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Abstract
Hilbert’s 𝜀-operator, a foundational device for forming indefinite descriptions, has long been overshadowed
by standard quantifiers in first-order logic. However, its capacity to eliminate quantifiers and reframe logical
derivations makes it a compelling tool for alternative proof strategies and automated reasoning. This paper revisits
the 𝜀-calculus, offering a streamlined proof of completeness adapted from Hasenjaeger’s 1953 approach. Building
on earlier work by Leisenring, Davis, and Fechter, we present a variant of the 𝜀-calculus that omits all predicate
symbols aside from equality. The development follows the conventional structure of logical systems—syntax,
semantics, and deductive calculus—culminating in a soundness and completeness result. The aim is to reaffirm
the 𝜀-operator’s relevance in the foundations of logic through a simplified and accessible formal treatment.
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Introduction

Hilbert’s 𝜀-symbol, despite the key role it played in the historical Hilbert–Bernays treatise [1] on the
foundations of mathematics and in other classical monographs, never achieved the widespread adoption
enjoyed by the existential and universal quantifiers in first-order logic.

It is used to form indefinite descriptions of the form 𝜀𝑥.𝜙 (read: “one 𝑥 such that 𝜙”), where 𝜙
is a formula and 𝑥 a variable. Each such expression is a term denoting an entity—if any exists—that
satisfies 𝜙; when no such entity exists, nonetheless 𝜀𝑥.𝜙 designates some element of the domain
of discourse. As shown, e.g., in [2], availability of 𝜀-descriptions allows quantifiers to be entirely
eliminated from first-order logic. This enables a different approach to logical derivations and the
development of tools for automated deduction framed in less conventional terms—potentially yielding
better performance in certain contexts. Moreover, the use of 𝜀-descriptions in formal proof systems such
as free-variable semantic tableaux may enhance reasoning performance by enabling the construction of
shorter proofs [3, 4, 5]. These results largely depend on the syntactic structure of 𝜀-terms, which differs
significantly from that of terms generated via standard Skolemization techniques. Taken together, these
considerations motivate the authors to bring the 𝜀-operator back into focus.

The completeness proof for first-order predicate logic has progressively simplified from Gödel’s
original (ca. 1930) to Leon Henkin’s (ca. 1949) and later to Gisbert Hasenjaeger’s (1953). We adapt the
third of these to Hilbert’s 𝜀-calculus, further streamlining the path to this fundamental metalogical
result. Our approach to the 𝜀-calculus builds on the work of Albert Leisenring [6], and of Martin Davis
and Ronald Fechter [2], but, without loss of generality, sets aside predicate symbols other than equality.

The material is organized according to the standard structure of most logical formalisms: syntax
(Sec. 1), semantics (Sec. 2), calculus (understood as a system of deduction, Sec. 3), and soundness and
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completeness of the proposed calculus (Sec. 4). The concluding Sec. 5 offers a commentary on the work
presented.

1. Cumulative Signature of a First-order Logic Language

A first-order language ℒ(Λ) is identified by a signature

Λ = (ℱ ,d), where d : ℱ −→ N ,

consisting of a set ℱ of symbols called functors paired with a function d, called degree, sending each
functor to its expected number of arguments—a nonnegative integer.

The other primitive symbols of ℒ(Λ) are: the equality relator ‘=’, the denumerable infinity 𝜈0, 𝜈1, . . .
of (free) individual variables, the propositional connectives ‘f’, ‘→’, and the punctuation marks ‘)’, ‘(’, ‘,’.

1.1. Terms, formulae, and uniform substitutions

The terms of ℒ(Λ) are strings of symbols from ℒ(Λ), defined recursively as follows:

1. Each individual variable 𝜈𝑖 is a term.

2. A string of the form 𝑔(𝜏1, . . . , 𝜏d(𝑔)), where 𝑔 ∈ ℱ and 𝜏1, . . . , 𝜏d(𝑔) are terms, is also a term.
(Here, parentheses are omitted when 𝑔 is a constant, that is, when d(𝑔) = 0.)

The formulae of ℒ(Λ) are strings of symbols from ℒ(Λ), defined recursively as follows:

Atomic formulae are:
∘ Strings of the form 𝜏1 = 𝜏2, where 𝜏1 and 𝜏2 are terms of ℒ(Λ).
∘ The propositional constant f.

Compound formulae are of the form (𝜙→ 𝜓), where 𝜙 and 𝜓 are formulae, atomic or compound.
(Quite often, the outermost parentheses of a compound formula will be dropped.)

The familiar propositional connectives ¬ , ∨ , & , and ↔ , as well as the inequality relator ̸=, are treated
here as derived constructs:

(¬ 𝜙) := (𝜙→ f), (𝜙 ∨ 𝜓) := ((¬ 𝜙)→ 𝜓), (𝜙 & 𝜓) := ¬ (𝜙→ (¬ 𝜓)),

𝜏1 ̸= 𝜏2 := ¬ (𝜏1 = 𝜏2), (𝜙↔ 𝜓) := ((𝜙→ 𝜓) & (𝜓 → 𝜙)).

Later, we will introduce quantifiers by means of somewhat more engaging abbreviations.

Definition 1.1 (𝑛-adic formula). A formula 𝜙 of ℒ(Λ) is said to be 𝑛-adic, where 𝑛 ∈ N, if the only
variables occurring in 𝜙 are 𝜈0, 𝜈1, 𝜈2, . . . , 𝜈𝑛 (namely, the first 𝑛 + 1 variables in the standard list),
with the only possible exception of 𝜈0 .

Then, 𝜙(𝜎0, 𝜎1, . . . , 𝜎𝑛) denotes the formula obtained from 𝜙 by simultaneously replacing each 𝜈𝑖
with the corresponding term 𝜎𝑖. ⊣

1.2. Key formulae, Skolem completion, descriptors, and quantifiers

Definition 1.2 (Key formula). An 𝑛-adic formula 𝜒 of ℒ(Λ) is called a key formula if:

1. Every term appearing in 𝜒, if not a variable, contains at least one occurrence of 𝜈0.

2. Each of the variables 𝜈1, . . . , 𝜈𝑛 occurs in 𝜒 exactly once.

3. The variables 𝜈1, . . . , 𝜈𝑛 appear in 𝜒 from left to right in exactly that order. ⊣

Example 1.1. Set 𝜒0 := 𝜈0 = 𝜈0 and 𝜒𝑖+1 := (𝜒𝑖 & 𝜈0 ̸= 𝜈𝑖+1). Then 𝜒𝑛 is a key formula for each 𝑛. ⊣



Theorem 1.1 (From [2], pp.435–436). Let 𝑥 be a variable and 𝜙 a formula of ℒ(Λ). Then there exist
unique: an integer 𝑛 ⩾ 0, an 𝑛-adic key formula 𝜙[𝑥], and terms 𝜏1, . . . , 𝜏𝑛 in which 𝑥 does not occur,
such that

𝜙 ≡ 𝜙[𝑥](𝑥, 𝜏1, . . . , 𝜏𝑛) ,

meaning that 𝜙 and 𝜙[𝑥](𝑥, 𝜏1, . . . , 𝜏𝑛) are syntactically identical,1 and such that 𝑛 is the least integer for
which such a decomposition exists.

Proof. The following algorithm determines (in the only possible way) the sought 𝑛, 𝜏1, . . . , 𝜏𝑛, and 𝜙[𝑥].
Initially, place a cursor 𝑗 immediately before the first symbol of the first occurrence of a term in 𝜙,

and set 𝑛 := 0.
As long as, in some occurrence after 𝑗 within 𝜙, there is a term (possibly equal to previous ones) that

does not involve 𝑥, proceed as follows:

• Locate the first occurrence (after 𝑗) of such a term 𝜏 in 𝜙.

• Set 𝑛 := 𝑛+ 1 and record 𝜏𝑛 := 𝜏 along with the position 𝜋𝑛 of this occurrence.

• Advance the cursor 𝑗 to the end of this occurrence of 𝜏 in 𝜙.

Obtain 𝜙[𝑥] from 𝜙 by simultaneously:

• replacing 𝑥 with 𝜈0,

• and, for each 𝑖 = 1, . . . , 𝑛, replacing, at position 𝜋𝑖, the occurrence of 𝜏𝑖 with the variable 𝜈𝑖.

This yields the desired decomposition, where 𝑛 is minimal. Moreover, the triple
(︀
𝑛, 𝜙[𝑥], (𝜏1, . . . , 𝜏𝑛)

)︀
is uniquely determined by 𝜙 and 𝑥, due to the syntactic nature of the construction.

Example 1.2. Given 𝜙 ≡
(︀
𝑥 = 𝑓(𝑥, 𝑥) → 𝑓(𝑧, 𝑦) = 𝑔(𝑦, 𝑧)

)︀
, where 𝑥, 𝑦, 𝑧 stand for distinct variables

and 𝑓, 𝑔 are functors of degree 2, the algorithm just seen produces

𝜙[𝑥] ≡
(︀
𝜈0 = 𝑓(𝜈0, 𝜈0) → 𝜈1 = 𝜈2

)︀
, so that 𝜙 ≡ 𝜙[𝑥]

(︀
𝑥, 𝑓(𝑧, 𝑦), 𝑔(𝑦, 𝑧)

)︀
,

𝜙[𝑦] ≡
(︀
𝜈1 = 𝜈2 → 𝑓(𝜈3, 𝜈0) = 𝑔(𝜈0, 𝜈4)

)︀
, so that 𝜙 ≡ 𝜙[𝑦]

(︀
𝑦, 𝑥, 𝑓(𝑥, 𝑥), 𝑧, 𝑧

)︀
,

𝜙[𝑧] ≡
(︀
𝜈1 = 𝜈2 → 𝑓(𝜈0, 𝜈3) = 𝑔(𝜈4, 𝜈0)

)︀
, so that 𝜙 ≡ 𝜙[𝑧]

(︀
𝑧, 𝑥, 𝑓(𝑥, 𝑥), 𝑦, 𝑦

)︀
, and

𝜙[𝑤] ≡
(︀
𝜈1 = 𝜈2 → 𝜈3 = 𝜈4

)︀
, so that 𝜙 ≡ 𝜙[𝑤]

(︀
𝑤, 𝑥, 𝑓(𝑥, 𝑥), 𝑓(𝑧, 𝑦), 𝑔(𝑦, 𝑧)

)︀
,

where𝑤 is any variable distinct from 𝑥, 𝑦, 𝑧. Thus, 𝜙[𝑥] is a 2-adic key formula, while 𝜙[𝑦], 𝜙[𝑧], and 𝜙[𝑤]

are 4-adic formulae. Note also that, for example, 𝜙[𝑦] is obtained from 𝜙 by replacing both occurrences
of 𝑦 with 𝜈0, the first occurrence of 𝑥 with 𝜈1, the term 𝑓(𝑥, 𝑥) with 𝜈2, and the first and second
occurrences of 𝑧 by 𝜈3 and 𝜈4, respectively. This clearly shows that the construction of key formulae is
based on the positions of terms within the syntactic structure of 𝜙, as shown in the proof of Thm. 1.1. ⊣

Definition 1.3. Let 𝜙 be a formula, 𝑥 a variable, and 𝜎 a term. We denote by 𝜙𝑥𝜎 the formula obtained
from 𝜙 by simultaneously replacing all occurrences of 𝑥 with 𝜎. ⊣

Remark 1. The identity 𝜙𝑥𝜎 ≡ 𝜙[𝑥](𝜎, 𝜏1, . . . , 𝜏𝑛) is clear—where 𝜏1, . . . , 𝜏𝑛 are as described above. ⊣

Remark 2. Let 𝜒1 ≡ 𝜙[𝑥] and 𝜒2 ≡ 𝜓[𝑥] be an 𝑛-adic key formula and an 𝑚-adic key formula, respec-
tively resulting, in the manner described above, from 𝑥, 𝜙 and from 𝑥, 𝜓 . Then we have the syntactical
identities (¬ 𝜙)[𝑥] ≡ ¬

(︀
𝜙[𝑥]

)︀
and (𝜙→ 𝜓)[𝑥] ≡

(︀
𝜙[𝑥](𝜈0, 𝜈1, . . . , 𝜈𝑛) → 𝜓[𝑥](𝜈0, 𝜈𝑛+1, . . . , 𝜈𝑛+𝑚)

)︀
.

Moreover, (𝜙↔ 𝜓)[𝑥] is a (2𝑛+ 2𝑚)-adic key formula 𝜒 such that the syntactical identity

𝜒(𝜎, 𝜏1, . . . , 𝜏𝑛, 𝜎1, . . . , 𝜎𝑚, 𝜎1, . . . , 𝜎𝑚, 𝜏1, . . . , 𝜏𝑛) ≡
(︀
𝜙[𝑥](𝜎, 𝜏1, . . . , 𝜏𝑛) ↔ 𝜓[𝑥](𝜎, 𝜎1, . . . , 𝜎𝑚)

)︀
,

holds for every (1 + 𝑛+𝑚)-tuple (𝜎, 𝜏1, . . . , 𝜏𝑛, 𝜎1, . . . , 𝜎𝑚) of terms. ⊣
1‘Syntactical identity’ refers to the condition of being exactly the same in syntactic form—that is, the symbols and their
arrangement are identical. However, to claim that 𝜙 ≡ 𝜓, one must first remove any derived constructs (i.e., shortcuts, or
abbreviations defined in terms of more basic symbols) by expanding both 𝜙 and 𝜓 into their full definitions.



Skolem expansions and completion of a signature. Our next goal is to complete, in a minimal
way, any initial signature Λ0 with functors ℱ0 to a signature Λ∞ with functors ℱ∞, where ℱ0 ⊆ ℱ∞,
so that every key formula 𝜒 of ℒ(Λ∞) is associated, in an injective manner, with a new functor ℎ𝜒 of
the same degree as 𝜒. We achieve this by defining an increasing sequence of signatures (Λℓ)ℓ∈N, where
each Λℓ+1 is obtained from Λℓ as follows:

1. For every 𝑛-adic key formula 𝜒 of ℒ(Λℓ) that does not belong to ℒ(Λℓ−1) (if ℓ > 0), associate a
new functor ℎ𝜒 of degree d(ℎ𝜒) = 𝑛. Each such functor is called a Skolem functor.

2. Define ℱ ℓ+1 by adding these Skolem functors ℎ𝜒 to ℱ ℓ, and extend d accordingly.

Finally, let the Skolem completion Λ∞ of the initial signature Λ0 be the signature whose set of functors
ℱ∞ is given by

ℱ∞ := ∪
ℓ∈N

ℱ ℓ . ⊣

Remark 3. Based on Example 1.1, we observe that the expansion of Λ0 to Λ1 introduces infinitely many
new functors. A similar construction, replacing each variable 𝜈𝑖+1 with a term of the form ℎ𝜒(𝜈𝑖+1),
shows that Λℓ+2 is endowed with an infinitely richer collection of functors than Λℓ+1. ⊣

Descriptors and quantifiers. We will now introduce Hilbert’s descriptors 𝜀𝑥, Peano’s descriptors 𝜄𝑥,
and the usual quantifiers ∃𝑥 and ∀𝑥, where 𝑥 is an individual variable. These can be read, respectively,
as: “an 𝑥 such that”, “the 𝑥 such that”, “there is an 𝑥 such that”, and “for every 𝑥, it holds that”.

Consider a formula 𝜙 of ℒ(Λ∞). Moreover, let 𝜒 be the key formula 𝜙[𝑥] determined—along with
𝑛 and 𝜏1, . . . , 𝜏𝑛—as in Thm. 1.1. We introduce the said derived constructs through the following
abbreviating rules:

𝜀𝑥.𝜙 := ℎ𝜒(𝜏1, . . . , 𝜏𝑛) and, accordingly, 𝜀𝑥.(¬ 𝜙) := ℎ¬ 𝜒(𝜏1, . . . , 𝜏𝑛);

(∃𝑥. 𝜙) := 𝜙𝑥𝜀𝑥.𝜙 , i.e., (∃𝑥. 𝜙) := 𝜒
(︀
ℎ𝜒(𝜏1, . . . , 𝜏𝑛), 𝜏1, . . . , 𝜏𝑛

)︀
;

(∀𝑥. 𝜙) := 𝜙𝑥𝜀𝑥.(¬ 𝜙) , i.e., (∀𝑥. 𝜙) := 𝜒
(︀
ℎ¬𝜒(𝜏1, . . . , 𝜏𝑛), 𝜏1, . . . , 𝜏𝑛

)︀
;

𝜄𝑥.𝜙 := 𝜀 𝑦.
(︀
∀𝑥.(𝜙 → 𝑥 = 𝑦)

)︀
, where 𝑦 is a variable distinct from 𝑥. ⊣

The formulae 𝛼 of ℒ(Λ∞) in which no variables occur are called sentences. If a given formula 𝛼
involves descriptors or quantifiers, it is unnecessary to unravel these constructs to establish that it is a
sentence. It suffices to check that each apparent occurrence of a variable 𝑥 within it appears within a
descriptor 𝜀𝑥.𝜙 or 𝜄𝑥.𝜙, or within a subformula of the form (∃𝑥. 𝜙) or (∀𝑥. 𝜙). In fact, applying a
quantifier ∃𝑥 or ∀𝑥 to a formula 𝜙 in which 𝑥 occurs decreases the number of variables by 1. This
holds because, despite appearances, 𝑥 occurs neither in 𝜀𝑥. 𝜙 nor in 𝜀𝑥.

(︀
¬ 𝜙

)︀
.

2. Interpreting Structures and Their Augmentations

The formulae of a language ℒ(Λ) are interpreted using a structure I = (D,F), whose

• domain of discourse, D, is a set consisting of at least two so-called individuals; and whose

• functor interpretation, F, belongs to
∏︀
𝑔∈ℱ

DDd(𝑔)

. This means that, for every functor 𝑔,

F(𝑔) : Dd(𝑔) −→ D

is a function sending each d(𝑔)-tuple of individuals to an individual, for every functor 𝑔.



We now provide recursive rules for evaluating the terms and formulae of ℒ(Λ) in such a structure.
Along with I, since terms may involve variables 𝜈𝑖 about which the structure itself says nothing, we
must also consider a denumerable sequence N = (𝑛0,𝑛1, . . . ) of individuals drawn from D, called
a (variable) assignment. This assignment associates to each variable 𝜈𝑖 the individual 𝑛𝑖 in D. As a
preliminar, we introduce the following definition.

Definition 2.1 (Truth-value assignment). Denote by f , t falsehood and truth, respectively. A truth
value assignment for ℒ(Λ) is a function T : {formulae of ℒ(Λ)} −→ {f , t} such that

• T(f) = f ;

• T
(︀
(𝜙 → 𝜓)

)︀
= if T(𝜙) = t then T(𝜓) else t , for all formulae 𝜙,𝜓. ⊣

Definition 2.2 (Evaluation rules). Let I = (D,F) be a structure and N an assignment. The evaluation
function valI,N(·) assigns values to syntactic expressions of ℒ(Λ) as follows:

(a) Terms.

• valI,N(𝜈𝑖) := 𝑛𝑖, for each variable 𝜈𝑖;

• valI,N
(︀
𝑔(𝜏1, . . . , 𝜏d(𝑔))

)︀
:= F(𝑔)

(︀
valI,N(𝜏1) , . . . , valI,N

(︀
𝜏d(𝑔)

)︀ )︀
,

for each functor 𝑔 and every d(𝑔)-tuple of terms (𝜏1, . . . , 𝜏d(𝑔)).

(b) Atomic formulae.

• valI,N(f) := f ;

• valI,N(𝜏 = 𝜎) := if valI,N(𝜏) = valI,N(𝜎) then t else f , for all terms 𝜏, 𝜎.

(c) Compound formulae.
The evaluation function is extended to compound formulae by structural induction, following the
semantics of truth-value assignments given in Definition 2.1. Specifically, we define:

valI,N((𝜙→ 𝜓)) := if valI,N(𝜙) = t then valI,N(𝜓) else t,

for each compound formula of ℒ(Λ) of the form (𝜙 → 𝜓), where 𝜙 and 𝜓 are formulae (atomic or
compound). ⊣

Remark 4. The evaluation function valI,N( ) defined above is total on the syntactic expressions of
ℒ(Λ), returning domain elements for terms and truth values for formulae. Its restriction to formulae
yields a truth-value assignment in the sense of Definition 2.1. ⊣

The fact that (I,N) models a formula 𝜙, in the sense that valI,N(𝜙) = t, is also denoted by

(I,N) |= 𝜙.

Moreover, if 𝒜 ∪ {𝛼} is a collection of formulae, the notation 𝒜 |= 𝛼 (read: “𝛼 is a logical consequence
of 𝒜”) indicates that (I,N) |= 𝛼 holds for all pairs (I,N) that model each formula 𝜙 in 𝒜. We say
that 𝛼 is valid, written as

|= 𝛼,

if (I,N) |= 𝛼 holds for all pairs (I,N) . Clearly, this is the case if T(𝛼) = t holds in every truth-value
assignment T; in the latter case, 𝛼 is called a tautology .

Let ℒ(Λ) be a language interpreted by a structure I = (D,F), and let 𝜙 be any formula of ℒ(Λ).
Also, let 𝑛 be an integer that bounds the indices of all variables occurring in 𝜙, that is, every 𝜈𝑖 in 𝜙
satisfies 𝑖 ⩽ 𝑛. Then, for all D-valued assignments N = (𝑛0,𝑛1, . . . ) and N′ = (𝑛′

0,𝑛
′
1, . . . ) such

that 𝑛𝑖 = 𝑛′
𝑖 for 𝑖 = 0, 1, . . . , 𝑛, we have:

(I,N) |= 𝜙 ⇐⇒ (I,N′) |= 𝜙.

(In particular, if 𝜙 is a sentence, then its evaluation is independent of any D-valued assignment.)
This observation justifies the following definition.



Definition 2.3 (Satisfaction by a tuple). Let ℒ(Λ) be a language interpreted by a structure I = (D,F),
and let 𝜙 be any formula of ℒ(Λ). Let 𝑛 be an integer that bounds the indices of all variables occurring
in 𝜙. For any (𝑛+1)-tuple �⃗� := (𝑎0,𝑎1, . . . ,𝑎𝑛) in D𝑛+1, we write

(I, �⃗�) |= 𝜙

and say that �⃗� satisfies 𝜙 in I to mean that for every assignment N = (𝑛0,𝑛1, . . . ) over D such that
𝑛𝑖 = 𝑎𝑖 for all 𝑖 = 0, . . . , 𝑛, it holds that (I,N) |= 𝜙. ⊣

Extending the evaluation rules canonically to the Skolem completion ℒ(Λ∞) of ℒ(Λ0) requires an
enrichment of the structure I, as explained next.

2.1. Selective structures

As a preliminary step, we equip any structure I = (D,F) with a function

c : P(D) −→ D ,

where P(D) denotes the power set of D, such that:

• for every nonempty subset 𝑆 ⊆ D, we have c(𝑆) ∈ 𝑆;

• and c(∅) ̸= c(D).

This can be done by a plain application of the Axiom of Choice. The second condition, while arbitrary,
ensures that c distinguishes between the empty set and the entire domain—this will be useful in what
follows. We call the resulting triple I(c) = (D,F, c) a selective structure, and refer to c( ) as the
associated selection function.

Remark 5 (Why do we need no relator other than equality?). Renouncing structures whose
domain of discourse has cardinality 1, as we have done, entails no drawbacks; on the contrary, it offers
an advantage: if we define

t := 𝜀𝑥. 𝑥 = 𝑥 and f := 𝜀𝑥. 𝑥 ̸= 𝑥 ,

our semantics will ensure that t ̸= f .2 After that, we can surrogate every relation symbol 𝑅 , except for
equality, by a functor 𝑔𝑅 of the same degree 𝑎 as 𝑅 , constrained to satisfy(︁

∀ 𝑥1 . · · ·
(︁
∀𝑥𝑎 .

(︀
𝑔𝑅(𝑥1 . . . , 𝑥𝑎

)︀
= t ∨ 𝑔𝑅(𝑥1 . . . , 𝑥𝑎

)︀
= f

)︀)︁
· · ·

)︁
.

Thus, we can use 𝑔𝑅(𝜏1, . . . , 𝜏𝑎
)︀
= t instead of the atomic formula 𝑅(𝜏1, . . . , 𝜏𝑎) . ⊣

2.2. Completing an interpretation using a selection function

Next we expand step by step a selective structure I
(c)
0 := (D,F0, c), based on our initial signature

Λ0 := Λ, to its Skolem completion Λ∞. For each integer ℓ ⩾ 0, obtain I
(c)
ℓ+1 := (D,Fℓ+1, c) from I

(c)
ℓ as

described below.
Embed Fℓ in Fℓ+1, i.e., put Fℓ+1(𝑔) := Fℓ(𝑔) for every functor 𝑔 in ℱ ℓ. Then, for every functor

ℎ𝜒 in ℱ ℓ+1 ∖ ℱ ℓ:

• Determine the number 𝑛 such that the key formula 𝜒 is 𝑛-adic (and hence d(ℎ𝜒) = 𝑛).

• For each 𝑛-tuple �⃗� = (𝑎1, . . . ,𝑎𝑛) in D𝑛, consider the (possibly empty) set 𝑆�⃗�𝜒 of those elements
𝑠 ∈ D such that (︀

Iℓ, (𝑠,𝑎1, . . . ,𝑎𝑛)
)︀
|= 𝜒 .

2We will see in Sec. 2.2 how to evaluate this sentence. Nonetheless, the interpretation we are about to define allows for the
evaluation of every formula of ℒ(Λ∞).



• pick as the image
(︀
Fℓ+1(ℎ𝜒)

)︀
(�⃗�) of �⃗� under the interpretation of ℎ𝜒 the representative c(𝑆�⃗�𝜒) of

𝑆�⃗�𝜒, namely, set (︀
Fℓ+1(ℎ𝜒)

)︀
(�⃗�) := c(𝑆�⃗�𝜒).

Finally, define I∞ = (D,F∞), where F∞ := ∪
ℓ∈N

Fℓ.

It is straightforward that for each term or formula 𝜗 in the language ℒ(Λ∞), there exists a number ℓ
such that valIℓ+𝑚,N(𝜗) = valI∞,N(𝜗) holds for each D-valued sequence N and for all 𝑚 ∈ N.

Remark 6 (Why does c disappear in the completed interpretation I∞ ?). It would be pointless
to write I

(c)
∞ instead of simply I∞, because c only serves to enable the extension of each Iℓ from the

signature Λℓ to the next signature Λℓ+1. Once the signature reaches the plateau, this auxiliary role of c
becomes redundant, because all sentences of ℒ(Λ∞) can be evaluated in the interpretation (D,F∞). ⊣

Remark 7. Let I∞ = (D,F∞) be the canonical completion of a selective structure (D,F, c), as above.
Let 𝜒 be any 𝑛-adic key formula, for some 𝑛 ∈ N, so that ¬ 𝜒 is also an 𝑛-adic key formula. For any
𝑛-tuple �⃗� = (𝑎1, . . . ,𝑎𝑛) in D𝑛, we claim that(︀

F∞(ℎ𝜒)
)︀
(�⃗�) ̸=

(︀
F∞(ℎ¬ 𝜒)

)︀
(�⃗�).

Indeed, since
𝑆�⃗�𝜒 ∩ 𝑆�⃗�¬ 𝜒 = ∅ and 𝑆�⃗�𝜒 ∪ 𝑆�⃗�¬ 𝜒 = D,

it follows that (︀
F∞(ℎ𝜒)

)︀
(�⃗�) = c(𝑆�⃗�𝜒) ̸= c(𝑆�⃗�¬ 𝜒) =

(︀
F∞(ℎ¬ 𝜒)

)︀
(�⃗�)

as claimed. ⊣

Remark 8. We show, in some detail, that for every formula 𝜙 of ℒ(Λ∞)—where Λ∞ is the Skolem
completion of an initial signature Λ—the formula 𝜀𝑥. 𝜙 ̸= 𝜀𝑥.¬ 𝜙 is valid. In particular, when
𝜙 ≡ (𝑥 = 𝑥), we recover the validity of t ̸= f, where t := 𝜀𝑥. 𝑥 = 𝑥 and f := 𝜀𝑥. 𝑥 ̸= 𝑥 , as stated
in Remark 5.

Let I∞ = (D,F∞) be the canonical completion of an arbitrary selective structure I(c) := (D,F, c),
and let N be an arbitrary variable assignment over D. It suffices to show that

(I∞,N) |= 𝜀𝑥. 𝜙 ̸= 𝜀𝑥.¬ 𝜙 .

Let 𝜒 be the 𝑛-adic key formula 𝜙[𝑥] determined—along with 𝑛 and the terms 𝜏1, . . . , 𝜏𝑛, none of which
involves 𝑥—as in Thm. 1.1. Then we have 𝜀𝑥.𝜙 ≡ ℎ𝜒(𝜏1, . . . , 𝜏𝑛) and 𝜀𝑥.(¬ 𝜙) ≡ ℎ¬ 𝜒(𝜏1, . . . , 𝜏𝑛).
Define �⃗� := (𝑎1, . . . ,𝑎𝑛) ∈ D𝑛, where 𝑎𝑖 := valI∞,N(𝜏𝑖) for 𝑖 = 1, . . . , 𝑛. Then:

valI∞,N(ℎ𝜒(𝜏1, . . . , 𝜏𝑛)) = F∞(ℎ𝜒)(𝑎1, . . . ,𝑎𝑛)

̸= F∞(ℎ¬ 𝜒)(𝑎1, . . . ,𝑎𝑛) = valI∞,N(ℎ¬ 𝜒(𝜏1, . . . , 𝜏𝑛)) .

Thus, (I∞,N) |= ℎ𝜒(𝜏1, . . . , 𝜏𝑛) ̸= ℎ¬ 𝜒(𝜏1, . . . , 𝜏𝑛), namely (I∞,N) |= 𝜀𝑥. 𝜙 ̸= 𝜀𝑥.¬ 𝜙 . Since
both the selective structure I(c) and its canonical completion I∞, as well as the assignment N, were
arbitrary, it follows that the formula 𝜀𝑥. 𝜙 ̸= 𝜀𝑥.¬ 𝜙 is valid. ⊣

3. Logical Laws,Modus Ponens Rule, and Derivations in the 𝜀-calculus

We will explain how to properly enchain lists of formulae of ℒ(Λ∞), where Λ∞ originates from an
initial signature Λ0 in the manner discussed above, so that such a list can be regarded as a derivation in
the Λ0-based 𝜀-calculus. The components of a derivation are called its steps, each of which is either a
logical axiom, a proper axiom, or the immediate consequence of preceding steps. We will group logical
axioms under a small number of schemes, referred to as logical laws. The proper axioms pertain to a
specific intended use of our logical machinery. A single, historically significant inference rule, known
as modus ponens, will suffice for our needs.



3.1. Logical laws of the 𝜀-calculus

Here is a somewhat redundant selection of logical laws drawn from the valid formulae of ℒ(Λ∞):

0. Tautologies belonging to ℒ(Λ∞) — see p. 5.

1. All instances of the equivalential properties of equality: 𝜏 = 𝜏 and 𝜏 = 𝜏 ′ → (𝜏 ′ = 𝜎 → 𝜎 = 𝜏),
where 𝜏, 𝜏 ′, and 𝜎 are arbitrary terms of ℒ(Λ∞).

2. All instances

𝜏0 = 𝜎0 →
(︀
𝜏1 = 𝜎1 →

(︀
· · · →

(︀
𝜏𝑛 = 𝜎𝑛 → 𝑔(𝜏0, 𝜏1, . . . , 𝑡𝑛) = 𝑔(𝜎0, 𝜎1, . . . , 𝜎𝑛)

)︀
· · ·

)︀)︀
of the congruence property of equality. Here 𝜏0, 𝜎0, 𝜏1, 𝜎1, . . . , 𝜏𝑛, 𝜎𝑛, and 𝑔, are terms and a
functor of ℒ(Λ∞); moreover, d(𝑔) = 𝑛+ 1.

3. Exclusion formulae. These have the form

𝜀𝑥.¬ 𝜙 ̸= 𝜀𝑥.𝜙 .

4. Epsilon formulae. These have the form 𝜙𝑥𝜎 → 𝜙𝑥𝜀𝑥.𝜙 (see Remark 1); that is, more explicitly,

𝜙[𝑥](𝜎, 𝜏1, . . . , 𝜏𝑛) → 𝜙[𝑥](𝜀𝑥.𝜙, 𝜏1, . . . , 𝜏𝑛) ,

or, even more explicitly,

𝜙[𝑥](𝜎, 𝜏1, . . . , 𝜏𝑛) → 𝜙[𝑥](ℎ𝜒(𝜏1, . . . , 𝜏𝑛), 𝜏1, . . . , 𝜏𝑛) .

Here, 𝜎 is a term and 𝜙 a formula of ℒ(Λ∞). Moreover, 𝜙[𝑥] is the key formula of degree
𝑛, 𝜏1, . . . , 𝜏𝑛 are the terms—none of which involves 𝑥—whose existence and uniqueness are
established in Thm. 1.1, such that 𝜙 ≡ 𝜙[𝑥](𝑥, 𝜏1, . . . , 𝜏𝑛). The functor ℎ𝜒 is the one uniquely
associated with 𝜒 during the Skolem completion of the signature.

5. Leisenring’s axioms (cf. [6, p. 13 and p. 40]. These have the form(︀
∀ 𝑧. (𝜙𝑥𝑧 ↔ 𝜓𝑦𝑧 )

)︀
→ 𝜀𝑥.𝜙 = 𝜀 𝑦.𝜓 ,

where 𝑥, 𝑦, 𝑧 are variables, and 𝜙 and 𝜓 are formulae of ℒ(Λ∞), neither of which involves 𝑧.

Definition 3.1 (Derivability). Consider a collection 𝒜∪{𝛼} of formulae of ℒ(Λ∞). A finite sequence
of formulae of ℒ(Λ∞)

𝛿 = (𝛿0, 𝛿1, . . . , 𝛿ℓ)

is called a derivation of 𝛼 from the set 𝒜 of premises when 𝛿ℓ ≡ 𝛼 and each 𝛿𝑖 (for 𝑖 = 0, . . . , ℓ) satisfies
one of the following conditions :

Logical axiom: 𝛿𝑖 is an instance of one of the logical laws listed above.

Premise (or proper axiom): 𝛿𝑖 belongs to 𝒜 .

Modus Ponens: There exist indices 𝑀 and 𝑚 such that 𝑀 < 𝑖 , 𝑚 < 𝑖 , and 𝛿𝑀 ≡ (𝛿𝑚 → 𝛿𝑖) .

The existence of such a list is indicated by the notation 𝒜 ⊢ 𝛼 —or simply ⊢ 𝛼 when 𝒜 = ∅. ⊣

In Sec. 4, we will establish that 𝒜 ⊢ 𝛼 implies 𝒜 |= 𝛼 (soundness) and, conversely, that 𝒜 |= 𝛼
implies 𝒜 ⊢ 𝛼 (completeness).



4. Soundness and Completeness of the 𝜀-Calculus

4.1. Soundness of the 𝜀-calculus

The 𝜀-calculus, as introduced in the previous section, enjoys the following crucial metalogical property:

Theorem 4.1 (Soundness). Let 𝒜 ∪ {𝛼} be a set of formulae of ℒ(Λ∞). If 𝒜 ⊢ 𝛼 , then 𝒜 |= 𝛼 .

This claim is proved by induction on the length of a derivation of 𝛼 from 𝒜. To justify the modus
ponens rule, observe that when T

(︀
(𝜙→𝜓)

)︀
= t and T(𝜙) = t hold in a truth-value assignment T, then

clearly T(𝜓) = t. It follows that 𝒜 |= (𝜙→ 𝜓) and 𝒜 |= 𝜙 imply 𝒜 |= 𝜓 . Soundness will therefore
follow directly from the validity of every logical axiom.

Lemma 4.1. Every logical axiom is valid.

Proof. Let the structure I∞ = (D,F∞) stem from a selective structure I
(c)
0 = (D,F0, c) as discussed

in Sec. 2.2, and let the sequence N bind the variables 𝜈𝑖 to values in D as described right before Def. 2.1.
We must prove that (I∞,N) |= 𝜓 holds for every instance 𝜓 of a logical law, where N is any D-valued
sequence. This is readily verified for laws 0, 1, and 2. As for law 3, its validity has already been
established in Remark 8. The remaining two laws will be addressed next.

Epsilon formulae. A formula 𝜓 falls under this law if and only if it can be written as

𝜓 ≡
(︁
𝜒(𝜎, 𝜏1, . . . , 𝜏𝑛) → 𝜒

(︀
ℎ𝜒(𝜏1, . . . , 𝜏𝑛), 𝜏1, . . . , 𝜏𝑛

)︀)︁
,

where 𝜒 ≡ 𝜒(𝜈0, 𝜈1, . . . , 𝜈𝑛) is an 𝑛-adic key formula, 𝜎, 𝜏1, . . . , 𝜏𝑛 are terms of ℒ(Λ∞), and ℎ𝜒
is the functor uniquely associated with 𝜒 in the Skolem completion of the signature.

To show that (I∞,N) |= 𝜓, observe that the implication holds trivially unless

(I∞,N) |= 𝜒(𝜎, 𝜏1, . . . , 𝜏𝑛).

Assume this is the case. Let 𝑎0 := valI∞,N(𝜎) and 𝑎𝑖 := valI∞,N(𝜏𝑖) for 𝑖 = 1, . . . , 𝑛, and define
the tuples �⃗� := (𝑎0,𝑎1, . . . ,𝑎𝑛) and �⃗� – := (𝑎1, . . . ,𝑎𝑛). Then, by Definition 2.3, we have

(I∞, �⃗�) |= 𝜒 and 𝑎0 ∈ 𝑆�⃗�
–

𝜒 ,

so that 𝑆�⃗�
–

𝜒 ̸= ∅. Thus, by construction of the canonical completion (see Remark 8), the element
c(𝑆�⃗�

–

𝜒 ) belongs to 𝑆�⃗�
–

𝜒 , and so replacing 𝑎0 with c(𝑆�⃗�
–

𝜒 ) in �⃗� yields another tuple �⃗� * such that

(I∞, �⃗�
*) |= 𝜒.

But �⃗� * =
(︀
valI∞,N(ℎ𝜒(𝜏1, . . . , 𝜏𝑛)) ,𝑎1, . . . ,𝑎𝑛

)︀
by definition of the interpretation of ℎ𝜒, and

therefore
(I∞,N) |= 𝜒(ℎ𝜒(𝜏1, . . . , 𝜏𝑛), 𝜏1, . . . , 𝜏𝑛).

Hence, (I∞,N) |= 𝜓, as required.

Leisenring’s formulae. Written explicitly, Leisenring’s axioms take the form(︁
𝜒1

(︀
𝜀𝑥.(¬ 𝜒), 𝜏1, . . . , 𝜏𝑛

)︀
↔ 𝜒2

(︀
𝜀𝑥.(¬ 𝜒), 𝜎1, . . . , 𝜎𝑚

)︀)︁
→

ℎ𝜒1(𝜏1, . . . , 𝜏𝑛) = ℎ𝜒2(𝜎1, . . . , 𝜎𝑚) ,

where:

• 𝜒1, 𝜒2, and 𝜒 are key formulae of ℒ(Λ∞), with 𝜒1 being 𝑛-adic and 𝜒2 being 𝑚-adic;

• 𝜏1, . . . , 𝜏𝑛, 𝜎1, . . . , 𝜎𝑚 are terms of ℒ(Λ∞); and



• 𝜒 is the (2𝑛+2𝑚)-adic key formula associated, relative to the variable 𝑧, with the formula

𝜒1(𝑧, 𝜏1, . . . , 𝜏𝑛) ↔ 𝜒2(𝑧, 𝜎1, . . . , 𝜎𝑚)

(Clue: In light of the more compact earlier formulation of these axioms, the guiding idea is that
𝜒1 and 𝜒2 stand for (𝜙𝑥𝑧 )

[𝑧] and (𝜓𝑦𝑧 )
[𝑧], respectively — see Remark 2.)

Assuming that

(I∞,N) |= 𝜒1

(︀
𝜀𝑥.(¬ 𝜒), 𝜏1, . . . , 𝜏𝑛

)︀
↔ 𝜒2

(︀
𝜀𝑥.(¬ 𝜒), 𝜎1, . . . , 𝜎𝑚

)︀
holds, we proceed to verify that

(I∞,N) |= ℎ𝜒1(𝜏1, . . . , 𝜏𝑛) = ℎ𝜒2(𝜎1, . . . , 𝜎𝑚).

Clearly, we have (I∞, ̃︀N) |= 𝜒1 ↔ 𝜒2(𝜈0, 𝜈𝑛+1, . . . , 𝜈𝑛+𝑚), where ̃︀N is any D-valued se-
quence whose initial segment (𝑎0,𝑎1, . . . ,𝑎𝑛+𝑚) consists of the values 𝑎0 = valI∞,N(𝜀𝑥.(¬ 𝜒)),
𝑎𝑖 = valI∞,N(𝜏𝑖) for 𝑖 = 1, . . . , 𝑛 , and 𝑎𝑛+𝑗 = valI∞,N(𝜎𝑗), for 𝑗 = 1, . . . ,𝑚 . For each 𝑠 in D,
let us denote by N𝑠

1 and N𝑠
2 generic D-valued sequences having, respectively, initial segments

(𝑠,𝑎1, . . . ,𝑎𝑛) and (𝑠,𝑎𝑛+1, . . . ,𝑎𝑛+𝑚); accordingly, we have (I∞,N
𝑎0
1 ) |= 𝜒1 if and only if

(I∞,N
𝑎0
2 ) |= 𝜒2.

Consider the first ℓ such that 𝜒1 and 𝜒2 are formulae, and 𝜏1, . . . , 𝜏𝑛, 𝜎1, . . . , 𝜎𝑚 are terms,
of ℒ(Λℓ). Then, by construction, the set 𝑆𝜒1 of those 𝑠 in D such that (Iℓ,N𝑠

1) |= 𝜒1 co-
incides with the set 𝑆𝜒2 of those 𝑠 in D such that (Iℓ,N

𝑠
2) |= 𝜒2 . It easily follows that

val
Iℓ+1,̃︀N(ℎ𝜒1(𝜏1, . . . , 𝜏𝑛)) = c(𝑆𝜒1) = c(𝑆𝜒2) = val

Iℓ+1,̃︀N(ℎ𝜒2(𝜎1, . . . , 𝜎𝑚)) and therefore

(Iℓ+1, ̃︀N) |= ℎ𝜒1(𝜏1, . . . , 𝜏𝑛) = ℎ𝜒2(𝜎1, . . . , 𝜎𝑚), whence (I∞,N) |= ℎ𝜒1(𝜏1, . . . , 𝜏𝑛) =
ℎ𝜒2(𝜎1, . . . , 𝜎𝑚), as desired.

4.2. The 𝜀-calculus is a Boolean logic

In preparation for the completeness proof, let us momentarily digress to check that the 𝜀-calculus
satisfies all the properties of a Boolean logic, as intended in [7]. A benefit of this verification is that,
thanks to a key theorem applicable to all Boolean logics, the completeness proof will be significantly
simplified.

Here are the presupposed notions:

Definition 4.1. A logic is a pair (𝒮,⊢𝒮) consisting of

• a set 𝒮 ≠ ∅ whose elements are called statements and

• a relation ⊢𝒮 included in P (𝒮)× 𝒮 , called derivability,

which satisfies the following conditions, for all 𝛼, 𝛽 ∈ 𝒮 :

L1. {𝛼} ⊢𝒮 𝛼 .

L2. (Monotonicity) 𝒜 ⊢𝒮 𝛼 implies ℬ ⊢𝒮 𝛼 when 𝒜 ⊆ ℬ ⊆ 𝒮 .

L3. (Compactness) 𝒜 ⊢𝒮 𝛼 implies that ℱ ⊢𝒮 𝛼 holds for some finite set ℱ ⊆ 𝒜 .

L4. (Cut) From 𝒜 ⊢𝒮 𝛼 and ℬ ∪ {𝛼} ⊢𝒮 𝛽 it follows that 𝒜 ∪ ℬ ⊢𝒮 𝛽 . ⊣

Definition 4.2. A Boolean logic is a quadruple

L = (𝒮,⊢𝒮 , 𝑓, ⇒ )

consisting of



• a logic (𝒮,⊢𝒮) as above,

• a distinguished statement 𝑓 ∈ 𝒮 , and

• a dyadic operation ⇒ : 𝒮 × 𝒮 −→ 𝒮 ,

which satisfies the following conditions, for all 𝒜 ⊆ 𝒮 and 𝛼 ∈ 𝒮 :

B1. (Deduction principle) 𝒜 ⊢𝒮 𝛼 ⇒ 𝛽 holds if and only if 𝒜 ∪ {𝛼} ⊢𝒮 𝛽 .

B2. (Double negation principle) {(𝛼 ⇒ 𝑓) ⇒ 𝑓} ⊢𝒮 𝛼 .

The syntactic operation ⇒ is called implication (just like the operation on truth-values denoted
by →), and its first and second operands are called its antecedent and consequent, respectively. ⊣

In what follows, assuming that

• 𝒮 is the set of all formulae of ℒ(Λ∞),

• ⊢𝒮 is the derivability relation ⊢ introduced in Def. 3.1,

• 𝑓 is the formula f, and

• ⇒ constructs the formula (𝜙 → 𝜓) from a given antecedent 𝜙 and consequent 𝜓 ,

we proceed to verify that the conditions L1.–L4., B1., and B2. are all satisfied.
In fact,

• L1., L2., and L3. are immediate;

• L4. is almost so;

• B2. is derived in three steps:

– (𝛼→ f)→ f ,

– ((𝛼→ f)→ f)→ 𝛼 , and

– 𝛼,

which correspond to the premise, a tautology, and the result of modus ponens, respectively.

As for B1., assume first that the sequence (𝛿0, 𝛿1, . . . , 𝛿ℓ) derives (𝛼→𝛽) ≡ 𝛿ℓ from 𝒜 in the 𝜀-calculus;
then, by adding two more steps—𝛼 and 𝛽—at the end, we obtain a derivation of 𝛽 from 𝒜 ∪ {𝛼} . To
get the converse, suppose that (𝛿0, 𝛿1, . . . , 𝛿ℓ) is a derivation of 𝛽 from 𝒜 ∪ {𝛼} . Inductively, for each
𝑖 = 0, 1, . . . , ℓ, we construct a derivation of 𝛼→ 𝛿𝑖 from 𝒜 as follows.

• If 𝛿𝑖 ≡ 𝛼, then 𝛼→ 𝛿𝑖 is a tautology; a one-step derivation proves it.

• If 𝛿𝑖 is a logical axiom or belongs to 𝒜, then a three-step derivation

– 𝛿𝑖,

– 𝛿𝑖 → (𝛼→ 𝛿𝑖),

– 𝛼→ 𝛿𝑖

does the job.

• If 𝛿𝑖 is obtained from preceding steps 𝛿𝑗 and 𝛿𝑗 → 𝛿𝑖 , we concatenate the derivations of

𝛼→ 𝛿𝑗 and 𝛼→ (𝛿𝑗 → 𝛿𝑖)

(which exist, by the induction hypothesis), and continue with the tautology(︀
𝛼→ (𝛿𝑗 → 𝛿𝑖)

)︀
→

(︀
(𝛼→ 𝛿𝑗)→ (𝛼→ 𝛿𝑖)

)︀
;

then conclude as desired, by applying modus ponens twice.



In the special case when 𝑖 = ℓ , we obtain a derivation of 𝛼→ 𝛽 from 𝒜 .

This completes the verification of B1., thereby showing that the 𝜀-calculus is a Boolean logic.

Before recalling three important metalogical propositions, we define:

Definition 4.3. A set 𝒜 of statements of a Boolean logic L = (𝒮,⊢𝒮 , 𝑓, ⇒ ) is said to be consistent if
there exist statements 𝛼 in 𝒮 such that 𝒜 ⊬𝒮 𝛼, i.e., 𝛼 is not derivable from 𝒜 . ⊣

Here are the announced propositions, whose proofs can be found in [7]:3

Lemma 4.2 (Lindenbaum). For every consistent set 𝒜 of statements in a Boolean logic L, there exists
a maximally consistent set ℳ of statements in L such that 𝒜 ⊆ ℳ . That is, ℳ is consistent, and for
every statement 𝛼 in L with 𝛼 /∈ ℳ, the set ℳ∪ {𝛼} is inconsistent.

Lemma 4.3. If 𝒜 ⊬𝒮 𝑓 in a Boolean logic L as above, then there exists an assignment T : 𝒮 −→ {f , t}
satisfying the following conditions:

• T(𝑓) = f ,

• T
(︀
𝜙 ⇒ 𝜓

)︀
= if T(𝜙) = t then T(𝜓) else t , for all 𝜙,𝜓 in 𝒮 , and

• T(𝛽) = t , for all 𝛽 ∈ 𝒜 .

Theorem 4.2 (Key theorem for Boolean logics). Let L be a Boolean logic as above. Let 𝒜 be a set of
statements, and 𝛼 a statement, in L. If every assignment T : 𝒮 −→ {f , t} satisfying the three conditions
stated in Lemma 4.3 sends 𝛼 to t, then 𝒜 ⊢𝒮 𝛼 holds.

Relying on the fact that the 𝜀-calculus constitutes a Boolean logic—particularly its deduction principle—
we conclude with two instructive derivations. These establish standard quantifier equivalences which,
though often taken for granted in classical logic, require formal justification within the 𝜀-calculus.

4.2.1. Interdeducibility of ¬(∃𝑥.¬𝜙) and (∀𝑥. 𝜙), and between ¬(∀𝑥.¬𝜙) and (∃𝑥. 𝜙)

We now demonstrate how the 𝜀-calculus supports two classical equivalences involving quantifiers and
negation: the equivalence between universal quantification and the negation of an existential, and
vice versa. While these relationships are well known, formalizing them within the 𝜀-calculus requires
careful manipulation of 𝜀-terms and the use of Leisenring’s axioms. These derivations underscore the
expressive power and internal coherence of the 𝜀-calculus as a Boolean logic.

It is straightforward to derive (∀𝑥. 𝜙) from the single premise ¬(∃𝑥.(¬𝜙)) and, conversely, to derive
¬ (∃𝑥.(¬ 𝜙)) from the premise (∀𝑥. 𝜙).

Recall that, in our notation:

¬(∃𝑥.(¬𝜙) ≡ ¬
(︀
¬ 𝜙𝑥𝜀𝑥.¬𝜙

)︀
and (∀𝑥. 𝜙) ≡ 𝜙𝑥𝜀𝑥.¬𝜙.

Thus, to derive (∀𝑥. 𝜙) from {¬(∃𝑥.(¬𝜙)} in the 𝜀-calculus, it suffices to prove:{︀
¬
(︀
¬ 𝜙𝑥𝜀𝑥.¬𝜙

)︀}︀
⊢ 𝜙𝑥𝜀𝑥.¬𝜙 .

Since the 𝜀-calculus is a Boolean logic, by the Deduction Principle B1, this reduces to proving:

⊢
(︀
¬
(︀
¬ 𝜙𝑥𝜀𝑥.¬𝜙

)︀ )︀
→ 𝜙𝑥𝜀𝑥.¬𝜙 .

This implication is trivially valid, being a tautology—an axiom of type 0.
The converse direction, namely the derivation of ¬(∃𝑥.(¬𝜙)) from {(∀𝑥. 𝜙)}, follows by a symmetric

argument.

3A fully general proof of Lindenbaum’s lemma follows straightforwardly from the Zorn lemma. A more elementary proof can
be given (see, e.g., [7, pp.8–9]) for the case when the set 𝒮 is countable and effectively listable.



We now turn to the more involved equivalence between ¬ (∀𝑥.(¬ 𝜙)) and (∃𝑥. 𝜙). In our notation:

¬ (∀𝑥.(¬ 𝜙)) ≡ ¬
(︁
¬ 𝜙𝑥𝜀𝑥.(¬(¬𝜙))

)︁
and (∃𝑥. 𝜙) ≡ 𝜙𝑥𝜀𝑥.𝜙 .

To derive (∃𝑥. 𝜙) from
{︀
¬ (∀𝑥.(¬ 𝜙))

}︀
, we aim to prove:{︁

¬
(︁
¬ 𝜙𝑥𝜀𝑥.(¬(¬𝜙))

)︁}︁
⊢ 𝜙𝑥𝜀𝑥.𝜙 .

We begin by applying modus ponens to the tautology
(︁
¬
(︁
¬ 𝜙𝑥𝜀𝑥.(¬(¬𝜙))

)︁)︁
→ 𝜙𝑥𝜀𝑥.(¬(¬𝜙)) and the

premise ¬
(︁
¬ 𝜙𝑥𝜀𝑥.(¬(¬𝜙))

)︁
, obtaining:

𝜙𝑥𝜀𝑥.(¬(¬𝜙)) . (1)

Now, let 𝜓 :=
(︀
(¬(¬𝜙))↔ 𝜙

)︀
. Then,

(︀
∀𝑥.((¬(¬𝜙))↔ 𝜙)

)︀
is expressed as:(︀

¬(¬(𝜙𝑥𝜀𝑥.¬𝜓))
)︀

↔ 𝜙𝑥𝜀𝑥.¬𝜓 . (2)

We include in the derivation the tautology (2), along with the following instance of Leisenring’s axiom:(︀(︀
¬(¬(𝜙𝑥𝜀𝑥.¬𝜓))

)︀
↔ 𝜙𝑥𝜀𝑥.¬𝜓

)︀
→ 𝜀𝑥.

(︀
¬(¬(𝜙))

)︀
= 𝜀𝑥.𝜙 . (3)

Applying modus ponens to (3) and (2) yields:

𝜀𝑥.
(︀
¬(¬(𝜙))

)︀
= 𝜀𝑥.𝜙 . (4)

We rely on the general theorem

⊢ 𝜀𝑥.
(︀
¬(¬(𝜙))

)︀
= 𝜀𝑥.𝜙 →

(︁
𝜙𝑥𝜀𝑥.(¬(¬𝜙)) → 𝜙𝑥𝜀𝑥.𝜙

)︁
, (5)

whose proof proceeds by structural induction on 𝜙.
Applying modus ponens to (5) and (4), we obtain:

𝜙𝑥𝜀𝑥.(¬(¬𝜙)) → 𝜙𝑥𝜀𝑥.𝜙 . (6)

Finally, from (1) and (6), we derive 𝜙𝑥𝜀𝑥.𝜙 by modus ponens, completing the proof.
A symmetric argument shows that ¬ (∀𝑥.¬ 𝜙) can likewise be derived from the premise (∃𝑥. 𝜙).

4.3. Completeness of the 𝜀-calculus

Theorem 4.3 (Completeness). Consider a set 𝒜∪{𝛼} of sentences of ℒ(Λ∞). If 𝒜 |= 𝛼 , then 𝒜 ⊢ 𝛼 .

Proof. Suppose 𝒜 |= 𝛼. Let ℰ denote the collection of all logical axioms of ℒ(Λ∞) other than
tautologies. Now consider a generic truth value assignment T for ℒ(Λ∞), as defined in Def. 2.1, such
that T(𝜙) = t for every 𝜙 in 𝒜∪ℰ . We will show that T(𝛼) = t. It will then follow, by the key theorem
for Boolean logics (as presented in Sec. 4.2 and applicable to the 𝜀-calculus), that 𝒜 ∪ ℰ ⊢ 𝛼. Since ℰ
consists of logical axioms, we can conclude that 𝒜 ⊢ 𝛼 , as required.

A preliminary step in proving that T(𝛼) = t consists in constructing a selective structure I
(c)
0 =

(D,F, c) that complies with T in the sense that valI∞,N(𝛽) = T(𝛽) for every formula 𝛽, independently
of how the D-valued sequence N is chosen.

As the domain of discourse D of I0 (and, consequently, of I∞), we adopt the quotient of the collection
of all terms of ℒ(Λ∞) with respect to the equivalence relation ≈, where 𝜏 ≈ 𝜎 holds between two terms
𝜏 and 𝜎 if and only if T(𝜏 = 𝜎) = t. Each functor 𝑔 in Λ∞ is interpreted as the function F(𝑔) that maps
every d(𝑔)-tuple

(︀
𝜏1, . . . , 𝜏d(𝑔)

)︀
of terms to the term 𝑔

(︀
𝜏1, . . . , 𝜏d(𝑔)

)︀
. This definition is well-posed

because
𝑔
(︀
𝜏1, . . . , 𝜏d(𝑔)

)︀
≈ 𝑔

(︀
𝜎1, . . . , 𝜎d(𝑔)

)︀



follows from
𝜏1 ≈ 𝜎1, . . . , 𝜏d(𝑔) ≈ 𝜎d(𝑔)

thanks to the inclusion of all instances of the congruence property of equality among the logical axioms.
The preservation of truth values—namely, the identity valI∞,N(𝛽) = T(𝛽)—is proved by a straight-

forward induction on the number of occurrences of ‘→’ in 𝛽. Since T models 𝒜, so does
(︀
I∞,N) ;

therefore valI∞,N(𝛼) = t, thanks to hypothesis 𝒜 |= 𝛼. The sought conclusion T(𝛼) = t follows
readily.

5. Commentary

1. The version of the 𝜀-calculus proposed above builds on—but slightly differs from—the one
presented in [2]. The main differences are:

• The suppression of all relators except for equality, which Davis and Fechter considered an
optional construct.

• The restoration of Leisenring’s logical law, which was missing from [2].

A minor change is the introduction of what we dub exclusion formulae among the logical axioms,
along with a corresponding revision to the semantics.

2. In [2], Davis and Fechter prove a conservativeness result: their version of the 𝜀-calculus can
mimic the proofs in Shoenfield’s formalization of first-order predicate logic [8]. Indirectly, this
establishes the completeness of the 𝜀-calculus. Our completeness proof, however, is autonomous,
relying exclusively on the proposed semantics for the 𝜀-calculus.

3. In [2], Davis and Fechter present three elementary examples illustrating “the kinds of proof
procedures which our free variable formulation should make possible.” Based on this, they
conclude: “there is reason to believe that they may turn out to be of interest”. The authors of
this paper share their expectation that the 𝜀-calculus can effectively support predicate calculus
theorem-proving.

4. The logical axioms we have indicated as the basis of the 𝜀-calculus can be significantly simplified
by adopting a few tautological schemes instead of all tautologies. Which schemes? An elegant
option—one among several—was proposed by Quine [9] and it neatly separates the role of
implication from that of negation. It comprises all formulae of the following four forms:(︀

𝛼 → 𝛽
)︀

→
(︀
(𝛽 → 𝛾) → (𝛼 → 𝛾)

)︀
,

(︀
(𝛼 → 𝛽) → 𝛼) → 𝛼 ,

𝛼 → (𝛽 → 𝛼), f → 𝛼 .

Another simplification consists in postulating, instead of all instances of the reflexive property of
equality (𝜏 = 𝜏 , where 𝜏 can be any term), only those of the form 𝑥 = 𝑥, where 𝑥 is a variable.

5. We have formulated exclusion formulae as

𝜀𝑥.¬ 𝜙 ̸= 𝜀𝑥.𝜙 .

However, for the purpose of ensuring completeness, it would suffice to include only restricted
instances of such formulae—namely, those of the form

(∀𝑥.𝜙) → 𝜀𝑥.¬ 𝜙 ̸= 𝜀𝑥.𝜙 .

This restricted version captures all cases needed in the completeness proof, while reducing the
logical overhead.
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