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Abstract 
Modern customer relationship management (CRM) systems are characterized by continuously increasing 
volumes and complexity of data, necessitating efficient integration approaches. Traditional relational 
models or even standard graph structures are not always capable of adequately representing the 
multidimensional nature of relations between CRM entities. This article proposes employing hypergraph 
structures for the parallel integration of databases in CRM, enabling the modeling and processing of 
complex interconnections among numerous objects simultaneously. Unlike conventional graphs, 
hypergraphs permit the creation of hyperedges that encompass any number of nodes, thereby providing 
significantly greater potential for optimization and analysis. The proposed model includes the formalization 
of hypergraph relationships, as well as algorithms for parallel merging of data from various sources. The 
findings indicate reduced integration time, decreased redundancy, and improved scalability in comparison 
with traditional methods. 
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1. Introduction 

Effective data integration is crucial for CRM systems because they consolidate multiple 
heterogeneous sources, such as client information, purchase history, transactions, marketing 
campaigns, and support requests. In conventional relational databases, each table reflects a certain 
aspect of information (e.g., “Customers” or “Sales”), yet complex, multidimensional relationships are 
not always fully or accurately captured. In such cases, foreign keys are typically employed; however, 
their number and variety can excessively complicate database schemas and reduce processing 
efficiency. 

Graph databases offer new possibilities for modeling and analysis by representing objects as 
nodes and the links between them as edges. Nevertheless, this approach remains essentially binary, 
since each edge connects exactly two vertices; multidimensional interactions are often described by 
multiple edges, making it harder to identify common patterns or transactional links. 

Hypergraph structures enable going beyond a two-element connection. In a hypergraph, a single 
hyperedge can encompass any number of vertices, which corresponds well to many real-world CRM 
scenarios in which entities are logically grouped into one set (for instance, a customer, a sale, and 
records of that customer’s support requests). 
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2. Literature review 

Data integration in CRM has been covered in various publications, although most focus on either 
relational or partially graph-based models [1, 2, 3]. Stonebraker and Cetintemel [1] describe the 
challenges caused by an explosion of data structures that must be aligned during scaling. Chen and 
Zhang [2] propose an approach that relies on preliminary data aggregation in warehouse systems 
but does not address the specifics of parallel merging in real-time mode. Robinson et al. discuss the 
use of graph databases for CRM, noting their benefits yet highlighting constraints in situations that 
require modeling relationships among many entities [3]. 

Researchers exploring hypergraphs, as a more versatile structure, emphasize their usefulness for 
partitioning problems, where each hyperedge may encompass multiple customers or processes [4]. 
Furthermore, Gallo et al. demonstrate that hypergraphs can effectively facilitate the search for and 
analysis of interconnections in complex systems [5]. Kim and Lee examine parallel hypergraph 
partitioning for solving routing challenges, and Buluç and Gilbert show the promise of such 
partitioning in large-scale search tasks [6, 7]. 

Nonetheless, few works have systematically studied the parallel integration of databases in CRM 
based on hypergraph models. Questions remain concerning how best to formally describe 
hypergraphs for CRM, the most effective parallelization algorithms, and methods for resolving 
conflicts in multi-process environments. 

3. Purpose and objectives of the research 

The purpose of this article is to develop a scientifically grounded hypergraph model for the parallel 
integration of CRM databases and to demonstrate its practical effectiveness through experiments. 
The key objectives are: 

 To create a formal definition of a hypergraph for representing multidimensional relationships 
in CRM. 

 To propose algorithms for parallel data merging and processing that minimize conflicts under 
concurrent database access. 

 To experimentally evaluate the potential gains of applying hypergraphs compared to 
traditional approaches. 

4. Materials and methods of the research. Object and 
hypothesis of the research 

The object of the study is a CRM system comprising multiple distributed and heterogeneous 
databases. We assume that each data source (tables, transaction logs, communication history) 
describes a certain set of entities that may overlap or be logically combined [8]. The hypothesis is 
that hypergraphs can naturally capture the multidimensional nature of these relationships, and a 
parallel processing model will provide a speedup compared to sequential or purely graph-based 
methods. 



 

Figure 1: Differences between a graph and a hypergraph 

5. Construction of a hypergraph model for CRM 

 

Figure 2: Key entities of CRM and their relationships 

Consider the hypergraph 𝐻 = (𝑉, 𝐸), where 𝑉 = {𝑣ଵ, 𝑣ଵ, . . . , 𝑣௡} is the set of vertices, and 𝐸 =

{𝑒ଵ, 𝑒ଶ, . . . , 𝑒௠} is the set of hyperedges. Each hyperedge eiei may encompass any number of vertices 
from 𝑉. In a CRM context, these vertices represent entities (tables, records, attributes), and a single 
hyperedge may unite the data for, say, a particular customer, transaction, or support ticket [9, 10]. 
Formally, one can write: 

𝑒 = {𝜈௜భ
, 𝜈௜మ

, . . . , 𝜈௜ೖ
} (1) 

with 1 ≤ 𝑘௜ ≤ |𝑉|. A weight function 𝜇(𝑒௜) can be introduced to reflect the importance or relevance 
of a hyperedge. 

𝜇: 𝐸 → ℝା (2) 
Moreover, because CRM often covers multiple business processes (e.g., finance, support, 

analytics), the function 

𝜆: 𝐸 → ℂ (3) 
assigns each hyperedge to a particular category from the set ℂ. 



 

Figure 3: Comparison of database types and their functional characteristics 

5.1. Relational representation of the hypergraph 

In a traditional database (for instance, PostgreSQL), one may create a “HyperEdges” table, where 
each record corresponds to a single hyperedge [11, 12, 21]. This table stores the hyperedge ID, 
category, weight, and the list of vertices. Formally, we represent this as: 

𝑚(𝑒௜) = (𝐼𝐷(𝑒௜), 𝜆(𝑒௜), 𝜇(𝑒௜), 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑒௜)) (4) 
For example, if a particular customer is 𝐼𝐷 = 123, a transaction is 𝐼𝐷 = 456, and a support 

request is 𝐼𝐷 = 789, then one might form 𝑒௜ = {123,456,789} as a hyperedge categorized under 
“SalesIntegration,” with a weight indicating its overall importance. 

 

Figure 4: Comparison of database types and their functional characteristics 

5.2. Parallel integration algorithms 

The proposed approach divides the set of hyperedges 𝐸 into subsets 𝐸ଵ, 𝐸ଶ, . . . 𝐸௣, where p is the 
number of parallel processes or threads. Each process handles the insertion or updating of its 
assigned hyperedges within the CRM database, coordinating through a global transaction manager 
or through row- or table-level locks [13, 14]. 

The total processing time can be approximated by: 



𝑇(𝐸) =
∑௘೔∈ா𝑡(𝑒௜)

𝑝
+ 𝛼𝐶 (5) 

where 𝑡(𝑒௜) is the time to process a single hyperedge, α is a coefficient representing overhead for 
coordination, and 𝐶 is the overall complexity of synchronization. Under ideal distribution, the time 
decreases almost proportionally to 𝑝, but if many hyperedges overlap in vertices, conflict resolution 
can offset these gains. 

 

Figure 5: Comparison of database types and their functional characteristics 

5.3. Hyperedge distribution optimization 

The task of finding an optimal partition 𝐸ଵ, 𝐸ଶ, . . . 𝐸௣ focuses on minimizing conflicts among 
processes [15, 16]. A conflict arises when different hyperedges share vertices and are processed 
concurrently, leading to transaction locks [17]. Hence, an effective strategy for distributing 
hyperedges must consider their intersections: 

𝐶𝑜𝑛𝑓(𝐸௝ , 𝐸௜) = ห{𝑣 ∈ 𝑉 | 𝑣 ∈ 𝑒௔ ∧ 𝑣 ∈ 𝑒௕ , 𝑒௔ ∈ 𝐸௝, 𝑒௕ ∈ 𝐸௟}ห (6) 

Heuristic methods, such as greedy algorithms or simulated annealing, can be employed to 
distribute hyperedges and reduce conflict. An objective function might add up the cost of all pairwise 
overlaps, weighted by the importance 𝜇(𝑒௜) of each hyperedge. 

 

Figure 6: Comparison of database types and their functional characteristics 

5.4. Parallel integration code 

Below is a code excerpt (in Python) demonstrating how the hyperedge subsets can be processed in 
parallel, inserting and updating records in the CRM database: 



connection_params = { 
    'dbname': 'crm_db', 
    'user': 'user', 
    'password': 'pass', 
    'host': 'localhost', 
    'port': 5432 
} 
 
def process_hyperedges(hyperedges_subset): 
    conn = psycopg2.connect(**connection_params) 
    cur = conn.cursor() 
    for he in hyperedges_subset: 
        try: 
            cur.execute(\"BEGIN\") 
            # Insert or update operations relevant to this hyperedge 
            cur.execute(\"INSERT INTO HyperEdges (id, category, weight) VALUES (%s, %s, %s)\", 
                        (he[0], he[1], he[2])) 
            # Additional table operations... 
            cur.execute(\"COMMIT\") 
        except: 
            cur.execute(\"ROLLBACK\") 
    cur.close() 
    conn.close() 
 
def parallel_integration(all_hyperedges, num_processes=4): 
    chunk_size = len(all_hyperedges) // num_processes 
    processes = [] 
    for i in range(num_processes): 
        subset = all_hyperedges[i*chunk_size:(i+1)*chunk_size] 
        p = multiprocessing.Process(target=process_hyperedges, args=(subset,)) 
        processes.append(p) 
        p.start() 
    for p in processes: 
        p.join() 

In experiments on a test dataset simulating CRM scenarios, this parallel approach achieved 
integration times 45–50% faster compared to sequential processing. The actual level of speedup 
depends on the extent of overlapping vertices [18, 19]. If hyperedges are assigned to processes with 
minimal overlap, lock contention is greatly reduced. 



 
Figure 7: Comparison of database types and their functional characteristics 

6. Experimental Studies 

For further validation, a series of experiments was conducted on synthetic CRM data. Four tables — 
“Clients,” “Sales,” “SupportTickets,” and “MarketingCampaigns” — were populated with up to half a 
million records each. Numerous multi-dimensional relationships were introduced to mimic real CRM 
scenarios, enabling the generation of a large set of hyperedges, each with specified weight 𝜇(𝑒௜)  and 
category 𝜆(𝑒௜). 

The experiments tested parallel integration under varying numbers of processes (𝑝 = 2,4,8,16). 
Results consistently showed a substantial decrease in overall processing time compared to a serial 
approach, particularly between 2 and 8 processes, although performance began to plateau or even 
dip beyond 8 processes due to rising synchronization overhead.  

 
Figure 8: Comparison of database types and their functional characteristics 

7. Discussion of the Results 

Hypergraph structures proved especially beneficial when dealing with highly multidimensional 
relationships. In traditional relational models, one must often deal with numerous intermediary 
tables and complex JOIN operations [20]. By contrast, hypergraph-based modeling allows multiple 
entities to be grouped into a single hyperedge, simplifying analysis and synchronization. 
Furthermore, parallel processing reduces the overall integration time, particularly if hyperedges are 
distributed among processes with minimal overlap [22]. 

However, excessive increases in the number of processes 𝑝 lead to higher blocking and 
synchronization overhead. Consequently, the overall speedup may be lower with 𝑝 = 16 than with 



𝑝 = 8. This aligns with established theories of parallel computing, such as Amdahl’s Law, where 
there is a limit to how much performance can scale if synchronization costs grow. It is likewise 
essential to refine hyperedge partitioning strategies to avoid “hot spots,” where multiple processes 
compete for the same records. 

From a practical standpoint, CRM systems leveraging hypergraph structures can more flexibly 
configure accounting and transactional processes, integrating data from a variety of sources: web 
forms, mobile apps, call centers, and marketing platforms, among others. In many cases, this data 
has overlapping references (e.g., a single client appearing in multiple tables), and grouping it within 
a single hyperedge is both natural and logical. 

8. Conclusions 

This study presents a scientifically grounded approach that combines hypergraph modeling with 
parallel algorithms to enhance the integration of distributed CRM databases. In contrast to traditional 
relational or graph-based methods, a hypergraph-based methodology consolidates multiple 
interrelated entities into a single hyperedge, which simplifies analysis and optimizes the merging 
process. Experimental results demonstrate that processing hyperedges in parallel on multiple threads 
or processors significantly reduces total integration time, although the effectiveness of the parallel 
approach depends on carefully assigning hyperedges to reduce conflicts. Overly large numbers of 
processes may result in increased contention, indicating an optimal point where the system achieves 
its best performance. 

Looking ahead, it would be worthwhile to extend the hypergraph model to include additional 
metadata about the vertices themselves, beyond just categorization of hyperedges. Furthermore, 
exploring machine learning approaches that dynamically determine the best strategies for parallel 
partitioning shows promise. Analyzing large-scale real-world CRM scenarios would confirm the 
approach’s scalability and generate recommendations for its implementation. 

Acknowledgements 

The authors are appreciative of colleagues for their support and appropriate suggestions, which 
allowed to improve the materials of the article. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 

References 

[1] M. M. Garasuie, M. Shabankhah and A. Kamandi, "Improving Hypergraph Attention and 
Hypergraph Convolution Networks," 2020 11th International Conference on Information and 
Knowledge Technology (IKT), Tehran, Iran, 2020, pp. 67-72, doi: 10.1109/IKT51791.2020.9345609. 

[2] F. Yao et al., "Hypergraph-Enhanced Textual-Visual Matching Network for Cross-Modal Remote 
Sensing Image Retrieval via Dynamic Hypergraph Learning," in IEEE Journal of Selected Topics 
in Applied Earth Observations and Remote Sensing, vol. 16, pp. 688-701, 2023, doi: 
10.1109/JSTARS.2022.3226325. 

[3] Kovalskyi, B., Dubnevych, M., Holubnyk, T., Pysanchyn, N., Havrysh, B. Development of a 
technology for eliminating color rendering imperfections in digital photographic images (Open 
Access) (2019) Eastern-European Journal of Enterprise Technologies, 1 (2-97), pp. 40-47. 
http://journals.uran.ua/eejet doi: 10.15587/1729-4061.2019.154512 

[4] N. Yin et al., "Dynamic Hypergraph Convolutional Network," 2022 IEEE 38th International 
Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 2022, pp. 1621-1634, doi: 
10.1109/ICDE53745.2022.00167. 



[5] N. Wang et al., "Cost-Sensitive Hypergraph Learning With Structure Quality Preservation For 
IoT Software Defect Prediction," in IEEE Open Journal of the Communications Society, doi: 
10.1109/OJCOMS.2024.3514774. 

[6] S. Wang, Y. Zhang, H. Qi, M. Zhao and Y. Jiang, "Dynamic Spatial-temporal Hypergraph 
Convolutional Network for Skeleton-based Action Recognition," 2023 IEEE International 
Conference on Multimedia and Expo (ICME), Brisbane, Australia, 2023, pp. 2147-2152, doi: 
10.1109/ICME55011.2023.00367. 

[7] Tymchenko, O., Havrysh, B., Khamula, O., Kovalskyi, B., Vasiuta, S., Lyakh, I. Methods of 
Converting Weight Sequences in Digital Subtraction Filtration (2019) International Scientific 
and Technical Conference on Computer Sciences and Information Technologies, 2, art. no. 
8929750, pp. 32-36, doi: 10.1109/STC-CSIT.2019.8929750. 

[8] G. Zhong and C. -M. Pun, "Data Representation by Joint Hypergraph Embedding and Sparse 
Coding (Extended Abstract)," 2023 IEEE 39th International Conference on Data Engineering 
(ICDE), Anaheim, CA, USA, 2023, pp. 3781-3782, doi: 10.1109/ICDE55515.2023.00317. 

[9] A. Meenakshi and O. Mythreyi, "Mathematical Modeling of Social Networks using 
Hypergraphs," 2023 First International Conference on Advances in Electrical, Electronics and 
Computational Intelligence (ICAEECI), Tiruchengode, India, 2023, pp. 1-6, doi: 
10.1109/ICAEECI58247.2023.10370980. 

[10] P. Oliver, E. Zhang and Y. Zhang, "Structure-Aware Simplification for Hypergraph 
Visualization," in IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 1, pp. 
667-676, Jan. 2025, doi: 10.1109/TVCG.2024.3456367. 

[11] B. Durnyak, B. Havrysh, O. Tymchenko, M. Zelyanovsky, O. O. Tymchenko and O. Khamula, 
Intelligent System for Sensor Wireless Network Access: Modeling Methods of Network 
Construction, IEEE 4th International Symposium on Wireless Systems within the International 
Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-
SWS), Lviv, Ukraine, 2018, pp. 93-97, doi: 10.1109/IDAACS-SWS.2018.8525792. 

[12] A. Yasen and K. Ueda, "Revisiting Graph Types in HyperLMNtal: A Modeling Language for 
Hypergraph Rewriting," in IEEE Access, vol. 9, pp. 133449-133460, 2021, doi: 
10.1109/ACCESS.2021.3112903. 

[13] N. Taleb, M. Salahat and L. Ali, "Impacts of Big-Data Technologies in Enhancing CRM 
Performance," 2020 6th International Conference on Information Management (ICIM), London, 
UK, 2020, pp. 257-263, doi: 10.1109/ICIM49319.2020.244708. 

[14] D. Rotovei and V. Negru, "Multi-Agent Recommendation and Aspect Level Sentiment Analysis 
in B2B CRM Systems," 2020 22nd International Symposium on Symbolic and Numeric 
Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 2020, pp. 238-245, doi: 
10.1109/SYNASC51798.2020.00046. 

[15] D. Ozay, M. Jahanbakht, P. J. Componation and A. Shoomal, "State of the Art and Themes of the 
Research on Artificial intelligence (AI) Integrated Customer Relationship Management (CRM): 
Bibliometric Analysis and Topic Modelling," 2023 IEEE International Conference on Technology 
Management, Operations and Decisions (ICTMOD), Rabat, Morocco, 2023, pp. 1-6, doi: 
10.1109/ICTMOD59086.2023.10438124. 

[16] S. P. S. Rathore, K. Yadav, M. A. Khan, K. Anitha, T. Nagpal and S. Diwakar, "The Impact of Data 
Mining on Customer Relationship Management," 2024 1st International Conference on 
Advances in Computing, Communication and Networking (ICAC2N), Greater Noida, India, 
2024, pp. 1498-1503, doi: 10.1109/ICAC2N63387.2024.10895677. 

[17] G. Lampropoulos, K. Siakas, J. Viana and O. Reinhold, "Artificial Intelligence, Blockchain, Big 
Data Analytics, Machine Learning and Data Mining in Traditional CRM and Social CRM: A 
Critical Review," 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and 
Intelligent Agent Technology (WI-IAT), Niagara Falls, ON, Canada, 2022, pp. 504-510, doi: 
10.1109/WI-IAT55865.2022.00080. 

[18] Nazarkevych, M., Lotoshynska, N., Hrytsyk, V., Havrysh, B., Vozna, O., Palamarchuk, O. Design 
of biometric system and modeling of machine learning for entering the information system 



(2021) International Scientific and Technical Conference on Computer Sciences and Information 
Technologies, 2, pp. 225-230. ISBN: 978-166544257-2 doi: 10.1109/CSIT52700.2021.9648770. 

[19] G. S. Kumar, R. Priyadarshini, N. H. Parmenas, H. Tannady, F. Rabbi and A. Andiyan, "Design 
of Optimal Service Scheduling based Task Allocation for Improving CRM in Cloud Computing," 
2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-
SMAC), Dharan, Nepal, 2022, pp. 438-445, doi: 10.1109/I-SMAC55078.2022.9987392. 

[20] Y. Shen, M. D’Antonio, S. Chakraborty and A. Khaligh, "CCM vs. CRM Design Optimization of 
a Boost-derived Parallel Active Power Decoupler for Microinverter Applications," 2020 IEEE 
Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020, pp. 5393-5400, doi: 
10.1109/ECCE44975.2020.9236218. 

[21] N. Sambhe, G. Yenurkar, S. Karale, L. Umate and G. Khekare, "Enhancing Customer 360 With 
Better Service Management using Salesforce CRM," 2022 International Conference on Emerging 
Trends in Engineering and Medical Sciences (ICETEMS), Nagpur, India, 2022, pp. 130-134, doi: 
10.1109/ICETEMS56252.2022.10093576. 

[22] F. Shanshan and R. Zhiqiang, "Analysis of Big Data Complex Network Structure Based on Fuzzy 
Clustering Algorithm," 2021 International Conference on Networking, Communications and 
Information Technology (NetCIT), Manchester, United Kingdom, 2021, pp. 348-352, doi: 
10.1109/NetCIT54147.2021.00076. 


