝑛𝑢𝑚𝑒𝑟𝑖𝑐).
Intuitively, the first term of 𝑞 inherits its type from the first term of 𝑚 that is 𝑠𝑡𝑟𝑖𝑛𝑔, while the second term
of 𝑞 inherits its type from the result of the sum aggregation function, which is 𝑛𝑢𝑚𝑒𝑟𝑖𝑐.

Since no type directives have been inferred/specified for 𝑞 then no conflicts arise.
Conversely, a type directive of the form #𝑡𝑦𝑝𝑒 𝑞(𝑠𝑡𝑟𝑖𝑛𝑔, 𝑠𝑡𝑟𝑖𝑛𝑔) would have led to a mismatch on the

type of the second term of 𝑞.

Then, the Rewriter module applies the rewriting technique described above by replacing each rule

containing aggregates with the ones produced by the rewriting. As a result, the Rewriter generates a

program, namely Rewritten Program denoted by Π′
, which is then given to the Compiler module for

compiling each rule into ad-hoc Spark transformations. More precisely, the compiler first computes the

dependency graph of Π′
. Then, it computes strongly connected components 𝐶1, ..., 𝐶𝑛 that give us a

topological order of 𝐺Π′ such that no paths exist from 𝐶𝑗 to 𝐶𝑖 if 𝑖 < 𝑗. By following that order, for

each component 𝐶 (which is indeed a set of predicates appearing in Π′
), the compiler compiles all the

rules having in the head predicates appearing in 𝐶 .

Such an order guarantees that each rule 𝑟 ∈ Π′
is evaluated only when all the predicates appearing

in the body of 𝑟 have been previously evaluated.

As a result, we obtain an ad-hoc Spark application which can be used to evaluate arbitrary instances

of the program Π. More precisely, an instance of Π must be a folder made of different predicate-specific

CSV files, which represent input facts.

4. Experiments

To assess performances of the proposed approach we conducted an empirical evaluation over

computation-intensive benchmarks. In our comparison we considered the clingo and dlv systems

and four versions of Datalog2Spark with the following research goals: (G1) assessing the impact of

Datalog2Spark w.r.t. clingo and dlv; (G2) studying the scalability of Datalog2Spark with an increasing

number of Spark workers. The four different versions of Datalog2Spark are reported as spark-n where

n represents the number of workers used by Spark.

Benchmarks In our evaluation we consider both benchmarks taken from the literature [14] and a

benchmark built on top of the Sensors program reported in the previous section. More precisely, the

first three benchmarks are formulations of data-intensive join operations, while the last benchmark is

useful to assess how Datalog2Spark performs over queries involving aggregates.

Data intensive joins fall in the large join category considered by [14]. Each of the joins presents

different features. DBLP is a well-known Computer Science bibliography database. The DBLP problem

extracts articles data by computing a 4-way join between the single input relation 𝑎𝑡𝑡, and selects

almost all the columns of the join.

𝑞(𝐼𝑑, 𝑇,𝐴, 𝑌,𝑀) ← 𝑎𝑡𝑡(𝐼𝑑, 𝑡𝑖𝑡𝑙𝑒, 𝑇), 𝑎𝑡𝑡(𝐼𝑑, 𝑦𝑒𝑎𝑟, 𝑌), 𝑎𝑡𝑡(𝐼𝑑, 𝑎𝑢𝑡ℎ𝑜𝑟,𝐴), 𝑎𝑡𝑡(𝐼𝑑,𝑚𝑜𝑛𝑡ℎ,𝑀).

Instances generated for DBLP include a number of articles between 200000 to 6000000. Each article

could include up to 6 or up to 9 authors, while both month and year of publication are taken at random.

The Join1 problem defines four binary joins between predicates of arity two.

𝑎(𝑋,𝑌) ← 𝑏1(𝑋,𝑍), 𝑏2(𝑍, 𝑌).
𝑏1(𝑋,𝑌) ← 𝑐1(𝑋,𝑍), 𝑐2(𝑍, 𝑌).
𝑏2(𝑋,𝑌) ← 𝑐3(𝑋,𝑍), 𝑐4(𝑍, 𝑌).
𝑐1(𝑋,𝑌) ← 𝑑1(𝑋,𝑍), 𝑑2(𝑍, 𝑌).

Instances for Join1 were generated by varying the domain size of the input predicates (namely d1, d2,

c3, c4, c2) and the number of facts for each predicate. We varied the domain of each term of the input

predicates between 300 and 1000, and we considered either all the tuples in the cartesian product of the

domains or a subset of it (ranging from 40% to 100% of the tuples).

The LUBM problem defines three independent queries over a more complex database. In this case,

multiple joins between distinct relations are computed and then, except for query1, all columns of the

resulting join are selected.

𝑞𝑢𝑒𝑟𝑦1(𝑋) ← 𝑡𝑎𝑘𝑒𝑠𝐶𝑜𝑢𝑟𝑠𝑒(𝑋, 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝐶𝑜𝑢𝑟𝑠𝑒0), 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑋).
𝑞𝑢𝑒𝑟𝑦2(𝑋,𝑌, 𝑍) ← 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑋),𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓(𝑋,𝑍), 𝑢𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝐷𝑒𝑔𝑟𝑒𝑒𝐹𝑟𝑜𝑚(𝑋,𝑌),

𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑌), 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡(𝑍), 𝑠𝑢𝑏𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑂𝑓_0(𝑍, 𝑌).
𝑞𝑢𝑒𝑟𝑦9(𝑋,𝑌, 𝑍) ← 𝑎𝑑𝑣𝑖𝑠𝑜𝑟(𝑋,𝑌), 𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑂𝑓(𝑌,𝑍), 𝑡𝑎𝑘𝑒𝑠𝐶𝑜𝑢𝑟𝑠𝑒(𝑋,𝑍),

𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑋), 𝑓𝑎𝑐𝑢𝑙𝑡𝑦(𝑌), 𝑐𝑜𝑢𝑟𝑠𝑒(𝑍).

Instances for LUBM are generated by varying many parameters like the number of students, the number

of universities, the number of courses followed by each student, and a few others. For generating

instances that are a plausible representation of real-world universities, we decided to fix a parameter

configuration and then to multiply by a factor all the parameters, except the number of courses attended

by student. In this way we generated instances ranging from 50000 students split into 12 universities,

up to 800000 students split in 225 universities. For each fixed parameters configuration we made the

number of courses followed by student vary from 5 to 20.

The last benchmark, instead, is an extension of the sensors program from Example 6. In particular,

we added rules encoding further abnormal room conditions detected by measures that are below the

minimum comfort range value. More precisely, the following rules are added:

𝑎𝑙𝑒𝑟𝑡𝐿(𝑇1, 𝑇2, 𝑅) ← 𝑖𝑛𝑡(𝑇1, 𝑇2, 𝐵), 𝑟(𝑅), 𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑅,𝑀𝑖𝑛,𝑀𝑎𝑥),
#𝑐𝑜𝑢𝑛𝑡{𝑇 : 𝑇 > 𝑇1, 𝑇 <= 𝑇2,𝑚𝑒𝑎𝑛𝑅(𝑅, 𝑇,𝑀),𝑀 < 𝑀𝑖𝑛} >= 𝐵.

𝑡𝑟𝑎𝑠ℎ(𝐵) ← 𝑎𝑙𝑒𝑟𝑡𝐿(𝑇1, 𝑇2, 𝑅), 𝑠𝑡𝑜𝑟𝑒𝑑(𝐵,𝑅, 𝑆,𝐸), 𝑇1 >= 𝑆, 𝑇2 <= 𝐸.

Instances for sensors are generated by varying the total number of rooms, the number of sensors per

room, and the number of time points for which a measure exists. We varied the number of rooms from

100 to 600, the number of time points from 2000 to 4000 and the number of sensors from 4 to 6.

Hardware setup All experiments were executed on Intel(R) Xeon(R) CPU E7-8880 v4 @

2.20GHz, running Debian GNU/Linux 12; with memory and CPU (i.e. user+system) limited to

64GB and 1800s. Executables and benchmarks are available at https://osf.io/jc4wn/?view_only=

88e6cf62edec4678b3417217cb9b1252

https://osf.io/jc4wn/?view_only=88e6cf62edec4678b3417217cb9b1252
https://osf.io/jc4wn/?view_only=88e6cf62edec4678b3417217cb9b1252

Results. Obtained results are reported in the plots in Figures 2-5. We recall that in the cactus plots

instances are sorted by time, and a point (i, j) of the plot indicates that a system solved the i-th instance

with time limit of j seconds. Each line in a cactus plot reports execution times for a given system.

For assessing the impact of the proposed approach w.r.t. the clingo and dlv systems (G1) we compare

them with spark-1 which uses only one worker for a fair comparison.

Overall, it is possible to observe that considered benchmarks highlight both strength and limitation

of the proposed approach. For dblp, spark-1 achieves better results w.r.t. clingo and dlv since it

pre-filters the predicate att over the specific columns and then computes the 4-way join between the

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

Number of solved instances

E
x
ec
u
ti
on

ti
m
e(
s)

dlv
clingo
spark-1
spark-4
spark-8
spark-16

Figure 2: DBLP

0 5 10 15 20 25 30
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Number of solved instances

E
x
ec
u
ti
on

ti
m
e(
s)

dlv
clingo
spark-1
spark-4
spark-8
spark-16

Figure 3: Join1

0 3 6 9 12 15 18
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Number of solved instances

E
x
ec
u
ti
on

ti
m
e(
s)

dlv
clingo
spark-1
spark-4
spark-8
spark-16

Figure 4: LUBM

Figure 5: Sensors

filtered Datasets, which is way more efficient than iterating the entire predicate set. On the contrary,

for join1 benchmark, spark-1 exhibited some overhead w.r.t. clingo and dlv. Such an overhead is

mainly due to the large number of duplicates produced by the join operation. In this case spark-1 is not

able to identify such duplicates and so it first generates duplicated tuples and then drops them, which is

detrimental as soon as the number of duplicates start increasing.

For the lubm benchmark, spark-1 exhibited performance comparable to that of clingo, while dlv

emerged as the best-performing system. In this case, spark-1 applies limited pre-filtering, restricted

to the takesCourse predicate. Unlike the dblp benchmark, this filtering has little effect on overall

performance; however, spark-1 introduces no significant overhead compared to clingo. By contrast,

Table 1
Spark versions’ speedup

Benchmarks
spark-1 spark-4 spark-8 spark-16

Total speedup Total speedup Total speedup Total Speedup

dblp 5985 - 2789 2.15 2214 2.70 1817 3.29

join1 27390 - 10202 2.68 8249 3.32 7383 3.47

lubm 14956 - 4408 3.39 2905 5.15 2103 7.11

sensors 29602 - 9578 3.09 6665 4.44 5727 5.17

dlv benefits from advanced rule ordering strategies, allowing it to scale efficiently on smaller instances.

Nonetheless, as the instance size grows, dlv does not scale as well as spark. However, it is important

to point out that, even though the use of only one worker is not the typical Spark deployment mode,

spark-1 revealed to be competitive w.r.t. clingo and dlv. Finally, for the sensors encoding there is no

line for clingo and dlv since they do not support the aggregate #𝑎𝑣𝑔 used in this benchmark.

We now study the scalability of Datalog2Spark by considering an increasing number of Spark workers

(G2). To this end, we compared performance of spark-1, spark-4, spark-8, and spark-16.

Table 1, reports the cumulative PAR-2 score for all the spark versions, and the speedup of each version

with respect to spark-1 for each benchmark. We recall that the PAR-2 score is obtained by considering

the total runtime for completed instance and 2 times the timeout for timed out instances. Whereas,

speedups are then computed by dividing the total execution time of spark-1 by the total execution

time of the each spark-n.

In almost all the considered benchmarks, it is possible to observe a significant improvement introduced

by spark-4 w.r.t. spark-1. This suggests that partitioning datasets over different Spark workers is very

effective even if the obtained speedup is not linear. Probably this is due to the size of the considered

instances, and so by considering larger instances it is expected that the speedup observed for spark-8

and spark-16 increases. Among considered benchmarks, lubm and sensors are the one on which Sparks

scales the most. More precisely, for sensors benchmark spark-1 experiences four timed out instances

while spark-16 allows to solve all the instances roughly within 600s (i.e. a third of the considered

timeout). This is very positive result which highlights also the effectiveness of the proposed approach

in modeling typical Big Data analysis requiring aggregation.

5. Related Work

Datalog has long served as a core declarative framework for querying and reasoning over data [4, 5]. Its

evaluation is typically handled by main-memory systems [14, 15, 10, 9], which struggle to scale in the

realm of Big Data applications. This limitation has led to a growing body of work focused on scalable

engines which aim at parallelizing the evaluation of logic programs both on single machine and in

distributed environments [16, 17, 6, 7]. Tachmazidis et al. introduced a MapReduce-based approach

for evaluating logic programs under well-founded semantics, achieving scalability over large datasets.

However, their approach is tailored for specific example of programs, which limits its applicability,

and more importantly, it may not benefit from the advancements introduced by modern Big Data

technologies such as in-memory computation supported by Spark [3]. In this direction, Shkapsky

et al. and Rogala et al. proposed approaches for integrating Datalog queries within Spark applications.

Both systems allow the user to integrate Datalog queries, expressed a new query language inspired to

Datalog, into complex Spark pipelines. However, both approaches force the user to explicitly embed

the query within a Spark application. In contrast, our compilation-based approach can automatically

compose Spark applications which serve as ad-hoc distributed solvers for Datalog programs.

Related techniques are also those realized for the parallel instantiation of ASP program of which

Datalog evaluation is a subcase [19]. Compilation-based techniques have recently gained popularity

and proved to be highly effective for evaluation of both ASP and Datalog programs [20, 21, 22, 23].

Notably, Cuteri and Ricca introduced a technique to compile Datalog into ad-hoc C++ engine. However,

resulting engines still remain limited to sequential main-memory execution which represents a strong

limitation for large-scale programs.

6. Conclusions

In this paper, we presented Datalog2Spark, a preliminary system that explores the compilation of

Datalog queries into Spark programs for scalable evaluation over modern distributed data management

platforms. Our prototype focuses on non-recursive Datalog with stratified negation, extended with

type definitions and powerful aggregation functions, addressing key requirements for effective Big

Data analytics. A preliminary experimental evaluation against main-memory engines, dlv and clingo,

demonstrated that Datalog2Spark delivers acceptable performance on single-server environments while

offering seamless scalability across distributed platforms. Additionally, our system supports expressive

aggregation features that are not supported by available engines.

These encouraging results suggest that Datalog2Spark can be a promising foundation for a scalable

Datalog implementation, and future work will focus on extending the system to support recursive

queries, optimizing compilation strategies, and further assessments of performance on large-scale

distributed environments.

Acknowledgments

This work was supported by the Italian Ministry of Industrial Development (MISE) under project EI-

TWIN n. F/310168/05/X56 CUP B29J24000680005; and by the Italian Ministry of Research (MUR) under

projects: PNRR FAIR - Spoke 9 - WP 9.1 CUP H23C22000860006, Tech4You CUP H23C22000370006, and

PRIN PINPOINT CUP H23C22000280006.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] G. Harrison, S. Feuerstein, MySQL stored procedure programming - building high-performance

web applications with PHP, Perl, Python, Java and .NET: covers MySQL 5, O’Reilly, 2006.

[2] K. Li, H. Jiang, L. T. Yang, A. Cuzzocrea (Eds.), Big Data - Algorithms, Analytics, and Applications,

Chapman and Hall/CRC, 2015. URL: https://doi.org/10.1201/b18050. doi:10.1201/B18050.

[3] Apache Software Foundation, Apache spark, 2025. URL: https://spark.apache.org/.

[4] H. Garcia-Molina, J. D. Ullman, J. Widom, Database systems - the complete book (2. ed.), Pearson

Education, 2009.

[5] S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Surveys in computer science,

Springer, 1990. URL: https://www.worldcat.org/oclc/20595273.

[6] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, C. Zaniolo, Big data analytics with datalog

queries on spark, in: F. Özcan, G. Koutrika, S. Madden (Eds.), Proceedings of the 2016 International

Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -

July 01, 2016, ACM, 2016, pp. 1135–1149. URL: https://doi.org/10.1145/2882903.2915229. doi:10.
1145/2882903.2915229.

[7] A. Shkapsky, M. Yang, C. Zaniolo, Optimizing recursive queries with monotonic aggregates in

deals, in: J. Gehrke, W. Lehner, K. Shim, S. K. Cha, G. M. Lohman (Eds.), 31st IEEE International

Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, IEEE Computer

Society, 2015, pp. 867–878.

https://doi.org/10.1201/b18050
http://dx.doi.org/10.1201/B18050
https://spark.apache.org/
https://www.worldcat.org/oclc/20595273
https://doi.org/10.1145/2882903.2915229
http://dx.doi.org/10.1145/2882903.2915229
http://dx.doi.org/10.1145/2882903.2915229

[8] F. Ricca, N. Leone, Disjunctive logic programming with types and objects: The dlv
+

system, J.

Appl. Log. 5 (2007) 545–573.

[9] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello, The DLV system for

knowledge representation and reasoning, ACM Trans. Comput. Log. 7 (2006) 499–562.

[10] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, P. Wanko, Theory solving made

easy with clingo 5, volume 52 of OASICS, Schloss Dagstuhl, 2016, pp. 2:1–2:15.

[11] B. Chambers, M. Zaharia, Spark: The definitive guide: Big data processing made simple, " O’Reilly

Media, Inc.", 2018.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, I. Stoica,

Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing, in:

Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation,

NSDI’12, USENIX Association, USA, 2012, p. 2.

[13] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, M. Maratea,

F. Ricca, T. Schaub, Asp-core-2 input language format, Theory Pract. Log. Program. 20 (2020)

294–309.

[14] S. Liang, P. Fodor, H. Wan, M. Kifer, Openrulebench: an analysis of the performance of rule engines,

in: J. Quemada, G. León, Y. S. Maarek, W. Nejdl (Eds.), Proceedings of the 18th International

Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009, ACM, 2009, pp.

601–610. URL: https://doi.org/10.1145/1526709.1526790. doi:10.1145/1526709.1526790.

[15] H. Jordan, B. Scholz, P. Subotic, Soufflé: On synthesis of program analyzers, in: CAV (2), volume

9780 of Lecture Notes in Computer Science, Springer, 2016, pp. 422–430.

[16] A. Dovier, A. Formisano, G. Gupta, M. V. Hermenegildo, E. Pontelli, R. Rocha, Parallel logic

programming: A sequel, Theory Pract. Log. Program. 22 (2022) 905–973.

[17] I. Tachmazidis, G. Antoniou, W. Faber, Efficient computation of the well-founded semantics over

big data, Theory Pract. Log. Program. 14 (2014) 445–459.

[18] M. Rogala, J. Hidders, J. Sroka, Datalogra: datalog with recursive aggregation in the spark RDD

model, in: P. A. Boncz, J. L. Larriba-Pey (Eds.), Proceedings of the Fourth International Workshop on

Graph Data Management Experiences and Systems, Redwood Shores, CA, USA, June 24 - 24, 2016,

ACM, 2016, p. 3. URL: https://doi.org/10.1145/2960414.2960417. doi:10.1145/2960414.2960417.

[19] S. Perri, F. Ricca, M. Sirianni, Parallel instantiation of ASP programs: techniques and experiments,

Theory Pract. Log. Program. 13 (2013) 253–278.

[20] B. Cuteri, F. Ricca, A compiler for stratified datalog programs: preliminary results, in: S. Flesca,

S. Greco, E. Masciari, D. Saccà (Eds.), Proceedings of the 25th Italian Symposium on Advanced

Database Systems, Squillace Lido (Catanzaro), Italy, June 25-29, 2017, volume 2037 of CEUR
Workshop Proceedings, CEUR-WS.org, 2017, p. 158. URL: https://ceur-ws.org/Vol-2037/paper_23.

pdf.

[21] G. Mazzotta, F. Ricca, C. Dodaro, Compilation of aggregates in ASP systems, in: AAAI, AAAI

Press, 2022, pp. 5834–5841.

[22] C. Dodaro, G. Mazzotta, F. Ricca, Compilation of tight ASP programs, in: ECAI, volume 372 of

Frontiers in Artificial Intelligence and Applications, IOS Press, 2023, pp. 557–564.

[23] C. Dodaro, G. Mazzotta, F. Ricca, Blending grounding and compilation for efficient ASP solving,

in: KR, 2024.

https://doi.org/10.1145/1526709.1526790
http://dx.doi.org/10.1145/1526709.1526790
https://doi.org/10.1145/2960414.2960417
http://dx.doi.org/10.1145/2960414.2960417
https://ceur-ws.org/Vol-2037/paper_23.pdf
https://ceur-ws.org/Vol-2037/paper_23.pdf

	1 Introduction
	2 Preliminaries
	2.1 Spark
	2.2 Datalog

	3 Compiling Datalog into Spark
	3.1 Extended Datalog
	3.2 Compilation
	3.3 Implementation

	4 Experiments
	5 Related Work
	6 Conclusions

