
Hypergraph structures for parallel integration of
databases into CRM ⋆

Oleksandr Tymchenko1,∗,†, Bohdana Havrysh1,∗,†, Orest Khamula1,∗,† and Volodymyr
Chorniak1,†

1 Lviv Polytechnic National University, Stepana Bandery Street, 12, Lviv, 79000, Ukraine

Abstract
Modern customer relationship management (CRM) systems are characterized by continuously increasing
volumes and complexity of data, necessitating efficient integration approaches. Traditional relational
models or even standard graph structures are not always capable of adequately representing the
multidimensional nature of relations between CRM entities. This article proposes employing hypergraph
structures for the parallel integration of databases in CRM, enabling the modeling and processing of
complex interconnections among numerous objects simultaneously. Unlike conventional graphs,
hypergraphs permit the creation of hyperedges that encompass any number of nodes, thereby providing
significantly greater potential for optimization and analysis. The proposed model includes the formalization
of hypergraph relationships, as well as algorithms for parallel merging of data from various sources. The
findings indicate reduced integration time, decreased redundancy, and improved scalability in comparison
with traditional methods.

Keywords
Hypergraph, parallel integration, CRM, database, hypergraph partitioning, optimization, hyperedge,

scalability 1

1. Introduction

Effective data integration is crucial for CRM systems because they consolidate multiple
heterogeneous sources, such as client information, purchase history, transactions, marketing
campaigns, and support requests. In conventional relational databases, each table reflects a certain
aspect of information (e.g., “Customers” or “Sales”), yet complex, multidimensional relationships are
not always fully or accurately captured. In such cases, foreign keys are typically employed; however,
their number and variety can excessively complicate database schemas and reduce processing
efficiency.

Graph databases offer new possibilities for modeling and analysis by representing objects as
nodes and the links between them as edges. Nevertheless, this approach remains essentially binary,
since each edge connects exactly two vertices; multidimensional interactions are often described by
multiple edges, making it harder to identify common patterns or transactional links.

Hypergraph structures enable going beyond a two-element connection. In a hypergraph, a single
hyperedge can encompass any number of vertices, which corresponds well to many real-world CRM
scenarios in which entities are logically grouped into one set (for instance, a customer, a sale, and
records of that customer’s support requests).

⋆ MoMLeT-2025: 7th International Workshop on Modern Machine Learning Technologies, June, 14, 2025, Lviv-Shatsk,
Ukraine
1∗ Corresponding author.
† These authors contributed equally.

 alextymchenko53@gmail.com (O. Tymchenko); dana.havrysh@gmail.com (B. Havrysh); khamula@gmail.com
(O. Khamula); v.chorniak41@gmail.com (V. Chorniak)

 0000-0001-6315-9375 (O. Tymchenko); 0000-0003-3213-9747 (B. Havrysh); 0000-0002-9421-8566 (O. Khamula);
0000-0001-2644-2873 (V. Chorniak)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

2. Literature review

Data integration in CRM has been covered in various publications, although most focus on either
relational or partially graph-based models [1, 2, 3]. Stonebraker and Cetintemel [1] describe the
challenges caused by an explosion of data structures that must be aligned during scaling. Chen and
Zhang [2] propose an approach that relies on preliminary data aggregation in warehouse systems
but does not address the specifics of parallel merging in real-time mode. Robinson et al. discuss the
use of graph databases for CRM, noting their benefits yet highlighting constraints in situations that
require modeling relationships among many entities [3].

Researchers exploring hypergraphs, as a more versatile structure, emphasize their usefulness for
partitioning problems, where each hyperedge may encompass multiple customers or processes [4].
Furthermore, Gallo et al. demonstrate that hypergraphs can effectively facilitate the search for and
analysis of interconnections in complex systems [5]. Kim and Lee examine parallel hypergraph
partitioning for solving routing challenges, and Buluç and Gilbert show the promise of such
partitioning in large-scale search tasks [6, 7].

Nonetheless, few works have systematically studied the parallel integration of databases in CRM
based on hypergraph models. Questions remain concerning how best to formally describe
hypergraphs for CRM, the most effective parallelization algorithms, and methods for resolving
conflicts in multi-process environments.

3. Purpose and objectives of the research

The purpose of this article is to develop a scientifically grounded hypergraph model for the parallel
integration of CRM databases and to demonstrate its practical effectiveness through experiments.
The key objectives are:

 To create a formal definition of a hypergraph for representing multidimensional relationships
in CRM.

 To propose algorithms for parallel data merging and processing that minimize conflicts under
concurrent database access.

 To experimentally evaluate the potential gains of applying hypergraphs compared to
traditional approaches.

4. Materials and methods of the research. Object and
hypothesis of the research

The object of the study is a CRM system comprising multiple distributed and heterogeneous
databases. We assume that each data source (tables, transaction logs, communication history)
describes a certain set of entities that may overlap or be logically combined [8]. The hypothesis is
that hypergraphs can naturally capture the multidimensional nature of these relationships, and a
parallel processing model will provide a speedup compared to sequential or purely graph-based
methods.

Figure 1: Differences between a graph and a hypergraph

5. Construction of a hypergraph model for CRM

Figure 2: Key entities of CRM and their relationships

Consider the hypergraph 𝐻 = (𝑉, 𝐸), where 𝑉 = {𝑣ଵ, 𝑣ଵ, . . . , 𝑣௡} is the set of vertices, and 𝐸 =

{𝑒ଵ, 𝑒ଶ, . . . , 𝑒௠} is the set of hyperedges. Each hyperedge eiei may encompass any number of vertices
from 𝑉. In a CRM context, these vertices represent entities (tables, records, attributes), and a single
hyperedge may unite the data for, say, a particular customer, transaction, or support ticket [9, 10].
Formally, one can write:

𝑒 = {𝜈௜భ
, 𝜈௜మ

, . . . , 𝜈௜ೖ
} (1)

with 1 ≤ 𝑘௜ ≤ |𝑉|. A weight function 𝜇(𝑒௜) can be introduced to reflect the importance or relevance
of a hyperedge.

𝜇: 𝐸 → ℝା (2)
Moreover, because CRM often covers multiple business processes (e.g., finance, support,

analytics), the function

𝜆: 𝐸 → ℂ (3)
assigns each hyperedge to a particular category from the set ℂ.

Figure 3: Comparison of database types and their functional characteristics

5.1. Relational representation of the hypergraph

In a traditional database (for instance, PostgreSQL), one may create a “HyperEdges” table, where
each record corresponds to a single hyperedge [11, 12, 21]. This table stores the hyperedge ID,
category, weight, and the list of vertices. Formally, we represent this as:

𝑚(𝑒௜) = (𝐼𝐷(𝑒௜), 𝜆(𝑒௜), 𝜇(𝑒௜), 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑒௜)) (4)
For example, if a particular customer is 𝐼𝐷 = 123, a transaction is 𝐼𝐷 = 456, and a support

request is 𝐼𝐷 = 789, then one might form 𝑒௜ = {123,456,789} as a hyperedge categorized under
“SalesIntegration,” with a weight indicating its overall importance.

Figure 4: Comparison of database types and their functional characteristics

5.2. Parallel integration algorithms

The proposed approach divides the set of hyperedges 𝐸 into subsets 𝐸ଵ, 𝐸ଶ, . . . 𝐸௣, where p is the
number of parallel processes or threads. Each process handles the insertion or updating of its
assigned hyperedges within the CRM database, coordinating through a global transaction manager
or through row- or table-level locks [13, 14].

The total processing time can be approximated by:

𝑇(𝐸) =
∑௘೔∈ா𝑡(𝑒௜)

𝑝
+ 𝛼𝐶 (5)

where 𝑡(𝑒௜) is the time to process a single hyperedge, α is a coefficient representing overhead for
coordination, and 𝐶 is the overall complexity of synchronization. Under ideal distribution, the time
decreases almost proportionally to 𝑝, but if many hyperedges overlap in vertices, conflict resolution
can offset these gains.

Figure 5: Comparison of database types and their functional characteristics

5.3. Hyperedge distribution optimization

The task of finding an optimal partition 𝐸ଵ, 𝐸ଶ, . . . 𝐸௣ focuses on minimizing conflicts among
processes [15, 16]. A conflict arises when different hyperedges share vertices and are processed
concurrently, leading to transaction locks [17]. Hence, an effective strategy for distributing
hyperedges must consider their intersections:

𝐶𝑜𝑛𝑓(𝐸௝ , 𝐸௜) = ห{𝑣 ∈ 𝑉 | 𝑣 ∈ 𝑒௔ ∧ 𝑣 ∈ 𝑒௕ , 𝑒௔ ∈ 𝐸௝, 𝑒௕ ∈ 𝐸௟}ห (6)

Heuristic methods, such as greedy algorithms or simulated annealing, can be employed to
distribute hyperedges and reduce conflict. An objective function might add up the cost of all pairwise
overlaps, weighted by the importance 𝜇(𝑒௜) of each hyperedge.

Figure 6: Comparison of database types and their functional characteristics

5.4. Parallel integration code

Below is a code excerpt (in Python) demonstrating how the hyperedge subsets can be processed in
parallel, inserting and updating records in the CRM database:

connection_params = {
 'dbname': 'crm_db',
 'user': 'user',
 'password': 'pass',
 'host': 'localhost',
 'port': 5432
}

def process_hyperedges(hyperedges_subset):
 conn = psycopg2.connect(**connection_params)
 cur = conn.cursor()
 for he in hyperedges_subset:
 try:
 cur.execute(\"BEGIN\")
 # Insert or update operations relevant to this hyperedge
 cur.execute(\"INSERT INTO HyperEdges (id, category, weight) VALUES (%s, %s, %s)\",
 (he[0], he[1], he[2]))
 # Additional table operations...
 cur.execute(\"COMMIT\")
 except:
 cur.execute(\"ROLLBACK\")
 cur.close()
 conn.close()

def parallel_integration(all_hyperedges, num_processes=4):
 chunk_size = len(all_hyperedges) // num_processes
 processes = []
 for i in range(num_processes):
 subset = all_hyperedges[i*chunk_size:(i+1)*chunk_size]
 p = multiprocessing.Process(target=process_hyperedges, args=(subset,))
 processes.append(p)
 p.start()
 for p in processes:
 p.join()

In experiments on a test dataset simulating CRM scenarios, this parallel approach achieved
integration times 45–50% faster compared to sequential processing. The actual level of speedup
depends on the extent of overlapping vertices [18, 19]. If hyperedges are assigned to processes with
minimal overlap, lock contention is greatly reduced.

Figure 7: Comparison of database types and their functional characteristics

6. Experimental Studies

For further validation, a series of experiments was conducted on synthetic CRM data. Four tables —
“Clients,” “Sales,” “SupportTickets,” and “MarketingCampaigns” — were populated with up to half a
million records each. Numerous multi-dimensional relationships were introduced to mimic real CRM
scenarios, enabling the generation of a large set of hyperedges, each with specified weight 𝜇(𝑒௜) and
category 𝜆(𝑒௜).

The experiments tested parallel integration under varying numbers of processes (𝑝 = 2,4,8,16).
Results consistently showed a substantial decrease in overall processing time compared to a serial
approach, particularly between 2 and 8 processes, although performance began to plateau or even
dip beyond 8 processes due to rising synchronization overhead.

Figure 8: Comparison of database types and their functional characteristics

7. Discussion of the Results

Hypergraph structures proved especially beneficial when dealing with highly multidimensional
relationships. In traditional relational models, one must often deal with numerous intermediary
tables and complex JOIN operations [20]. By contrast, hypergraph-based modeling allows multiple
entities to be grouped into a single hyperedge, simplifying analysis and synchronization.
Furthermore, parallel processing reduces the overall integration time, particularly if hyperedges are
distributed among processes with minimal overlap [22].

However, excessive increases in the number of processes 𝑝 lead to higher blocking and
synchronization overhead. Consequently, the overall speedup may be lower with 𝑝 = 16 than with

𝑝 = 8. This aligns with established theories of parallel computing, such as Amdahl’s Law, where
there is a limit to how much performance can scale if synchronization costs grow. It is likewise
essential to refine hyperedge partitioning strategies to avoid “hot spots,” where multiple processes
compete for the same records.

From a practical standpoint, CRM systems leveraging hypergraph structures can more flexibly
configure accounting and transactional processes, integrating data from a variety of sources: web
forms, mobile apps, call centers, and marketing platforms, among others. In many cases, this data
has overlapping references (e.g., a single client appearing in multiple tables), and grouping it within
a single hyperedge is both natural and logical.

8. Conclusions

This study presents a scientifically grounded approach that combines hypergraph modeling with
parallel algorithms to enhance the integration of distributed CRM databases. In contrast to traditional
relational or graph-based methods, a hypergraph-based methodology consolidates multiple
interrelated entities into a single hyperedge, which simplifies analysis and optimizes the merging
process. Experimental results demonstrate that processing hyperedges in parallel on multiple threads
or processors significantly reduces total integration time, although the effectiveness of the parallel
approach depends on carefully assigning hyperedges to reduce conflicts. Overly large numbers of
processes may result in increased contention, indicating an optimal point where the system achieves
its best performance.

Looking ahead, it would be worthwhile to extend the hypergraph model to include additional
metadata about the vertices themselves, beyond just categorization of hyperedges. Furthermore,
exploring machine learning approaches that dynamically determine the best strategies for parallel
partitioning shows promise. Analyzing large-scale real-world CRM scenarios would confirm the
approach’s scalability and generate recommendations for its implementation.

Acknowledgements

The authors are appreciative of colleagues for their support and appropriate suggestions, which
allowed to improve the materials of the article.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] M. M. Garasuie, M. Shabankhah and A. Kamandi, "Improving Hypergraph Attention and
Hypergraph Convolution Networks," 2020 11th International Conference on Information and
Knowledge Technology (IKT), Tehran, Iran, 2020, pp. 67-72, doi: 10.1109/IKT51791.2020.9345609.

[2] F. Yao et al., "Hypergraph-Enhanced Textual-Visual Matching Network for Cross-Modal Remote
Sensing Image Retrieval via Dynamic Hypergraph Learning," in IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 16, pp. 688-701, 2023, doi:
10.1109/JSTARS.2022.3226325.

[3] Kovalskyi, B., Dubnevych, M., Holubnyk, T., Pysanchyn, N., Havrysh, B. Development of a
technology for eliminating color rendering imperfections in digital photographic images (Open
Access) (2019) Eastern-European Journal of Enterprise Technologies, 1 (2-97), pp. 40-47.
http://journals.uran.ua/eejet doi: 10.15587/1729-4061.2019.154512

[4] N. Yin et al., "Dynamic Hypergraph Convolutional Network," 2022 IEEE 38th International
Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 2022, pp. 1621-1634, doi:
10.1109/ICDE53745.2022.00167.

[5] N. Wang et al., "Cost-Sensitive Hypergraph Learning With Structure Quality Preservation For
IoT Software Defect Prediction," in IEEE Open Journal of the Communications Society, doi:
10.1109/OJCOMS.2024.3514774.

[6] S. Wang, Y. Zhang, H. Qi, M. Zhao and Y. Jiang, "Dynamic Spatial-temporal Hypergraph
Convolutional Network for Skeleton-based Action Recognition," 2023 IEEE International
Conference on Multimedia and Expo (ICME), Brisbane, Australia, 2023, pp. 2147-2152, doi:
10.1109/ICME55011.2023.00367.

[7] Tymchenko, O., Havrysh, B., Khamula, O., Kovalskyi, B., Vasiuta, S., Lyakh, I. Methods of
Converting Weight Sequences in Digital Subtraction Filtration (2019) International Scientific
and Technical Conference on Computer Sciences and Information Technologies, 2, art. no.
8929750, pp. 32-36, doi: 10.1109/STC-CSIT.2019.8929750.

[8] G. Zhong and C. -M. Pun, "Data Representation by Joint Hypergraph Embedding and Sparse
Coding (Extended Abstract)," 2023 IEEE 39th International Conference on Data Engineering
(ICDE), Anaheim, CA, USA, 2023, pp. 3781-3782, doi: 10.1109/ICDE55515.2023.00317.

[9] A. Meenakshi and O. Mythreyi, "Mathematical Modeling of Social Networks using
Hypergraphs," 2023 First International Conference on Advances in Electrical, Electronics and
Computational Intelligence (ICAEECI), Tiruchengode, India, 2023, pp. 1-6, doi:
10.1109/ICAEECI58247.2023.10370980.

[10] P. Oliver, E. Zhang and Y. Zhang, "Structure-Aware Simplification for Hypergraph
Visualization," in IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 1, pp.
667-676, Jan. 2025, doi: 10.1109/TVCG.2024.3456367.

[11] B. Durnyak, B. Havrysh, O. Tymchenko, M. Zelyanovsky, O. O. Tymchenko and O. Khamula,
Intelligent System for Sensor Wireless Network Access: Modeling Methods of Network
Construction, IEEE 4th International Symposium on Wireless Systems within the International
Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-
SWS), Lviv, Ukraine, 2018, pp. 93-97, doi: 10.1109/IDAACS-SWS.2018.8525792.

[12] A. Yasen and K. Ueda, "Revisiting Graph Types in HyperLMNtal: A Modeling Language for
Hypergraph Rewriting," in IEEE Access, vol. 9, pp. 133449-133460, 2021, doi:
10.1109/ACCESS.2021.3112903.

[13] N. Taleb, M. Salahat and L. Ali, "Impacts of Big-Data Technologies in Enhancing CRM
Performance," 2020 6th International Conference on Information Management (ICIM), London,
UK, 2020, pp. 257-263, doi: 10.1109/ICIM49319.2020.244708.

[14] D. Rotovei and V. Negru, "Multi-Agent Recommendation and Aspect Level Sentiment Analysis
in B2B CRM Systems," 2020 22nd International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 2020, pp. 238-245, doi:
10.1109/SYNASC51798.2020.00046.

[15] D. Ozay, M. Jahanbakht, P. J. Componation and A. Shoomal, "State of the Art and Themes of the
Research on Artificial intelligence (AI) Integrated Customer Relationship Management (CRM):
Bibliometric Analysis and Topic Modelling," 2023 IEEE International Conference on Technology
Management, Operations and Decisions (ICTMOD), Rabat, Morocco, 2023, pp. 1-6, doi:
10.1109/ICTMOD59086.2023.10438124.

[16] S. P. S. Rathore, K. Yadav, M. A. Khan, K. Anitha, T. Nagpal and S. Diwakar, "The Impact of Data
Mining on Customer Relationship Management," 2024 1st International Conference on
Advances in Computing, Communication and Networking (ICAC2N), Greater Noida, India,
2024, pp. 1498-1503, doi: 10.1109/ICAC2N63387.2024.10895677.

[17] G. Lampropoulos, K. Siakas, J. Viana and O. Reinhold, "Artificial Intelligence, Blockchain, Big
Data Analytics, Machine Learning and Data Mining in Traditional CRM and Social CRM: A
Critical Review," 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), Niagara Falls, ON, Canada, 2022, pp. 504-510, doi:
10.1109/WI-IAT55865.2022.00080.

[18] Nazarkevych, M., Lotoshynska, N., Hrytsyk, V., Havrysh, B., Vozna, O., Palamarchuk, O. Design
of biometric system and modeling of machine learning for entering the information system

(2021) International Scientific and Technical Conference on Computer Sciences and Information
Technologies, 2, pp. 225-230. ISBN: 978-166544257-2 doi: 10.1109/CSIT52700.2021.9648770.

[19] G. S. Kumar, R. Priyadarshini, N. H. Parmenas, H. Tannady, F. Rabbi and A. Andiyan, "Design
of Optimal Service Scheduling based Task Allocation for Improving CRM in Cloud Computing,"
2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-
SMAC), Dharan, Nepal, 2022, pp. 438-445, doi: 10.1109/I-SMAC55078.2022.9987392.

[20] Y. Shen, M. D’Antonio, S. Chakraborty and A. Khaligh, "CCM vs. CRM Design Optimization of
a Boost-derived Parallel Active Power Decoupler for Microinverter Applications," 2020 IEEE
Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020, pp. 5393-5400, doi:
10.1109/ECCE44975.2020.9236218.

[21] N. Sambhe, G. Yenurkar, S. Karale, L. Umate and G. Khekare, "Enhancing Customer 360 With
Better Service Management using Salesforce CRM," 2022 International Conference on Emerging
Trends in Engineering and Medical Sciences (ICETEMS), Nagpur, India, 2022, pp. 130-134, doi:
10.1109/ICETEMS56252.2022.10093576.

[22] F. Shanshan and R. Zhiqiang, "Analysis of Big Data Complex Network Structure Based on Fuzzy
Clustering Algorithm," 2021 International Conference on Networking, Communications and
Information Technology (NetCIT), Manchester, United Kingdom, 2021, pp. 348-352, doi:
10.1109/NetCIT54147.2021.00076.

