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Abstract
We study the verification of coverability for Positive Interactive Datalog Programs (posIDP), a fragment of
Communicating Datalog Programs (CDPs) where the programs are positive, i.e., make no use of negation. CDPs
are a message passing system model grounded in logic programming, where nodes update their configuration by
running a Datalog ̸= program while sharing database tuples and receiving information from external services
and/or users. While CDP verification has been extensively studied in the last few years, studies on CDP formal
verification disregarded the role of negation in the node programs. In this paper, we study the impact on
verification of positive programs when no meaningful use of negation is made. We show that the coverability
problem remains undecidable despite the monotonicity of Datalog. We discuss the results in the framework of
the Well Structured Transition System theory, motivating the introduction of novel semantics for data-aware
processes that arguably enjoy better verification properties.
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1. Introduction

Communicating Datalog Programs (CDPs) are a model of distributed computation where computational
units run a data-aware process while sharing messages and receiving inputs from external users/ser-
vices [1]. They are declarative data-centric, interactive, and message passing systems. Declarative and
data-centric because CDP computational nodes repeatedly perform local computations by running a
Datalog-like query (with stratified negation) over their information sources (primarily its local memory),
which in turn are relational databases (DBs). Interactive because they model some degree of interaction
with external users and/or external services. Message passing because the local computation steps of
CDP nodes are triggered by the reception of a message and result in the sending of several messages on
a network of imperfect channels among the nodes.

These features make CDPs interesting in several areas. First, they are tightly related with, and
offer new perspectives on, well studied computational models of communication and concurrency,
such as Communicating Finite State Machines [2], Lossy Channel Systems [3], Data Communicating
Processes [4], and various forms of Petri Nets enriched with data [5, 6, 7]. Second, CDPs sit in the
family of Declarative Networking models [8, 9, 10], where declarative query languages are used to
concisely program and analyze networking protocols and services. Third, CDPs can be used for data-
aware Business Process Management, where declarativity and data-centricity allow for a high level of
expressiveness while avoiding the traditional abstraction of data [11]. Finally, the interactivity of CDPs
makes them reminiscent of Answer Set Solvers that allow for multi-shot solving and interaction with
scripts (e.g., Clingo [12] and Telingo [13]).

Starting from [14], formal verification of CDPs has been extensively studied. CDP verification is
challenging, since interactivity and communication make CDPs infinite state systems. In general,
even simple problems, e.g., control-state reachability, are undecidable [15]. Nevertheless, several CDP
fragments enjoying decidability have been detected. For example, the constraint of data-boundedness,
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where the capacity of the channels and the size of the active domains of the DBs involved in the
computation are bounded (even if still from an infinite domain), yields PSPACE-completeness for CDP-
CTL [15, 1], a rich specification language that mixes First Order (FO) logic, to query the node states,
with Computation Tree Logic (CTL), to analyze its temporal evolution. The main drawback of state-
boundedness is that it is a semantic, undecidable property, so that the undecidability of verification is
discharged to the undecidability of recognizing data-bounded CDPs [16]. This motivated further works
to lift state-boundedness while retaining decidability. For example, [17, 18] show how undecidability (in
particular of termination) stems not only from unboundedness but from the interplay of unboundedness
and the mechanisms of CDP nodes to recall the previous configuration. More recently, [19] shows that
decidability of model checking of coverability-based fragments of CDP-CTL can be gained when the
channels are unbounded but the messages range over an at most unary signature.

In this paper, we further study the verification of CDPs, by considering the limited setting of single-
node CDPs running positive Datalog-like programs and using communication only as a mechanism for
triggering computation steps (via a self-loop channel). Since, in this setting, communication is negligible
and only interactivity is relevant, we call the resulting model Positive Interactive Datalog Programs
(posIDP). posIDP appear promising for verification, since it is known that positive Datalog queries are
monotone and, as a rule of thumb, monotonicity is related to better computational properties. In the
area of verification, this principle is formalized by the theory of Well Structured Transition Systems
(WSTS) [20], which provides general algorithms for the verification of properties like coverability on
models that enjoy, among some other property, the notion of compatibility, which recasts monotonicity
over transition systems. Despite the good properties of positive Datalog, we show that even the
basic problem of coverability of propositional target configurations remains undecidable on posIDP.
This motivates a discussion on why WSTS theory is not applicable on posIDP and, more in general,
on data-aware processes. This leads to the proposal of new CDP semantics, arguably related to
better verification properties. Our main technical contributions are undecidability results for posIDP
coverability, irrespective of boundedness conditions on the information provided by external services.
Moreover, we motivate and discuss a new conjecture about the decidability of a variant of coverability
for posIDP whose semantics is based on the notion of graph-minor.

In Sec. 2 we provide preliminaries on WSTSs and 2CM. In Sec. 3 we define posIDP and the technical
problem studied in the paper. In Sec. 4 we prove the undecidability results. In Sec. 5 we discuss why
WSTS theory cannot be applied on posIDP and conjecture decidability for posIDP based on graph-minors.
Finally, in Sec. 6, we draw the conclusions.

2. Preliminaries

2.1. WSTS

We introduce WSTSs as in [20].

Definition 1. A quasi-order (QO) ⪯ on a set 𝐴 is a reflexive and transitive binary relation on 𝐴. The
QO ⪯ is a WQO if, for each infinite sequence (𝑎𝑖)𝑖∈N over 𝐴, there are 𝑖, 𝑗 ∈ N such that 𝑖 < 𝑗 and
𝑎𝑖 ⪯ 𝑎𝑗 .

Given a QO ⪯ on 𝐴, for each 𝑎1, 𝑎2 ∈ 𝐴, we write 𝑎1 ≺ 𝑎2 if 𝑎1 ⪯ 𝑎2 and 𝑎1 ̸= 𝑎2, and write
𝑎2 ⪰ 𝑎1 (respectively 𝑎2 ≻ 𝑎1) if 𝑎1 ⪯ 𝑎2 (𝑎1 ≺ 𝑎2).

Definition 2. Given a QO ⪯ on 𝐴, the up-ward closure ↑𝛼 of a subset 𝛼 ⊆ 𝐴 is the set {𝑎 ∈ 𝐴 | ∃𝑎′ ∈
𝛼 : 𝑎′ ⪯ 𝑎}. The set 𝛼 is upward-closed if 𝛼 = ↑𝛼. A base for an up-ward closed set 𝛼 is a set 𝛼′ ⊆ 𝛼
such that, for each 𝑎 ∈ 𝛼, there is some 𝑎′ ∈ 𝛼 such that 𝑎′ ⪯ 𝑎.

It is well-known that, under any WQO, each upward-closed set has a finite base [21].

Definition 3. A transition system (TS) 𝒯 is a pair 𝒯 = ⟨Conf,→⟩ where Conf is a (possibly infinite)
set of configurations and → is a binary relation on Conf. We denote by →* the reflexive and transitive



closure of →. Given a QO ⪯ on Conf, the TS 𝒯 is compatible (strongly compatible) with ⪯ if, for each
𝑐1, 𝑐2, 𝑐3 ∈ Conf such that 𝑐1 ⪰ 𝑐2 → 𝑐3, there is some 𝑐4 ∈ Conf such that 𝑐1 →* 𝑐4 ⪰ 𝑐3 (respectively
𝑐1 → 𝑐4 ⪰ 𝑐3). A WSTS is a tuple ⟨Conf,→,⪯⟩ where ⟨Conf,→⟩ is a TS, ⪯ is a WQO over Conf, and
𝒯 is compatible with ⪯.

Definition 4. Given a TS 𝒯 = ⟨Conf,→⟩ and a QO ⪯ over Conf, the ⪯-coverability problem for 𝒯 is
the following decision problem:
Input Two configurations 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑡𝑎𝑟𝑔𝑒𝑡 ∈ Conf.
Output Whether there is a configuration 𝑞 ∈ Conf such that 𝑞𝑖𝑛𝑖𝑡 →* 𝑞 ⪰ 𝑞𝑡𝑎𝑟𝑔𝑒𝑡.

This problem is decidable if the WSTS enjoys a couple of effectiveness assumptions. Specifically,
given a WSTS 𝒯 = ⟨Conf,→,⪯⟩ and a set 𝛼 ⊆ Conf, we denote by Pred(𝛼) the set of all predecessors
of configurations in 𝛼, i.e., Pred(𝛼) = {𝑞 ∈ Conf | ∃𝑞′ ∈ 𝛼 : 𝑞 → 𝑞′}. We say that a WSTS has the
Effective Pred-Basis (EPB) property if there is an algorithm such that, given a configuration 𝑞, it returns
a finite basis of ↑Pred(↑{𝑞}). Moreover, we say that a QO ⪯ over 𝐴 is decidable if there is an algorithm
such that, given 𝑎1, 𝑎2 ∈ 𝐴, it decides whether 𝑎1 ⪯ 𝑎2.

Theorem 1. The ⪯-coverability problem is decidable for WSTSs ⟨Conf,→,⪯⟩ with EPB and decidable ⪯.

2.2. 2-Counter Machines

A 2-Counter Machine (2CM), also called Minsky Machine, is a Finite State Automaton (FSA) whose
transitions can handle two counters, by performing increments and conditional decrements.

Definition 5. A 2CM 𝐾 is a tuple 𝐾 = ⟨𝑄,Δ, 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑓𝑖𝑛⟩ where 𝑄 is a non-empty finite set of states,
𝑞𝑖𝑛𝑖𝑡, 𝑞𝑓𝑖𝑛 ∈ 𝑄, and Δ is a finite set of instructions such that, for each 𝛿 ∈ Δ, either 𝛿 = (𝑞,+, 𝑖, 𝑞′),
called increment transition, or 𝛿 = (𝑞,−, 𝑖, 𝑞′, 𝑞′′), called conditional decrement transition, for some
𝑞, 𝑞′, 𝑞′′ ∈ 𝑄 and 𝑖 ∈ {1, 2}.1 The 2CM 𝐾 is deterministic if, for each two transitions 𝛿1, 𝛿2 ∈ Δ, the
first components of 𝛿1 and 𝛿2 are distinct.

2CM configurations track the FSA state and the numbers in the counters.

Definition 6. The set Conf of configurations of a 2CM 𝐾 = ⟨𝑄,Δ, 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑓𝑖𝑛⟩ is the set 𝑄 × N2.
The transition system of 𝐾 is the directed graph (Conf,→) such that →=

⋃︀
𝛿∈Δ →𝛿 where, for each

𝑞1, 𝑞2 ∈ 𝑄, 𝛿 ∈ Δ, and 𝑖 ∈ {0, 1}, we have ⟨𝑞, 𝑛0, 𝑛1⟩ →𝛿 ⟨𝑞′, 𝑛′
0, 𝑛

′
2⟩ if 𝑛′

1−𝑖 = 𝑛1−𝑖 and:
1. 𝛿 = ⟨𝑞,+, 𝑖, 𝑞′⟩, and 𝑛′

𝑖 = 𝑛𝑖 + 1,
2. 𝛿 = ⟨𝑞,−, 𝑖, 𝑞′, 𝑞′′⟩, 𝑛𝑖 > 0, and 𝑛′

𝑖 = 𝑛𝑖 − 1, or
3. 𝛿 = ⟨𝑞,−, 𝑖, 𝑞′′, 𝑞′⟩, and 𝑛𝑖 = 0 = 𝑛′

𝑖.

The 2CM termination problem asks, given a 2CM ⟨𝑄,Δ, 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑓𝑖𝑛⟩, whether 𝑞𝑖𝑛𝑖𝑡 →* 𝑞𝑓𝑖𝑛. It is well
known that termination of deterministic 2CM is undecidable [22]. We assume, without loss of generality
that, for each 2CM 𝐾 = ⟨𝑄,Δ, 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑓𝑖𝑛⟩, there is no instruction in Δ with 𝑞𝑓𝑖𝑛 in its first component,
that is, once 𝑞𝑓𝑖𝑛 is reached, the computation terminates.

3. PosIDP

In this section we define posIDP. Because this CDP fragment features a single node, essentially no
communication, and only positive programs, it enjoys the concise formalization below (cf. definition of
general CDPs in [1]).

1The components of 𝛿 indicate, respectively: the state on which the transition fires; the type of the transition; the counter
on which transition operates; the state reached after the increment or, if the counter is not zero, the decrement; the state
reached after the decrement when the counter is zero.



3.1. Positive D2C

D2C is a Datalog-like query language specialized to the distributed and interactive setting of CDPs.
Here we define its positive fragment. We assume that the reader is familiar with Datalog and relational
databases (see [23] for an introduction). We work with DBs over a fixed infinite domain Δ of constants
and denote the active domain of a DB 𝐷 by Δ(𝐷).

Given a relational signature 𝒮 = {𝑆1/𝑛1, . . . , 𝑆𝑘/𝑛𝑘}, we work with pair-wise disjoint rela-
tional signatures𝒮𝑝𝑟𝑒 = {𝑆𝑝𝑟𝑒

1 /𝑛1, . . . , 𝑆
𝑝𝑟𝑒
𝑘 /𝑛𝑘}, 𝒮𝑠𝑛𝑑 = {𝑆𝑠𝑛𝑑

1 /𝑛1, . . . , 𝑆
𝑠𝑛𝑑
𝑘 /𝑛𝑘}, and 𝒮𝑟𝑐𝑣 =

{𝑆𝑟𝑐𝑣
1 /𝑛1, . . . , 𝑆

𝑟𝑐𝑣
𝑘 /𝑛𝑘} of fresh symbols. These are used to refer to facts stored in the current state of

the node (𝒮), the previous state (𝒮𝑝𝑟𝑒), outgoing messages (𝒮𝑠𝑛𝑑), and incoming message (𝒮𝑟𝑐𝑣). We lift
this notation also to DBs, i.e., given a DB 𝐷 over 𝒮 , 𝒮𝑝𝑟𝑒, 𝒮𝑠𝑛𝑑, or 𝒮𝑟𝑐𝑣), we denote by 𝐷𝑝𝑙𝑎𝑖𝑛, 𝐷𝑝𝑟𝑒,
𝐷𝑠𝑛𝑑, 𝐷𝑟𝑐𝑣 the DB obtained by substituting each fact 𝑆𝛼(a) of 𝐷, where 𝛼 is either the empty string
or 𝛼 ∈ {𝑝𝑟𝑒, 𝑠𝑛𝑑, 𝑟𝑐𝑣}, by the fact 𝑆(a), 𝑆𝑝𝑟𝑒(a), 𝑆𝑠𝑛𝑑(a), or 𝑆𝑟𝑐𝑣(a) respectively.

Definition 7. A D2C signature is a tuple Λ = ⟨Δ𝑠𝑝𝑒𝑐,𝒮, ℐ, 𝒞⟩ where Δ𝑠𝑝𝑒𝑐 ⊂ Δ is a finite set of
constants, 𝒮 , ℐ , and 𝒞 are pair-wise disjoint signatures, called, respectively state, input, and channel
signatures, and start/0 ∈ 𝒞.

In this section, we work with a fixed signatureΛ = ⟨Δ𝑠𝑝𝑒𝑐,𝒮, ℐ, {𝑠𝑡𝑎𝑟𝑡/0}⟩. A positive D2C (posD2C)
rule is a Datalog (with inequalities) rule extended with dedicated symbols for sending messages (in the
head), receiving messages and inputs (in the body), and querying the previous state (in the body). Let 𝒱
be an infinite set of variables.

Definition 8. A posD2C rule over Λ is a formula ‘ 𝐻 if 𝐵1, . . . , 𝐵𝑛, 𝑐1, . . . , 𝑐𝑚.’ where:
1. 𝐻 , called the head, is an FO atomic formula over 𝒱 , Δ𝑠𝑝𝑒𝑐, and 𝒮 ∪ 𝒞𝑠𝑛𝑑,
2. 𝐵1, . . . , 𝐵𝑛, called the body, is a sequence of FO atomic formulas over 𝒱 , Δ𝑠𝑝𝑒𝑐, and 𝒮 ∪ 𝒮𝑝𝑟𝑒 ∪

𝐼 ∪ 𝒞𝑟𝑐𝑣 ,
3. and 𝑐1, . . . , 𝑐𝑚 is a sequence of inequalities 𝑡1 ̸= 𝑡2 where 𝑡1, 𝑡2 ∈ Δ𝑠𝑝𝑒𝑐 ∪ 𝒱 .

The rule is safe if each variable appearing in the head or in some inequality appears also in the body.
A posD2C program over Λ is a finite set of posD2C rules over Λ.

Notation 1. Given FO formulas 𝐵1, . . . , 𝐵𝑛 over 𝒱 , Δ𝑠𝑝𝑒𝑐, and 𝒮 , we write prev {𝐵1, . . . , 𝐵𝑛}
to denote 𝐵𝑝𝑟𝑒

1 , . . . , 𝐵𝑝𝑟𝑒
𝑛 . Moreover, we denote the set of rules {𝐻1 if 𝐵., . . . ,𝐻𝑛 if 𝐵.} by ‘

𝐻1; . . . ;𝐻𝑛 if 𝐵.’.

Since posD2C programs are special forms of Datalog programs, they inherit the Datalog semantics.
The semantics of D2C is given as in Datalog, with the provision that D2C works over extensional DBs
of a specialized form: it contains information about the previous state, the incoming input, and a single
incoming message (i.e., a single tuple over the signature 𝒞𝑟𝑐𝑣).

Definition 9. Given a posD2C 𝒫 and DBs 𝐷 over 𝒮 , 𝐼 over 𝐼 , and {𝑚} over 𝒞𝑟𝑐𝑣 , the output 𝒫(𝐷, 𝐼,𝑚)
of 𝒫 over 𝐷, 𝐼 , and 𝑚 is the DB computed according to Datalog semantics by 𝒫 ∪𝐷 ∪ 𝐼 ∪ {𝑚}).

In what follows, we are not interested in the D2C output as a whole, but as split into a state and a
channel part, used as new previous state and new messages on the channel. Specifically, we denote: by
state(𝒫, 𝐷, 𝐼,𝑚) is the projection 𝐻𝑆 of 𝒫(𝐷, 𝐼,𝑚) over 𝒮 ; by channel(𝒫, 𝐷, 𝐼,𝑚) the DB 𝐻𝑝𝑙𝑎𝑖𝑛

𝐶

where 𝐻𝐶 is the projection of 𝒫(𝐷, 𝐼,𝑚) over 𝒞𝑠𝑛𝑑. Since Datalog with inequalities is monotone, also
posD2C programs are monotone:

Lemma 1. Given a posD2C program 𝒫 and DBs 𝐷1 and 𝐷2 over 𝒮𝑝𝑟𝑒, 𝐼1 and 𝐼2 over ℐ ,
and {𝑚} over 𝒞𝑟𝑐𝑣 such that 𝐷1 ⊆ 𝐷2, and 𝐼1 ⊆ 𝐼2, it is true that 𝒫(𝐷1, 𝐼1, {𝑚}) ⊆
𝒫(𝐷2, 𝐼2, {𝑚}), state(𝒫, 𝐷1, 𝐼1, {𝑚}) ⊆ state(𝒫, 𝐷2, 𝐼2, {𝑚}), and channel(𝒫, 𝐷1, 𝐼1, {𝑚}) ⊆
channel(𝒫, 𝐷2, 𝐼2, {𝑚}).

It is immediate to see that D2C programs inherit also genericity of Datalog.



Definition 10. Given a finite set Δ𝑠𝑝𝑒𝑐 ⊆ Δ, a Δ𝑠𝑝𝑒𝑐-isomorphism is a bijection 𝜙 : Δ −→ Δ such that,
for each 𝑐 ∈ Δ𝑠𝑝𝑒𝑐, 𝜙(𝑐) = 𝑐. We say that a DB 𝐷1 is embedded in a DB 𝐷2 via a Δ𝑠𝑝𝑒𝑐-isomorphism
𝜙, denoted 𝐷1 ⊑𝜙 𝐷2, if 𝜙(𝐷1) ⊆ 𝐷2. We write 𝐷1 ⊑ 𝐷2 if there is some 𝜙 such that 𝐷1 ⊑𝜙 𝐷2.

Lemma 2. Given a posD2C program 𝒫 , a Δ𝑠𝑝𝑒𝑐-isomorphism, DBs 𝐷1 and 𝐷2 over 𝒮𝑝𝑟𝑒, 𝐼1 and 𝐼2
over ℐ , and {𝑚} over 𝒞𝑟𝑐𝑣 such that 𝐷1 ⊑𝜙 𝐷2, and 𝐼1 ⊑𝜙 𝐼2, it is true that 𝒫(𝐷1, 𝐼1, {𝑚}) ⊑𝜙

𝒫(𝐷2, 𝐼2{𝑚}), state(𝒫, 𝐷1, 𝐼1, {𝑚}) ⊑𝜙 state(𝒫, 𝐷2, 𝐼2, {𝑚}), and channel(𝒫, 𝐷1, 𝐼1, {𝑚}) ⊑𝜙

channel(𝒫, 𝐷2, 𝐼2, {𝑚}).

3.2. PosIDP definition

Syntactically, a posIDP is a computational node with a self-loop channel running a posD2C program
where the only possible message is 𝑠𝑡𝑎𝑟𝑡. This captures the case where the messages are used only as a
triggering mechanism for the node computation, instead of a proper communication mechanism.

Definition 11. A posIDP 𝒟 is a tuple 𝒟 = ⟨Λ,𝒫, 𝐷0⟩ where Λ = ⟨Δ𝑠𝑝𝑒𝑐,𝒮, ℐ, {𝑠𝑡𝑎𝑟𝑡}⟩, 𝒫 is a
posD2C program over Λ, and 𝐷0, called initial state-DB, is a DB over 𝒮 with Δ(𝒮) ⊆ Δ𝑠𝑝𝑒𝑐.

posIDP semantics is given in terms of configuration graphs. Different input policies (bounded and
unbounded) amount to different graphs.

Definition 12. A configuration 𝐶 of a posIDP 𝒟 = ⟨Λ,𝒫, 𝐷0⟩ is a pair 𝐶 = ⟨𝐷,𝑀⟩ where 𝐷, called
state-DB, is a DB over 𝒮 and 𝑀 is either {𝑠𝑡𝑎𝑟𝑡} or ∅. We denote the set of configurations of 𝒟 by
Conf𝒟 . The initial configuration of 𝒟 is ⟨𝐷0, {start}⟩.

The unbounded input semantics is obtained by feeding the program, at each step, with an arbitrary
input DB next to a message coming from the channel. If the channel is empty, the computation stops.

Definition 13. The input-unbounded configuration graph of a posIDP 𝒟 = ⟨Λ,𝒫, 𝐷0⟩ is the directed
graph ϒ = ⟨Conf𝒟,→⟩ such that (𝐷1,𝑀1) → (𝐷2,𝑀2) if 𝑀1 = {𝑠𝑡𝑎𝑟𝑡} and there is a DB 𝐼 over ℐ
such that 𝐷2 = state(𝒫, 𝐷𝑝𝑟𝑒

1 , 𝐼, {𝑠𝑡𝑎𝑟𝑡𝑟𝑐𝑣})𝑝𝑙𝑎𝑖𝑛 and 𝑀2 = channel(𝒫, 𝐷𝑝𝑟𝑒
1 , 𝐼, {𝑠𝑡𝑎𝑟𝑡𝑟𝑐𝑣})𝑝𝑙𝑎𝑖𝑛

For 𝑛 ∈ N, the 𝑛-input bounded semantics is obtained by restricting input DBs containing at most 𝑛
constants.

Definition 14. For 𝑛 ∈ N, the 𝑛-input-bounded configuration graph of a posIDP 𝒟 = ⟨Λ,𝒫, 𝐷0⟩ is
the directed graph ϒ𝑛 = ⟨Conf𝒟,→⟩ defined as in Def. 13 with the provision that 𝐼 is a DB over ℐ
such |Δ(𝐼)| ≤ 𝑛.

Note that even under input-bounded semantics, while an infinite amount of data may still flow
through the system.

3.3. PosIDP 𝑛-coverability

In this paper, we study the decidability of 𝑛-coverability of posIDP. Technically, our study will focus on
a simple target of the form {𝑞𝑝𝑟𝑒𝑓 }, where 𝑞𝑝𝑟𝑒𝑓 is propositional.

Definition 15. Given 𝑛 < 𝜔 (respectively, 𝑛 = 𝜔), the 𝑛-coverability problem for posIDP asks, given
a posIDP 𝒟 and a coverability target DB 𝑇 over 𝒮 , whether there is a path in ϒ𝑛 (ϒ) from the initial
configuration to a configuration ⟨𝐷,𝑀⟩ such that 𝐷 ⊆ 𝑇 .

These problems are interesting because, while arguably simple and classic, their variants over non-
positive single-node CDPs are undecidable.2 Thus, they are an excellent case study to check the impact
of positive programs on the decidability of CDP verification. For example, undecidability of coverability
problems for posIDP immediately returns undecidability for any model checking problem over the same
or more expressive posIDP or CDP variant (e.g., with arbitrary node networks) based on languages
capable of expressing coverability, such as the CDP-CTL fragments from [19]. Moreover, the next
example shows that posIDP coverability can be used to check plan existence in some (simple, for the
sake of brevity) planning domain.
2This is an immediate consequence of the proofs in [15].



1 %Making facts persistent.
2 succ(X,Y) if succ𝑝𝑟𝑒(X,Y).
3 block(X) if block𝑝𝑟𝑒(X,Y).
4
5 %Making the posIDP non-terminating.
6 start𝑠𝑛𝑑 if start𝑟𝑐𝑣.
7
8 %Alternating phases while updating the

step id.
9 phase(put) if prev{phase(pick), step(X)}.

10 phase(pick) if prev{phase(put), step(X)}.
11 step(X) if prev{step(X), phase(pick)}.
12 step(Y) if prev{step(X), succ(X,Y),

phase(put)}.
13
14 %Using the input to pick blocks.
15 picked(X) if select(X), block(X),

prev{free(X), phase(pick)}.
16 free(Y) if picked(X), free𝑝𝑟𝑒(Y), X̸=Y.
17 free(Y) if picked(X), on𝑝𝑟𝑒(X,Y), Y ̸=table.
18 on(Y,Z) if picked(X), prev{on(Y,Z),

phase(pick)}, X̸=Y.
19
20 %Using the input to put blocks.
21 picked(X) if prev{picked(X), phase(put)}.
22 putOn(X) if select(X), block(X),

prev{free(X), phase(put)}.
23 putOn(table) if select(table),

phase𝑝𝑟𝑒(put).
24 on(X,Y) if picked(X), putOn(Y).
25 on(X,Y) if prev{on(X,Y), phase(put)}.
26 free(X) if picked(X), phase𝑝𝑟𝑒(put).
27 free(Z) if on(X,Y), free𝑝𝑟𝑒(Z), Y ̸=Z,

Z ̸=table.

(a)

28 %Encode number n and
initialize step id.

29 succ(num0,num1).

30
...

31 succ(num𝑛−1,num𝑛).
32

33 %Encode initial block
configuration.

34 block(a).
35 block(b).
36 block(c).
37 on(a,table).
38 on(b,table).
39 on(c,table).

40 free(a).
41 free(b).
42 free(c).
43
44 %Initialize step and phase.
45 step(num0).
46 phase(pick).

(b)

Figure 1: (a) Program and (b) initial state-DB of the posIDP in Ex. 1. Lines starting with % are in-line comments.

Example 1. Consider a Block World problem where a robot has to stack the blocks 𝑎, 𝑏, and 𝑐, so that 𝑎
sits on top of 𝑏 which, turn, sits on top of 𝑐. The blocks are initially on a table. At each step the following
actions can be performed: a block on a table or on top of a stack can be picked; the picked block can be
put on the table or stacked on top of another block. At each moment, only one block can be picked.

For each 𝑛 ∈ N, we exhibit an instance of interactive 1-coverability that returns true if and only if a
plan of at most 𝑛 actions for the Block World problem above exists. We work with a posIDP 𝒟𝑛 which
non-deterministically attempts the computation of a plan. The program of 𝒟 is in Fig. 1a while the
initial DB is in Fig. 1b. Note that the program makes no use of negation (beyond inequalities) and only
rule 6 sends messages, specifically a single start message at each step after the consumption of the
previous one. Thus, 𝒟 is posIDP.

The signature of 𝒟 is (Δ𝑠𝑝𝑒𝑐,𝒮, ℐ, 𝒞) where Δ𝑠𝑝𝑒𝑐 is the set of constants appearing in the program
or in the initial state-DB, ℐ = {𝑠𝑒𝑙𝑒𝑐𝑡/1}, 𝒞 = {start}, and 𝒮 is the set of all other relational symbols
appearing in the program or initial state-DB. The number 𝑛 is encoded in the initial state DB as a
path from the constant 𝑛𝑢𝑚0 to the constant 𝑛𝑢𝑚𝑛 through constants 𝑛𝑢𝑚𝑖 for 𝑖 ∈ N via the binary
relation 𝑠𝑢𝑐𝑐/2 ∈ 𝒮 . This encoding is made persistent by rule 2 in the program. The program alternates
two phases: a pick phase and a put phase, signaled respectively by the facts phase(pick) and phase(put).
A pair of consecutive pick and put phases constitutes a step. During the pick phases, lines 15− 18 use
the single constant, if any, in the input DB to select a free block, i.e., a block with no block on top of it.
If the input provides a constant that does not match a block name, then no phase(put) fact is deduced,
stopping the non-deterministic computation of the plan. Similarly, during put phases, the program uses
the input to select another free block, on which the previously picked block is stacked on. Again, if the



input does not indicate a free block, the next phase does not happen. During these phases, the status of
the blocks (whether they are free and where they sit) is encoded in the predicates free/1 and on/2 of
𝒮 . When the put phase of the 𝑛-th step terminates, since there is no successor of the constant 𝑛𝑢𝑚𝑛

according to the extension of succ, no phase(pick) fact is deduced, i.e., the next phase does not happen.
A plan exists if 𝒟 covers the target {𝑜𝑛(𝑎, 𝑏), 𝑜𝑛(𝑏, 𝑐), 𝑜𝑛(𝑐, 𝑡𝑎𝑏𝑙𝑒)}. Moreover, we could have used

the simpler target {𝑒𝑥𝑖𝑠𝑡𝑠} if we have added the rule ‘𝑒𝑥𝑖𝑠𝑡𝑠 if 𝑜𝑛(𝑎, 𝑏), 𝑜𝑛(𝑏, 𝑐), 𝑜𝑛(𝑐, 𝑡𝑎𝑏𝑙𝑒).′ If
desired, upon coverability, one can also obtain the computed plan by inspecting the extension of the
additional relation action/3 ∈ 𝒮 whose dynamics is given by the following extra rules:

47 action(X,Y,Z) if action𝑝𝑟𝑒(X,Y,Z).
48 action(pick, X, Y) if picked(X), prev{step(Y)}.
49 action(put, X, Y) if put(X), prev{step(Y)}.

Note that, since rule 6 makes the posIDP non-terminating, at the cost of losing track of the actions,
we can check existence of plans of arbitrary length by modifying the program by dropping the rules
11, 12, 47− 49 and by removing the step-atoms from the bodies of rules 9 and 10. Alternatively, we
can employ a strategy to initialize the encoding of an arbitrary natural number as in Sec. 4.1 below.

4. Undecidability

We now discuss undecidability of coverability for posIDP. We first consider 1-coverability, then 𝑛-
coverability for each finite 𝑛 > 0, and finally 𝜔-coverability. In each case, we provide a reduction from
deterministic 2CM termination, which is undecidable. This is done in two steps. First, we show that
the simulation of deterministic 2CM whose counters are known to be bounded by a natural number 𝑛
can be performed (even without using the input DB) by taking advantage of an encoding of natural
numbers similar to the one in Ex. 1. Second, we exhibit a posIDP that initializes a non-deterministically
chosen number 𝑛.

4.1. 1-Coverability

Definition 16. Given a 𝑘 ≤ 𝜔, a 2CM 𝐾 is a 𝑘-2CM if 𝑘 is the minimum ordinal such that, for each
configuration ⟨𝑞, 𝑛1, 𝑛2⟩ reachable from the initial configuration of 𝐾 , 𝑛1 ≤ 𝑘 and 𝑛2 ≤ 𝑘.

Definition 17. Given a 2CM configuration 𝐶 = ⟨𝑞, 𝑛0, 𝑛1⟩ and a 𝑛 ≥ max{𝑛0, 𝑛1}, the 𝑛-relational
encoding of 𝐶 is the following DB, denoted by [𝐶]:

1 succ(num0,num1).

2
...

3 succ(num𝑚−1,num𝑛).

4 min(num0).
5 q.
6 c0(num𝑛0).
7 c1(num𝑛1).

In Def. 17, facts 1−3 encode the numbers 0, . . . , 𝑛 using constants num0, . . . ,num𝑛. Fact 4 highlights
that num0 behaves as zero. Facts 5− 7 encode that the current state is 𝑞 and that the value of counter
𝑐0 (𝑐1) is 𝑛0 (𝑛1).

In what follows, we work with a fixed 2CM 𝐾 = ⟨𝑄,Δ, 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑓𝑖𝑛⟩. Given an 𝑛 ∈ N, we de-
fine a posIDP IDP𝑛(𝐾) = ⟨Λ, 𝐷0,𝒫⟩. The signature is Λ = (Δ𝑠𝑝𝑒𝑐,𝒮, ℐ, 𝒞) where Δ𝑠𝑝𝑒𝑐 =
{num0, . . . ,num𝑛}, 𝒮 = {𝑞/0 | 𝑞 ∈ 𝑄} ∪ {min/1, succ/2, 𝑐0/1, 𝑐1/1}, ℐ = ∅, and 𝒞 = {start/0}.
The initial state DB 𝐷0 is the 𝑛-relational encoding of the initial configuration of 𝐾 . The program 𝒫
contains the following rules:

1 start𝑠𝑛𝑑 if start𝑟𝑐𝑣.
2 succ(X,Y) if succ𝑝𝑟𝑒(X,Y).
3 min(X) if min(X)𝑝𝑟𝑒.

and, for each increment instruction ⟨𝑞,+, 𝑖, 𝑞′⟩:



4 c𝑖−1(X) if prev{c1−𝑖(X), q}.
5 c𝑖(Y) if prev{c𝑖(X), succ(X,Y), q}.
6 q’ if prev{c𝑖(X), succ(X,Y), q}.

and, for each decrement instruction ⟨𝑞,−, 𝑖, 𝑞′, 𝑞′′⟩:

7 c𝑖−1(X) if prev{c1−𝑖(X), q}.
8 c𝑖(Y) if prev{c𝑖(X), succ(Y,X), q}.
9 q’ if prev{c𝑖(X), succ(Y,X), q}.

10 c𝑖(X) if prev{c𝑖(X), min(X), q}.
11 q’’ if prev{c𝑖(X), min(X), q}.

Note that 𝑛 does not affect the program, but only the initial state-DB. Rule 1 maintains the channel
configuration, while rules 2 and 3 make the extension of succ and min persistent. At each step, the
program simulates a 2CM transition 𝛿. Rules 4 and 7 make sure that the encoding of the counter not
involved in 𝛿 does not change. Rules 6 and 8 perform the increment and the decrement, if possible, i.e.,
if the current value of the updated counter has a successor or predecessor according to succ. Rule 10
makes sure that, if the decrement is not possible, i.e., the counter involved in 𝛿 is set to 0, then it is not
changed. Rules 6, 9, and 11 update the state according to 𝛿. Moreover, IDP𝑛(𝐾) is deterministic, i.e.,
each configuration has at most a unique successor in the configuration graph. Thus, IDP𝑛(𝐾) exhibits
a single maximal computation run. The next lemmas capture the intuition that IDP𝑛(𝐾) simulates 𝐾
along runs where the counters do not exceed 𝑛. If the counters exceed 𝑛, then the encoding breaks and
the final state cannot be covered.

Lemma 3. Let 𝑛 ∈ N. If 𝐾 exhibits a run ⟨𝑞0, 0, 0⟩ = 𝐶0 →𝛿1 𝐶1 →𝛿2 · · · →𝛿𝑘 𝐶𝑘 where, for each 𝑖 ≤ 𝑘,
𝐶𝑖 = ⟨𝑞𝑖, 𝑛𝑖

0, 𝑛
𝑖
1⟩ and 𝑛𝑖

0, 𝑛
𝑖
1 ≤ 𝑛, then IDP𝑛(𝐾) exhibits a run ⟨[𝐶0], {start}⟩ → ⟨[𝐶1], {start}⟩ →

· · · → ⟨[𝐶𝑘], {start}⟩.

Proof. By induction on 𝑘. If 𝑘 = 0, then the statement holds because the initial state-DB of IDP𝑛(𝐾)
is [𝐶0]. Let the statement hold for some 𝑘 ∈ N, and let 𝐾 exhibit a run 𝐶0 →𝛿1 · · · →𝛿𝑘+1 𝐶𝑘+1

as in the statement. By induction, IDP𝑛(𝐾) exhibits a non-maximal run ⟨[𝐶0], {start}⟩ → · · · →
⟨[𝐶𝑘], {start}⟩.

We assume, without loss of generality, that 𝛿𝑘+1 operates on counter 0. If 𝛿𝑘+1 is an increment
instruction, then it has to be of the form ⟨𝑞𝑖,+, 0, 𝑞⟩ for some 𝑞 ∈ 𝑄. Thus 𝑛 ≥ 𝑛𝑘+1

0 = 𝑛𝑘
0 + 1. Hence,

succ(𝑛𝑢𝑚𝑛𝑘
, 𝑛𝑢𝑚𝑘+1) ∈ [𝐶𝑘]. Consequently, There is only one instantiation that satisfies the bodies

of the rules of type 4− 6 for 𝛿𝑘+1: the one binding 𝑋 with num𝑛𝑘
and 𝑌 with 𝑛𝑢𝑚𝑛𝑘+1

. Moreover,
for each instruction in Δ, there is no binding that satisfies the bodies of rules 7 − 11. Thus, from
⟨[𝐶𝑘], {𝑠𝑡𝑎𝑟𝑡}⟩, the reception of the message start results in the configuration ⟨[𝐶𝑘+1], {𝑠𝑡𝑎𝑟𝑡}⟩.

If 𝛿 is a decrement instruction then the proof is analogous.

Lemma 4. If IDP𝑛(𝐾) exhibits a run ⟨𝐷0, {𝑠𝑡𝑎𝑟𝑡}⟩ → · · · → ⟨𝐷𝑖, {𝑠𝑡𝑎𝑟𝑡}⟩ → · · · → ⟨𝐷𝑘, {𝑠𝑡𝑎𝑟𝑡}⟩
for some 𝑖, 𝑘 ∈ N and 𝐷𝑖 ∩𝑄 = ∅, then, for each 𝑗 ≥ 𝑖, 𝐷𝑗 ∩𝑄 = ∅.3

Proof. Each rule with some 𝑞′ ∈ 𝑄 in the head also has a 𝑞𝑝𝑟𝑒 in the body, for some 𝑞 ∈ 𝑄.

The following lemmas are easy consequences of the previous.

Lemma 5. If 𝐾 is an 𝜔-2CM, then 𝐾 does not terminate and IDP𝑛(𝐾) does not 1-cover {𝑞𝑓𝑖𝑛}.

Lemma 6. If 𝐾 is a 𝑘-2CM for some 𝑘 ∈ N, then, for each 𝑛 < 𝑘, IDP𝑛(𝐾) does not 1-cover {𝑞𝑓𝑖𝑛}.

Lemma 7. If 𝐾 is a 𝑘-2CM for some 𝑘 ∈ N, then, for each 𝑛 ≥ 𝑘, IDP𝑛(𝐾) 1-covers {𝑞𝑓𝑖𝑛} if and only
if 𝐾 terminates.

3Recall that 𝑄 is the set of states of the 2CM 𝐾 .



We now show that there is a 1-bounded posIDP IDP 𝑖𝑛𝑖𝑡(𝐾) such that, for each 𝑛 ∈ N, there is a
finite maximal run that computes the initial state-DB of IDP𝑛(𝐾). If a maximal run does not initialize
a IDP𝑛(𝐾), then it is infinite. Moreover, when we extend the program of IDP 𝑖𝑛𝑖𝑡(𝐾) with that of
IDP𝑛(𝐾), we obtain a posIDP IDP(𝐾) that covers {𝑞𝑓𝑖𝑛} if and only if 𝐾 terminates. The initial
state-DB of IDP 𝑖𝑛𝑖𝑡(𝐾) is {charge,min(𝑛𝑢𝑚0)}. The program unfolds two phases, called charge
and generate. the first one charges a unary relation 𝑛𝑢𝑚. Each phase finishes when the input DB is
{𝐼(𝑛𝑒𝑥𝑡)}.

1 min(X) if min𝑝𝑟𝑒(X).
2 num(X) if prev{num(X), charge}.
3 charge; num(X) if I(X), charge𝑝𝑟𝑒, X̸=next.

4 generate if I(next), charge𝑝𝑟𝑒.
5 start𝑠𝑛𝑑 if start𝑟𝑐𝑣, charge𝑝𝑟𝑒.

Rules 1 and 2 make 𝑚𝑖𝑛 and 𝑛𝑢𝑚 persistent during the phase. Rule 3 charges 𝑛𝑢𝑚 and maintains
the phase. Rule 4 skips to the next phase. Note that the charge phase may run forever. However, if it
ends, it ends with the state DB {𝑚𝑖𝑛(𝑛𝑢𝑚0), 𝑛𝑢𝑚(𝑎1), . . . , 𝑛𝑢𝑚(𝑎𝑛), 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒}, for some constant
𝑎1, . . . , 𝑎𝑛 and 𝑛 ∈ N. Rule 5 makes the system reactive during this phase by sending a message on the
channel at each step.

The second phase uses the input to pick and remove, one per step, constants from 𝑛𝑢𝑚. The picked
constant is used as the next successor, starting from num0. This ensures that the chain of successors
does not contain repetitions. Again, the phase ends upon reception of {𝐼(𝑛𝑒𝑥𝑡)}. In that case, the
initial state of 𝐾 is deduced.

1 last(num0) if generate, charge𝑝𝑟𝑒.
2 succ(Y,X); last(X) if I(X), num(X),

last(Y), generate𝑝𝑟𝑒, X̸=next.
3 succ(X,Y) if succ𝑝𝑟𝑒(X,Y).

4 num(X) if I(Y), prev{generate, num(X)},
X ̸=Y.

5 q0 if I(next), generate𝑝𝑟𝑒.
6 start𝑠𝑛𝑑 if start𝑟𝑐𝑣, last(X), generate𝑝𝑟𝑒.

Rule 1 applies only when the phase shifts from charge to generate and marks 𝑛𝑢𝑚0 as the last
constant in the (currently empty) chain of successors. Rule 2 applies only when the input is not
triggering another phase shift: if the input provides a constant currently in 𝑛𝑢𝑚, then the constant
is added to the chain of successors and marked as the last one. Rule 3 makes 𝑠𝑢𝑐𝑐 persistent. Rule 4
makes a part of the extension of 𝑛𝑢𝑚 persistent. Specifically, only the constants not mentioned in
the input are retained in 𝑛𝑢𝑚. This way, when rule 2 adds a constant to the extension of 𝑠𝑢𝑐𝑐, rule
4 implicitly removes it from 𝑛𝑢𝑚. Rule 5 performs the phase shift. Rule 6 makes the system reactive
up to the phase shift, as long as there is a fact involving 𝑙𝑎𝑠𝑡. In fact, because of 𝑙𝑎𝑠𝑡(𝑋) in rule 6, if
the input does not provide a constant in 𝑛𝑢𝑚, then rule 2 gets inhibited, the extension of 𝑙𝑎𝑠𝑡 remains
empty, rule 6 gets inhibited, and the computation stops.

Note that, at each step of the generate phase, either IDP 𝑖𝑛𝑖𝑡(𝐾) terminates or it removes a constant
from 𝑛𝑢𝑚. Since the extension of 𝑛𝑢𝑚 is finite and no rule puts back constants in 𝑛𝑢𝑚, IDP 𝑖𝑛𝑖𝑡(𝐾)
always terminates. Summarising, the generate phase has the following two behaviors, where a configu-
ration ⟨𝐷, {𝑠𝑡𝑎𝑟𝑡}⟩ of IDP 𝑖𝑛𝑖𝑡(𝐾) is valid if 𝐷 is isomorphic to the initial state DB of a IDP𝑛(𝐾), for
some 𝑛 ∈ N:

1. If, during the computation, the input DB is always of the form 𝐼(𝑐) for some constant 𝑐 currently in
the extension of 𝑛𝑢𝑚, except for the last step, where the input DB is {𝐼(𝑛𝑒𝑥𝑡)}, then IDP 𝑖𝑛𝑖𝑡(𝐾)
terminates in a valid configuration.

2. If the empty input DB or an input DB providing a constant not currently in 𝑛𝑢𝑚 is eventually
received, then IDP 𝑖𝑛𝑖𝑡(𝐾) terminates in a non-valid configuration.

Moreover, for each 𝑛 ∈ N there is at least one run of IDP 𝑖𝑛𝑖𝑡(𝐾) that terminates in a valid configuration.
Let IDP(𝐾) be the posIDP obtained by extending the program 𝒫 of the IDP𝑛(𝐾) posIDP. If 𝐾 is a

𝑘-2CM, IDP(𝐾) exhibits the following maximal runs:
1. Infinite runs never leaving the charge phase of IDP 𝑖𝑛𝑖𝑡(𝐾).



2. finite runs that terminate during the generate phase of IDP 𝑖𝑛𝑖𝑡(𝐾) in non-valid configurations.
3. Infinite runs that leave the generate phase of IDP 𝑖𝑛𝑖𝑡(𝐾), on which Lemma 5 is applicable.
4. Finite runs that leave the generate phase of IDP 𝑖𝑛𝑖𝑡(𝐾) initializing the initial state-DB of

IDP𝑛(𝐾) for some 𝑛 < 𝑘 (recall that 𝐾 is a 𝑘-2CM), on which Lemma 6 is applicable.
5. Finite runs that leave the generate phase of IDP 𝑖𝑛𝑖𝑡(𝐾) initializing the initial state-DB of

IDP𝑛(𝐾) for some 𝑛 ≥ 𝑘, on which Lemma 7 is applicable.
Note that the runs of type 1− 4 never cover {𝑞𝑓𝑖𝑛}. Thus, taking into account the overall behaviour of
IDP(𝐾), genericity of posD2C, Lemma 5, Lemma 6, and Lemma 7, we obtain the following theorem.

Theorem 2. For each deterministic 2CM 𝐾 , 𝐾 terminates if and only if IDP(𝐾) 1-covers {𝑞𝑓𝑖𝑛}.

Since deterministic 2CM termination is undecidable and IDP(𝐾) is a posIDP, we obtain the following
result.

Corollary 1. 1-coverability of posIDP is undecidable.

4.2. 𝑛-Coverability for Finite 𝑛

If 𝑛 ∈ N and 𝑛 > 1, the above construction does not immediately work for 𝑛-coverability. In fact, the
reception of input DBs containing more than one constant may interfere with the generation of the
chain of successors, resulting in constants with more than one immediate successor. However, as long
as 𝑛 is finite, we can fix the above construction so that:

1. If an input DB does not provide the constants 𝑡𝑟𝑎𝑠ℎ1, . . . , 𝑡𝑟𝑎𝑠ℎ𝑛−1 plus another arbitrary
constant, then no rule body is satisfied, resulting in an empty DB and terminating the computation.

2. Otherwise, all the 𝑡𝑟𝑎𝑠ℎ𝑖 constants are ignored.
This can be achieved by:

1. adding an atom 𝑜𝑘 to all the rules in the program of IDP(𝐾),
2. for each rule using variables 𝑋1, . . . , 𝑋𝑚, adding the inequalities 𝑋𝑖 ̸= 𝑡𝑟𝑎𝑠ℎ𝑗 , for 𝑖 ≤ 𝑚 and

𝑗 ≤ 𝑛− 1,
3. adding the rule ‘ 𝑜𝑘 if 𝐼(𝑡𝑟𝑎𝑠ℎ1), . . . , 𝐼(𝑡𝑟𝑎𝑠ℎ𝑛−1), 𝐼(𝑋), 𝑋 ̸= 𝑡𝑟𝑎𝑠ℎ1, . . . , 𝑋 ̸= 𝑡𝑟𝑎𝑠ℎ𝑛−1.’.

The resulting posIDP, interpreted under the 𝑛-input bounded semantics, behaves as a IDP(𝐾)
interpreted under the 1-input bounded semantics, with the provision that the reception of the empty
input DB results in termination with configuration ⟨∅, ∅⟩. Thus, all the previous lemmas and theorems
apply also for 𝑛-coverability, yielding the next generalization of Cor. 1

Corollary 2. For each 𝑛 ∈ N, 𝑛-coverability of posIDP is undecidable.

4.3. 𝜔-Coverability

When we consider unbounded inputs, the solution in the previous section does not work. However, we
can still show undecidability by modifying the way we encode numbers. Specifically, instead of using
the relation 𝑠𝑢𝑐𝑐 to induce a chain of successors, we use it to capture a less demanding partial order, as
depicted in Fig. 2, and defined next.

Definition 18. For each 𝑛 ∈ N, a relational encoding [𝑛] of 𝑛 is any DB defined inductively as follows:
1. if 𝑛 = 0, then [𝑛] = {𝑚𝑖𝑛(𝑛𝑢𝑚0

0)}.
2. if 𝑛 > 0, then [𝑛] extends [𝑛− 1] with the following set of facts, for some 𝑚 ∈ N and for each

𝑖 ∈ N such that 𝑛𝑢𝑚𝑖
𝑛−1 is in a constant in [𝑛− 1]:

1 succ(num𝑖𝑛−1,num
0
𝑛).

2
...

3 succ(num𝑖𝑛−1,num
𝑚
𝑛 ).

We can now update the encodings for 2CM configurations.



𝑛𝑢𝑚0 𝑛𝑢𝑚1 𝑛𝑢𝑚2 𝑛𝑢𝑚3

𝑚𝑖𝑛 𝑐0 𝑐1
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Figure 2: Depiction of (a) the 3-relational encoding, from Sec. 4.1, and (b) a [3]-relational encoding, from Sec. 4.3,
of the 2CM configuration ⟨𝑞, 1, 3⟩. The fact 𝑞 is omitted. 𝑠𝑢𝑐𝑐(𝑎, 𝑏) is represented by an arrow from 𝑎 to 𝑏.
Extensions of unary relations are depicted by dashed rectangles.

Definition 19. Given 𝑛 ∈ N, a relational encoding [𝑛] of 𝑛, and a configuration 𝐶 = ⟨𝑞, 𝑛0, 𝑛1⟩ where
𝑛0, 𝑛1 ≤ 𝑛, the [𝑛]-relational encoding of 𝐶 is the DB [𝑛]∪{𝑞}∪{𝑐𝑖(𝑛𝑢𝑚𝑗

𝑛𝑖) | 𝑖 ∈ {0, 1} and 𝑛𝑢𝑚𝑗
𝑛𝑖 ∈

Δ([𝑛])}, where Δ([𝑛]) is the active domain of [𝑛].

We now define IDP [𝑛](𝐾) as IDP𝑛(𝐾), with the provision that the initial state DB is the [𝑛]-
relational encoding of the initial configuration of 𝐾 . Note that Lemma 3 still applies with an analogous
proof: instead of working with single facts 𝑠𝑢𝑐𝑐(𝑛𝑢𝑚𝑘, 𝑛𝑢𝑚𝑘+1), we just have to work with several
facts 𝑠𝑢𝑐𝑐(𝑛𝑢𝑚𝑖

𝑘, 𝑛𝑢𝑚
𝑗
𝑘+1). Lemma 4 immediately applies. Consequently, Lemma 5, Lemma 6, and

Lemma 7 hold too. Interestingly, when IDP 𝑖𝑛𝑖𝑡(𝐾) is exposed to unbounded input DBs, its behavior
remains as in Sec. 4.1, with the provision that instead of initializing 𝑛-relational encodings, it initializes
[𝑛]-relational encodings. Specifically, during the charge phase, at each step all the constants in the input
DB different from 𝑛𝑒𝑥𝑡 are internalized as part of 𝑛𝑢𝑚; the phase shift happens again when the input
contains the constant 𝑛𝑒𝑥𝑡; during the generate phase, at each step, the input DB instructs the node to
move several constants from 𝑛𝑢𝑚 to 𝑠𝑢𝑐𝑐, resulting in a [𝑛]-relational encoding for some 𝑛. As before,
only if the input DB does not contain any constant, the empty state DB is reached and the computation
stops before initializing some IDP [𝑛](𝐾).

Note that in this construction we did not modify the program or initial state-DB of IDP(𝐾). Thus,
overall, we can use 𝜔-coverability of IDP(𝐾) to check termination of 𝐾 , even if adopting a different
encoding. Thus, we obtain the following corollary.

Corollary 3. For each 𝑛 ∈ N, 𝑛-coverability of posIDP is undecidable.

5. DB-Minor Semantics

The undecidability of posIDP coverability, despite the monotonicity of posD2C, may appear surprising.
However, the result is consistent with the insights provided by WSTS theory. In fact, the quasi-order
used to define coverability, i.e., inclusion among DBs, is not a WQO among posIDP configurations. The
next example provides a counter-example involving unary relations.

Example 2. The sequence {𝑈(𝑎1)}, {𝑈(𝑎2), {𝑈(𝑎3)}, . . . for pairwise distinct constants 𝑎1, 𝑎2, . . .
shows that inclusion of DBs over unary signatures is not a WQO. In fact, for each 𝑖, 𝑗 ∈ N, either 𝑖 = 𝑗
or {𝑈(𝑎𝑖)} ̸⊆ {𝑈(𝑎𝑗)}.

An issue analogous to that in Ex. 2 affects also coverability problems in related models, such as data
Petri Nets [5] and, more specifically, 𝜈-Petri Nets [6], where each token carries a constant. This setting
is reminiscent of DBs over at most unary signatures, where a token carrying a constant 𝑎 in a place 𝑃
amounts to the fact 𝑃 (𝑎). In that setting, a WQO is obtained by considering inclusion of 𝜈-Petri Net
configurations up to isomorphisms. With this order, 𝜈-Petri Nets are WSTSs. In the posIDP setting, this
order amounts to inclusion of DBs over unary signatures up to isomorphisms. Unfortunately, even this
order is not a WQO among arbitrary DBs, specifically when the signature includes binary relations, as
showed in the next example.



Example 3. For each 𝑛 > 0, let 𝐶𝑛 = {𝐸(𝑎0, 𝑎1), . . . , 𝐸(𝑎𝑛−1, 𝑎𝑛)} be a DB encoding a cyclic graph
of length 𝑛, for some pair-wise distinct constants 𝑎1, . . . , 𝑎𝑛 . The sequence 𝐶1, 𝐶2, 𝐶3, . . . shows that
inclusion up to isomorphisms of DBs over binary signatures is not a WQO. In fact, for each 𝑖 ∈ N, 𝐶𝑖 is
a cycle of length 𝑖, each isomorphic copy of 𝐶𝑖 is a cycle of length 𝑖, but 𝐶𝑗 does not contain any cycle
of length 𝑗.

Ex. 3 highlights that, in order to apply WSTS theory to posIDP, we have to focus on coverability
problems with respect to a quasi-order ⪯ among DBs such that ⪯ is WQO also over relational encodings
of directed graphs. Thus, essentially, ⪯ has to capture a WQO among digraphs. Unfortunately, to the
best of our knowledge, there are only few known WQOs among families of graphs and essentially only
one among graphs in general, i.e., the graph-minor order [24]. Specifically, a graph 𝐺 is a minor of a
graph 𝐻 if 𝐺 can be obtained, up to a isomorphisms, from 𝐻 by a sequence of vertex deletions, edge
deletions, and edge contractions. The graph-minor relation can be used as a WQO also among directed
graphs, when one forgets the direction of the edges, i.e., it works on their underlying graphs: given two
directed graph 𝐺 and 𝐻 , 𝐺 is a minor of 𝐻 if the underlying graph of 𝐺 is a minor of the underlying
graph of 𝐻 . When interpreting this order in the DB setting, the contraction of paths from vertex 𝑎
to 𝑏 amounts to the weak reachability of a constant 𝑏 from constant 𝑎 via a chain of pairs in a binary
relation. Motivated by this insight, we propose the following quasi-order among DBs over at most
binary signatures, which combines inclusion for propositions, inclusion up to isomorphisms for unary
facts, and a contraction relation for binary facts.

Definition 20. Let 𝒮 be a signature of at most binary symbols and 𝜙 a permutation of Δ. The (𝒮, 𝜙)-
minor relation ⪯𝜙

𝒮 is the binary relation among DBs over 𝒮 such that, for each two DBs 𝐷1 and 𝐷2

over 𝒮 , 𝐷1 ⪯𝜙
𝒮 𝐷2 if and only if:

1. for each propositional symbol 𝑃/0 ∈ 𝒮 , if 𝑃 ∈ 𝐷1 then 𝑃 ∈ 𝐷2.
2. for each unary symbol 𝑈/1 ∈ 𝒮 and constant 𝑎, if 𝑈(𝑎) ∈ 𝐷1, then 𝑈(𝜙(𝑎)) ∈ 𝐷2.
3. for each binary symbol 𝐵/2 ∈ 𝒮 and two constants 𝑎 and 𝑏, if 𝐵(𝑎, 𝑏) ∈ 𝐷1, then there is

a sequence 𝑐0, . . . , 𝑐𝑛 of constants such that, 𝑐0 = 𝜙(𝑎) and 𝑐𝑛 = 𝜙(𝑏) and, for each 𝑖 < 𝑛,
𝐵(𝑐𝑖, 𝑐𝑖+1) ∈ 𝐷2 or 𝐵(𝑐𝑖+1, 𝑐𝑖) ∈ 𝐷2.

The 𝒮-minor ⪯𝒮 is the union of all the ⪯𝜙
𝒮 for all the permutations 𝜙 of Δ. The DB-minor relation ⪯ is

the union of all the ⪯𝒮 for all at most binary signatures 𝒮 .

In item 3 we require that 𝑐𝑖 precedes 𝑐𝑖+1 in 𝐷2 or vice-versa. This is because we are capturing a
WQO that works on top of the underlying graphs of the directed graphs encoded by the DBs. Because
of the above arguments, we conjecture that ⪯𝒮 is a WQO among DBs. However, irrespectively of the
WQO status of ⪯𝒮 , the reductions in Sec. 4 apply also to coverability problems defined in terms of ⪯.
In fact, in those reduction, we considered the coverability of propositional flags, on which ⊆ and ⪯
coincide. Thus, WSTS theory cannot be applied to posIDP even for coverability problems based on ⪯
(otherwise decidability would apply). One reason for that is that posIDP are not compatible with ⪯.
In other words, posIDP (and Datalog with inequalities) is monotone with respect to ⊆ but not with
respect to ⪯, as shown in the next example.

Example 4. Consider the one-rule program 𝒫 = {𝑜𝑘 if 𝐵(𝑋,𝑍), 𝐹 𝑟𝑜𝑚(𝑋), 𝑇 𝑜(𝑍).} and the DBs
𝐷1 = {𝐵(𝑎, 𝑐), 𝐹 𝑟𝑜𝑚(𝑎), 𝑇 𝑜(𝑐)} and 𝐷2 = {𝐵(𝑎, 𝑏), 𝐵(𝑏, 𝑐), 𝐹 𝑟𝑜𝑚(𝑎), 𝑇 𝑜(𝑐)}. While 𝐷1 ⊆ 𝐷2,
𝒫(𝐷1) ̸⪯ 𝒫(𝐷2).

Consequently, we argue that the only way to apply WSTS theory to posIDP requires not only to
consider coverability based on ⪯, but also to modify the semantics of posD2C, and more precisely of
Datalog, so as to avoid counter-examples such as Ex. 4. We call this semantic the DB-minor Datalog
semantics. Technically, it coincides with the standard semantics of Datalog with the provision that a
fact 𝑅(𝑎, 𝑏) is true in a DB 𝐷 if {𝑅(𝑎, 𝑏)} ⪯ 𝐷, instead of the traditional 𝑅(𝑎, 𝑏) ∈ 𝐷 or, equivalently,
{𝑅(𝑎, 𝑏)} ⊆ 𝐷. We call ⪯-posIDP the variant of posIDP defined on top of DB-minor Datalog semantics.
We propose the following conjecture.



Conjecture 1. The DB-minor Datalog semantics and ⪯-posIDP are well defined. Moreover, ⪯ is a WQO
compatible with ⪯-posIDP and with effective pred-basis property, irrespectively of the bounds on the input
DBs.

By WSTS theory, a positive answer to the conjecture would immediately return decidability for
⪯-posIDP coverability problems based on ⪯.

6. Conclusions

We have studied the coverability problem for posIDP under bounded and unbounded input semantics. In
all cases, we have obtained that coverability is undecidable. When compared to previous results [15, 18],
these results indicate that the positivity of programs is irrelevant on the decidability of CDPs. We
also investigated, from the perspective of WSTSs, why the monotonicity of Datalog is not enough to
yield decidability for the restricted model of posIDP. The obtained insights motivated us to propose a
semantics for Datalog and, more in general, posIDP and CDPs, based on the notion of graph-minor.
This graph-minor semantics essentially closes each binary relation by reflexivity and transitivity.

As future works, we aim at proving Conjecture 1 and to study the actual expressiveness and practicality
of Datalog-like languages and data-aware processes whose semantics is based on graph-minors or on
other WQOs among DBs.
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