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Abstract  
The article proposes a novel mathematical framework for the analytical evaluation of the performance of 
a high-loaded 5G-IoT ecosystem operating in an environment with multiple sensor networks. The 
relevance of the study is driven by the rapid development of critical-use Internet of Things (IoT) systems 
and the necessity to ensure guaranteed Quality of Service (QoS) under conditions of high traffic intensity. 
The constructed model accounts for the specific features of 5G technologies, including NR Scheduling, 
HARQ, DRX, as well as packet fragmentation mechanisms and adaptive frequency hopping (AFH) in NR-
U mode. The developed approach integrates methods of mathematical modelling, queueing theory, and 
stochastic analysis, providing reliable predictive capabilities for key performance parameters, in 
particular, average response time, blocking probability, and system idleness. A comparative validation of 
the model was conducted using an open dataset of operational indicators from a real 5G-NB-IoT network, 
confirming its advantages over classical models. The findings of the study encompass models and 
methods for the analysis of modern information and communication technologies, intelligent traffic 
management, resource optimisation, and the evaluation of dependability in dynamic environments.  
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1. Introduction 

Due to the intensive deployment of sensor networks in critical sectors such as industry (in the 
context of the Industrial Internet of Things), energy, transport, telemetry, and security, the issue of 
efficiently aggregating information flows in 5G-IoT environments with a high number of nodes has 
become particularly pressing [1, 2]. This challenge is further exacerbated when the communication 
ecosystem operates under heavy load conditions, with an increased frequency of simultaneous 
request transmissions and stringent real-time Quality of Service (QoS) requirements [3]. 
International standards [4], including 3GPP TS 23.501, 3GPP TS 38.300, and 3GPP TS 22.104, clearly 
outline the requirements for supporting Ultra-Reliable Low-Latency Communications (URLLC) and 
Massive Machine-Type Communications (mMTC), which are key components of 5G-IoT. 
Furthermore, ITU-T standards Y.3101 and Y.3113 emphasise the need for analytical evaluation of 
resource availability, latency, and data loss probability in critical services [5]. However, neither 
these standards nor traditional approaches to modelling loaded networks fully capture the specific 
nature of multisensor systems, which dynamically alter their topology, traffic types, and processing 
requirements. Consequently, there is a growing need to develop advanced analytical models 
capable of reliably forecasting the performance of the target information and communication 
system, taking into account the interaction between multiple sensor networks and 5G base stations 
under real-world load and constrained resource conditions. These challenges, aligned with the 
provisions of the aforementioned international standards, define the relevance of the present study. 
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Existing approaches to the analytical modelling of 5G-IoT ecosystem performance demonstrate 
a considerable diversity of methods – from classical queueing theory models to sophisticated 
hybrid frameworks that combine stochastic geometry, radio channel parameterisation, and service 
mechanisms [6–9]. Fundamental methods [10–12], such as the M/M/1, M/M/c, and MAP/PH/1 
models and their modifications, are effective for a first approximation in modelling individual 
network components. However, they exhibit significant limitations in the context of 5G ecosystems 
due to their lack of adaptability to variable traffic loads, traffic prioritisation, NR Scheduling, and 
DRX/HARQ mechanisms, which are critically important for real-world operational scenarios [13]. 

Advanced approaches based on stochastic geometry, widely applied in LTE systems and early 
versions of 5G, are capable of accounting for the spatial distribution of users, signal blockage by 
obstacles, and environmental characteristics [14–16]. However, as noted in [17], these models 
insufficiently reflect the dynamics of service provision at the base station side, particularly in cases 
of adaptive multi-service traffic (eMBB, URLLC, mMTC). In 5G-IoT ecosystems, where sensor 
devices generate quasi-periodic or spontaneous traffic and transmission delay is of critical 
importance, there arises a need for multi-component analytical models that simultaneously cover 
both the physical transmission layer and service processes at the gNB level. 

The study [18] proposes a two-level framework structure for modelling systems based on 
mmWave/THz communication, which can be adapted for 5G-IoT. The first level involves radio 
interface parameterisation (geometry, blockage, micro-mobility), while the second comprises a 
queueing service model. This approach enables the separate modelling of physical environment 
effects and traffic processing mechanisms at base stations. The application of such a framework 
facilitates the simulation of scenarios involving resource reservation, multi-connectivity, diverse 
traffic types, and prioritisation schemes. 

Of particular interest are the models presented in [19], which are tailored to the specific 
requirements of URLLC and mMTC—key service categories within the 5G-IoT paradigm. Such 
models must account for both ultra-low latency and massive device connectivity, implying a 
necessary synergy between adaptive radio resource scheduling (NR Scheduling) and intelligent 
traffic optimisation algorithms. As stated in [20], traditional methods are incapable of accurately 
reflecting the effects of packet fragmentation, DRX mode switching, inter-flow prioritisation across 
varying levels of criticality, as well as system behaviour under excessive load conditions. 

Another important trend is the advancement of analytical modelling methods for 5G networks 
operating in the millimetre-wave and terahertz frequency bands. The study [21] describes a 
modular framework that accounts for antenna directivity, atmospheric attenuation, blockage 
effects, and micro-mobility—factors characteristic of next-generation sensor networks. Such models 
can be integrated into broader 5G-IoT performance models to capture not only radio aspects but 
also traffic behaviour and request processing at the base station level, which is particularly relevant 
in scenarios characterised by high traffic density and critical latency requirements. 

In addition, contemporary approaches [22], such as those involving Network Function 
Virtualization (NFV) and Network Slicing, introduce a new modelling paradigm in which each 
"slice" (logical subnetwork) is optimised for a specific traffic type. Within the context of analytical 
modelling, these approaches necessitate the construction of systems composed of multiple 
interacting service models, each with its own scheduling policy and acceptable QoS level. 

In summary, existing approaches demonstrate considerable flexibility but fail to 
comprehensively capture all operational characteristics of real-world loaded 5G-IoT ecosystems. 
This underscores the need to develop new mathematical frameworks that integrate mechanisms for 
adaptive resource management, packet processing with fragmentation, dynamic frequency 
planning, and multi-channel routing services, all aimed at ensuring guaranteed Quality of Service 
under multisensor traffic conditions. 

The object of this study is the operation of a 5G information and communication ecosystem 
involving the interaction of multiple sensor networks under high-load conditions. 

The subject of the research is analytical models for evaluating the performance of 5G-IoT 
ecosystems, taking into account dynamic radio resource allocation, adaptive frequency planning, 



and other technologies inherent to the 5G platform relevant for the deployment of sensor 
networks. 

The aim of the study is to develop an analytical framework for the reliable evaluation of the 
performance of a high-loaded 5G-IoT ecosystem, considering the specific features of radio resource 
scheduling, traffic typology, and the architectural characteristics of sensor networks. 

To achieve this aim, the following tasks were accomplished: 
1. The specific features of 5G-IoT ecosystem operation under high-load conditions were 

analysed. 
2. A model of interaction between multiple sensor networks and a gNB base station was 

formulated, incorporating NR Scheduling, HARQ, and DRX. 
3. Analytical expressions were formalised to evaluate blocking probabilities, system idleness, 

response time, and throughput. 
4. The model was modified to account for packet fragmentation and its impact on 

communication efficiency. 
5. The model was adapted to the conditions of dynamic frequency planning (AFH) in NR-U 

mode. 
6. The proposed mathematical framework was validated using a real dataset and compared with 

classical models. 
7. The representativeness of key performance metrics was investigated for characterising 

typical operational scenarios of 5G-IoT ecosystems. 

2. Models and methods 

2.1. Research Statement 

In a 5G-IoT ecosystem, data transmission between the 5G base station (gNB) and sensor networks 
is implemented through dynamic radio resource allocation governed by NR Scheduling technology. 
All active sensor networks can initiate transmission via the Random Access Channel (RACH), after 
which the base station allocates uplink or downlink resources based on traffic demand and priority. 
The functioning of the 5G-IoT ecosystem during the aggregation of information flows from sensor 
networks can be conditionally divided into two operational modes: 

- Time Division Mode (TDM) – an active traffic period during which sensor networks transmit 
data, and the gNB performs adaptive scheduling, allocating resources according to the current load. 

- Traffic Control Mode (TCM) – a resource optimisation mode in which, under low-load 
conditions, the 5G base station may redistribute frequencies, enable Discontinuous Reception 
(DRX) for energy efficiency, or switch part of the radio resources to a low-activity state. 

If, at any given moment, no sensor network has data to transmit, the system does not await the 
completion of TCM but can immediately activate DRX or adjust resource allocation. Consequently, 
TDM and TCM do not alternate according to a fixed schedule but are dynamically regulated based 
on current traffic conditions. Data transmission from a sensor network occurs in dedicated time 
slots (Transmission Time Intervals – TTI), which the gNB allocates based on real-time analysis of 
traffic requests. If a sensor network has data to send, it signals this through a Buffer Status Report 
(BSR), after which the gNB assigns the appropriate resources. Transmission success is monitored 
via the Hybrid Automatic Repeat Request (HARQ) mechanism, which enables retransmission with 
minimal delay in the event of packet loss. This approach enables flexible load management and 
prevents inefficient use of the radio channel. The present study considers a scenario in which the 
5G base station operates under high-load conditions, where the probability of radio resource 
idleness due to traffic absence is negligible, and adaptive allocation mechanisms ensure a 
continuous flow of data from multiple sensor networks. 

We describe a typical model of a 5G-IoT ecosystem designed to collect data from multiple 

sensor networks  1, ,S S  . Each sensor network s S  comprises a set of sN  end devices 

(sensors, IoT devices) and one or more edge servers that perform preliminary data processing prior 



to transmission via the 5G network. In this study, we consider the most common scenarios of 
information interaction: 

- Requests directed to the edge server within the sensor network (local internal interaction 
within the sensor network).   

- Requests directed to an external server (in the global network) via the gNB base station.   
- Response transmission: either the local or external server processes the request and generates 

a response consisting of multiple packets, which are transmitted via the 5G connection. 
Data transmission is carried out through dynamic resource allocation by the base station using 

NR Scheduling, while communication between sensor networks and the gNB is regulated via 
RACH and BSR mechanisms. If required, the HARQ mechanism ensures error correction and 
packet retransmission with minimal delay. This minimalist set of scenarios reliably reflects the 
actual data exchange mechanisms in real-world 5G-IoT ecosystems, optimising performance and 
minimising delays during the processing of information requests. 

Since the aim of the study is to analyse the throughput of a 5G base station during data 
collection from multiple sensor networks, the interaction between individual sensor nodes within a 
local network s S  and beyond is modelled in a simplified manner. A request from a sensor 
terminal within the network s  is generated at an average interval 1 s  following the reception of 

the last response packet from the gNB. Requests may be directed either to a local server within the 
sensor network or to external servers via the 5G infrastructure. External requests arrive at the base 
station as a Poisson flow with intensity 0  and are forwarded to the corresponding server or 

sensor device capable of performing the required processing. The server’s response is generated in 
the form of a set of packets or an aggregated Transport Block (TB) and transmitted back via the 5G 
connection. Within the scope of this study, it is assumed that the 5G network operates under high-
load conditions, where the probability of traffic absence across all sensor networks is negligible. It 
is also assumed that the TCM interval significantly exceeds TDM, allowing periods of low activity 
to be disregarded when evaluating throughput. 

After passing through the 5G base station (gNB), a request is either processed by the 
corresponding server within the sensor network or forwarded to external computing resources via 
cloud infrastructure. If the request is directed to a local server within sensor network r , 0r  , it is 
processed internally within that network. Conversely, if the request is intended for an external 
system, i.e., 0r  , the transmission is carried out through the 5G infrastructure in the form of an 
aggregated TB or a set of packets. The routing path of the request is determined by a routing 
matrix ,s rP , where 0s   denotes external traffic originating from the global network. After being 

processed by the server r , the average response delay is ,1 s r , and the resulting response stream 

consists of ,s rF  packets or aggregated data blocks. The response from the server is transmitted 

back via the 5G connection, undergoing buffering within the sensor network before being 
forwarded through the gNB base station. If the response originates from an external server 0r  , it 
is transmitted directly through the gNB to the sensor device that initiated the request. Upon 
receiving the final response packet, the sensor device may generate a new request to continue the 
data exchange process. The generation of requests and their processing by servers follow an 
exponential distribution, which is a typical approach for modelling high-loaded networks in 5G 
environments. 

Based on the stated assumptions, a simulation was conducted to model the operation of a 5G 
base station (gNB) responsible for collecting and processing data from multiple sensor networks. 
Due to the high number of sensor nodes sN  and the substantial volume of responses from servers 

,s rF , the simulation process proved to be resource-intensive, even for a relatively small number of 

sensor devices and their corresponding requests. The most effective approach for analysing the 
operation of a 5G-IoT ecosystem is analytical modelling, which enables the evaluation of system 
performance under varying load conditions. To this end, data transmission through sensor 
networks and the gNB is represented using a mixed exponential model, where requests from sensor 



devices circulate within the system as clustered data flows with dynamic routing. 
In this context, each sensor network s S  consists of a set of Single-Channel Sensor Devices 

(SCs) operating in continuous data collection and transmission mode, and Buffering Controllers 
(BCs) that manage request queues before data is sent to the 5G base station. An SC generates a 
stream of requests with an average intensity s  and transmits them via the RACH to the BC, 

which temporarily buffers the packets if no resources are available at the gNB. Once resources are 
allocated, the BC forwards the packet to the gNB, which assigns processing resources through NR 
Scheduling. To model the interaction between sensor networks and the base station, the following 
variables are introduced: 
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    is the total throughput of the 5G-IoT ecosystem;   

-  procT s  is the average processing time of requests at the sensor network server or in the cloud 

environment;   

-  1s proc sT s M    is the load coefficient of the BC in sensor network s  prior to transmitting 

data through the 5G infrastructure, where sM  represents the average number of requests waiting 

for processing in network s ;   

-  ,visP s r  is the visit ratio of server r  by sensor network s , indicating the probability of 

routing a request to that server;   
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  is a non-zero visit ratio of sensor network s S , indicating the frequency 

with which this network forwards requests to server r R , including both local and global routes. 
Requests from sensor devices are received by the gNB, which assigns resources to them in 

accordance with NR Scheduling. The routing of requests is determined by the visit ratio matrix 

 ,visP s r , which specifies the target server for each request. In the case of a request directed to a 

local server of the sensor network r R , the average processing time is  procT s , and the response 

is transmitted in the form of rsF  individual packets or an aggregated Transport Block (TB). If the 

request requires external processing on a Cloud Server, the response arrives from the global 
network and is routed through the gNB to the initiating sensor device. Upon receiving the final 
response packet, the sensor device may generate a new request, thus maintaining a continuous 
flow of data. The visit ratio coefficients SK  determine the frequency of traffic routing between 

sensor networks and servers. Fig. 1 visualises the interaction model between sensor networks and 
the gNB base station within the 5G-IoT ecosystem. 

 

 
Figure 1: Structure of the 5G-IoT Ecosystem for Aggregating Information Flows from Sensor 
Networks. 



Considering that sensor networks may utilise various communication mechanisms (NB-IoT, 
LTE-M, 5G NR), delays in data processing and transmission are modelled using an exponential 
distribution. The analytical characterisation of the performance of the 5G-IoT ecosystem presented 
in Fig. 1 is conducted in the following sections. 

2.2. Mathematical Framework for Evaluating the Performance of the Target 
High-Loaded 5G-IoT Ecosystem 

The model of the 5G-IoT ecosystem shown in Fig. 1 is multiplicative in nature (in accordance 
with [23–25]). Considering this, classical methods [23] can be applied to characterise each sensor 

network s S  in terms of performance metrics such as throughput s , average response time 

 respT s
, and probabilities  idleP s  and  blockP s , which describe the absence of requests in the 

queue to the Buffering Controller (BC) of the sensor network and to the 5G base station (gNB), 
respectively. To carry out the evaluation, it is necessary to determine key characteristics of the 
target 5G-IoT infrastructure, such as the average request processing time on the sensor network 

server  procT s
 and the waiting time for resources at the gNB  gNBT s

 for s S  . 
To determine these characteristics, it is important to note that the operation of a 5G-IoT 

ecosystem under dynamic resource allocation resembles the structure of time-slotted networks 
[24]. Each sensor device within a sensor network may transmit data via the RACH, after which the 

gNB allocates resources in accordance with NR Scheduling. The duration of the time slot s , 
assigned for data transmission from sensor network s , is a stochastic variable with an average 
value that depends on the dynamics of request flows within the system. 

Depending on the resource scheduling mechanism at the gNB, sensor network s  receives 

resource allocations sm  times during the observation period (in the case of uniform distribution – 
1sm  ) for s S  . The average waiting time for a resource at the gNB can then be estimated as: 

   
 

1

1

2

S
idle

gNB s s
sgNB

q s
T s m

H s




 
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 


, 

(1) 

where  idleq s  is the probability that a request arrives at an empty queue of the BC of sensor 

network s , and  gNBH s
 is the probability of successful resource assignment by the gNB for data 

transmission from sensor network s . The value  procT s
 is determined using a similar formula, but 

with consideration of the data processing time at the sensor network server. 

We define the average time slot duration s  for sensor network s . Let us assume that the data 

transmission time of a packet, excluding the header, is denoted by dt  and is identical for all 

packets, while the average packet transmission time is pt . The probabilities of frame corruption for 

frames containing and not containing payload data are denoted as dz  and 0z , respectively. Taking 
the introduced parameters into account, the average duration of a time slot is characterised by 
formula 

     s poll resp ackZ s Z s T gNB   
, (2) 

 
where 

       maxˆ1poll d block p s block sZ s t P s t z s       
, (3) 

        0ˆ1 1 2resp bloock d idle p sZ s z s t P s t z        , (4) 



           ˆ1 1 1 1 1 1ack block idle block dZ s z s P s P s z         , (5) 

and  ackT gNB  denotes the transmission time of the acknowledgement from the gNB, s  is the 

signal propagation time from the gNB to sensor network s , max  is the maximum propagation 

delay in the system,       0ˆ 1block block block dz s P s z P s z  
 is the effective transmission blocking 

probability, and the index 1s   in formula (5) is replaced by S  if 1s   is used for cyclic resource 
allocation in the system. 

The probabilities of successful data transmission in the 5G-IoT ecosystem are defined by 
formulas 

        ˆ ˆ1 1 1 1gNB block d blockH s z s z z s    
,       ˆ1 1BC d idleH s z z s  

, (6) 

where  ˆidlez s  is determined analogously to  ˆblockz s , but in the context of probabilities 

 idleP s , and index 1s   is replaced by 1 in the case of s S ;  gNBH s
 denotes the probability of 

successful resource assignment by the gNB for data transmission from sensor network s ;  BCH s  
represents the probability of successful packet passage through the BC of sensor network s . 

The probability that a request arrives at an empty queue is defined analogously to [23, 24]: 
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where 
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, and  idleP s  is the probability 

of no requests in the queue of the BC of sensor network s ,  blockP s  is the probability of 

transmission blocking through the gNB, s  is the request generation intensity by sensor network 

s , ,s ip  is the probability of routing a request from network s  to network i , and ,s iF  is the 
average number of packets in the response after request processing at the server of network s . 

Thus, considering known values of  idleP s ,  blockP s , s  for s S  , expressions (1)-(7) can be 

used to determine the average waiting time  gNBT s
 and the average request processing time in the 

sensor network  procT s
. Clearly, the process of jointly determining all these characteristics is 

iterative in nature, which imposes constraints on computational resources when applying the 

corresponding equations. Therefore, to analyse a network with a large number of sensor nodes sN , 
it is advisable to apply asymptotic methods [24], which yield the following approximations for 
s S  : 

s s sN Q  ,   1resp s s sT s N   
,      1block gNB gNBP s T s M s 

, 

     1idle proc BCP s T s M s 
, 

(8) 

where the value of sQ  is determined from the following system of equations: 
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,     0 ,0 ,01proc proc s ss T s p F   

,     0 ,01gNB gNB ss T s p   
, and 

 procr s
  is an auxiliary variable representing the average waiting time of a request prior to its 

processing within the sensor network, and  gNBr s
 is an auxiliary variable representing the 

average waiting time for resource allocation by the gNB. The system of equations (8) should be 

solved under the condition 0sQ  ,   0procr s 
,   0gNBr s 

 for 0s  . Clearly, the intensity of the 

external request flow 0  must satisfy the inequalities 
    ,0 0 ,01 max ,s gNB s procp T s F T s 

 for 
0s  . 

We estimate from above the probability that the gNB base station of a 5G-IoT ecosystem 
transitions into an energy-saving state due to the absence of packets for transmission from all 
sensor networks during the TCM period. The probability that the last transmitted packet was the 

only one across all sensor networks can be indirectly evaluated through the probability 0P  of no 
pending requests in all BCs of the sensor networks: 

0 mingNB idleP PTCM T 
, (10) 

where the minimum time minT  required for packet transmission, including acknowledgement, is 
defined as 

    min 02 minp ack d s
s

T t T gNB t      
, 

(11) 

with pt  denoting the packet transmission time,  ackT gNB  is the acknowledgement 

transmission time, 0  is the signal propagation time, and s  the maximum signal propagation time 
for sensor network s . 

By analogy with [23], for a large number of sensor nodes sN , the order of probability 0Р  is 
estimated using formula 

         0
1

ˆexp ln
S

proc proc gNB gNB s s s
s

P s r s s r s N Q  


      


. 
(12) 

Expression (10) remains valid even when the number of polling cycle repetitions 
 
0
IoTn  for the 

sensor networks is zero, indicating the absence of any traffic (an empty cycle). If 
 
0 0IoTn   holds, 

the right-hand side of expression (10) must be multiplied by the probability 
 

0
IoTP  that no new 

requests are generated within the sensor networks during these empty cycles: 

   
0 0 0

1 1

exp 2
ˆ

S S
IoT IoT s

d s
s ss

N
P n t  

 

         
     

 
. 

(13) 

Thus, the developed analytical method can be applied if the upper bound gNB idleP   computed 

using expression (10) is significantly less than one, and also if TCM TDM  holds. 
To reduce the number of collisions in a 5G-IoT ecosystem, it is advisable to implement a packet 

fragmentation mechanism. This approach enables retransmission of only the affected fragments in 
case of channel errors, rather than the entire packet. Each packet, assuming a uniform average 

transmission time, is divided into fn  fragments, where the average transmission time of all 



fragments except the last is 
 f
mt  (category 1), and for the final fragment – 

 f
lt  (category 2). In this 

case, expression  1 gNBH s
 in equation (6) is transformed into 

   1 2

1 1f

f f
s s

n

H H




, where 
 1f
sH  and 

 2f
sH  denote the probabilities of successful transmission of category 1 and category 2 fragments, 

respectively, and parameter dz  is replaced with the fragment error probabilities mz  and lz  for 
categories 1 and 2. 

In other equations of the mathematical framework, the parameters dz  and pt  are replaced with 

the averaged values 
 f
dz  and 

 f
meant , which are determined using formulas 

 

    
1

1 1 1
ff

d

f m l

n
z

n z z
 

   
, 

(14) 
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   


   
, 

(15) 

where 
 f
meant  is the average transmission time of a fragment, taking into account that the 

majority of the packet consists of standard fragments of category 1 with length 
 f
mt , while only the 

final fragment belongs to category 2 and has a different length 
 f
lt . In condition (10), the minimum 

transmission time is updated to account for fragmentation: 

       min 0
1

1 2
S

f f
f mean l f ack d s

s

T n t t n T gNB t  


  
        

  


. 
(16) 

Thus, the method can be readily modified to account for the distribution of packet lengths, 
which is particularly relevant for sensor networks where both short messages (e.g., control signals 
or telemetry data) and longer packets containing aggregated or multimedia data are present. 

Another modification of the proposed mathematical framework involves adaptation to dynamic 
frequency planning in a 5G-IoT ecosystem based on Adaptive Frequency Hopping (AFH) 
technology in NR-U (Unlicensed NR). In this mode, all sensor devices operate on a single frequency 

for a fixed time-frequency interval dewllT , after which they are switched to a different frequency 

(with a switching delay ct ). During frequency switching, terminals temporarily lose 
synchronisation with the network. Accordingly, a sensor device waiting for resource allocation to 
transmit a packet (or its fragment) postpones the transmission if the expected transmission time, 

calculated based on the maximum signal propagation time max  (including acknowledgement), 
exceeds the remaining time in the current frequency interval. Such a scenario is referred to as 
delayed transmission. 

The average waiting time between a delayed transmission and the end of the frequency interval 

(including the switching time ct ) can be estimated using formula 

min 2ct T   , (17) 

where the minimum packet transmission time is defined according to equation (16), but with 

max  replaced by  min s . In the case of fragmentation, instead of the average packet transmission 

time pt , the averaged value from equation (15) is used. 
As shown in [24], it can be assumed (and this is confirmed by simulation modelling) that the 

adaptive frequency hopping mode differs from the stationary regime only by silence periods with 

an average duration   at the end of each frequency interval dewllT . Therefore, in formulas (8), 



which define the throughput s , the probabilities of no requests in the queue  idleP s , and 

transmission blocking  blockP s  in the target 5G-IoT ecosystem, both the average waiting time at 

the 5G base station  gNBT s
 and the average waiting time across all sensor networks  procT s

 must 

be divided by the coefficient  1 dwell cT t   . This adjustment accounts for the reduction in 
effective access time to radio resources in 5G-IoT systems caused by dynamic frequency hopping. 

3. Results and Discussion 

Let us begin this section by presenting the process and results of the verification of the 
mathematical framework proposed in the article. The verification involved a detailed evaluation of 
the adequacy of the analytical model presented, as well as empirical validation of its effectiveness 
and practical relevance. The objective of the verification was to empirically demonstrate that the 
developed model accurately describes the operation of a high-loaded 5G-IoT ecosystem, provides 
more reliable results compared to classical approaches, and can be effectively applied for the 
practical analysis of network performance. 

To verify adequacy, we consistently carried out a series of actions structured into three key 
stages. The first stage involved the selection of classical mathematical models of network 
performance widely used in the field of information and communication systems. Particular 
attention was given to the ability of these conventional models to describe functional processes 
characteristic of high-loaded 5G-IoT ecosystems, with a specific focus on radio resource allocation, 
adaptive traffic scheduling, and dynamic request management. The second stage consisted in 
selecting a representative dataset containing sufficient information on the operational results of 
real 5G-IoT ecosystems in terms of the parameters used in the formalisation of the proposed 
mathematical framework. At the third stage, we visualised the comparison results between the 
proposed model and classical counterparts using the research-specific performance metrics, with 
the determination of confidence intervals and discussion of the findings. The analysis focused on 
key performance parameters such as latency, throughput, and request blocking probability, which 
are critical for the operation of a 5G-IoT ecosystem. 

In implementing the first stage, we focused on selecting classical mathematical models for 
traffic flow and load evaluation in branched information and communication networks. Traditional 
Markov queueing models such as M/M/1 and M/M/c serve as fundamental analytical tools for 
systems with randomly arriving requests. The M/M/1 model assumes a single queue with 
exponentially distributed inter-arrival and service times, enabling analysis of individual network 
nodes. The M/M/c model extends this approach by incorporating multiple parallel service servers, 
offering a more adequate representation of modern multichannel 5G-IoT networks. However, these 
models have significant limitations, as they do not account for adaptive resource scheduling typical 
of 5G systems and fail to capture the impact of mechanisms such as NR Scheduling. Iterative 
analytical methods for evaluating network load allow for a more accurate analysis of radio 
resource status and allocation mechanisms. These methods are based on repeated computations of 
the steady state of the telecommunication system, considering dynamic load parameters and 
adaptive traffic control algorithms. This approach enables the estimation of request blocking 
probabilities and resource allocation efficiency in high-load scenarios. At the same time, classical 
analytical methods remain limited when dealing with the complex adaptive mechanisms of 5G-IoT, 
such as dynamic traffic prioritisation and the use of HARQ to minimise packet loss. In contrast, the 
proposed mathematical framework integrates elements of adaptive resource management and 
scheduling mechanisms tailored to high-loaded 5G-IoT ecosystems. This potentially offers a more 
realistic reflection of the functioning of such ecosystems compared to traditional approaches 
(M/M/1 and M/M/c). 

For the verification of the proposed mathematical framework, we selected the open-access 
dataset “A Large-Scale Dataset of 4G, NB-IoT, and 5G Non-Standalone Network 



Measurements” [26]. This dataset was developed by a research team from Simula Research 
Laboratory, Ericsson Research, Karlstad University, Sapienza University of Rome, and other 
institutions. It contains results from a seven-week campaign of experimental data collection on the 
real-world operation of commercial mobile networks in Rome, Italy. The dataset covers three major 
mobile communication technologies: LTE (4G), NB-IoT, and 5G NR (Non-Standalone), and includes 
measurements obtained across a variety of usage scenarios—ranging from stationary to dynamic 
(pedestrian and vehicular) contexts. Its representativeness for our study is explained by its scale, 
openness, and, most importantly, the breadth of captured characteristics directly related to the 
performance and reliability of 5G-IoT ecosystems. Specifically, the dataset includes parameters of 
radio coverage (RSRP, RSRQ, SINR), channel characteristics (TBS, Modulation and Coding Scheme), 
as well as indicators of data transmission quality such as round-trip time (RTT), packet delay 
variation (PDV), interface-level interactions, packet loss, and throughput. The RTT metric was 
measured under real-world conditions using Speedtest sessions and online gaming traffic, making 
the data highly relevant for modelling latency in practical 5G-IoT scenarios. 

Within the scope of our study, the RTT parameter is employed as the primary verification 
metric. It is particularly critical for IoT applications with stringent response time requirements, 
such as telemetry, real-time control, and automated management systems. In the proposed 
mathematical framework, the response time (or the latency between request generation and receipt 

of the corresponding response) is modelled by the expression    1resp s sT s   
, where s  

denotes the intensity of new request generation, and s  represents the actual throughput of 

sensor network s S  within the 5G-IoT ecosystem. This expression is presented in formula (8) 
and is used as an analytical estimate of the average response time from the sensor device, which, in 
essence, corresponds to the RTT delay measured under real-world operating conditions. In 

addition, the related metric  gNBT s
, as defined in formula (1), represents the average waiting time 

for resource allocation by the 5G base station. Combined with the average request processing time 

at the server  procT s
, the indicators  respT s

 and  gNBT s
 enable the calculation of the overall 

estimate of the total request service time, which structurally corresponds to the empirical RTT. 
As previously noted, the classical analogues selected for comparison with the proposed 

mathematical framework are the M/M/1 and M/M/c models. The M/M/1 model is used to describe a 
system with a single queue and a single server. In the context of this basic model, the average time 
a request spends in the system (including both queueing and actual service time) is given by 

 / /1 1M MRTT    , where   represents the intensity of the Poisson arrival process, and 12   
is the parameter of the exponential distribution corresponding to the average service rate of the 

single server. To avoid discontinuities in the corresponding function graph, a constraint    was 
introduced. The M/M/c model is a generalisation of M/M/1 and describes a system with c parallel 
servers (for example, in cases where the base station processes requests in parallel across multiple 
channels). The RTT in the M/M/c model is defined by expression 

   / /

1 1

! 1 1

c

M M cRTT
c c


   

 
 

, where с    is the system load metric. All parameters of 
the classical models were selected to ensure that the RTT estimates derived from them closely 
approximate the real-world data from the dataset. 

Fig. 2 presents a comparison of RTT estimates in a high-loaded 5G-IoT ecosystem, calculated 
using the proposed model (red line), the M/M/1 model (blue line), and the M/M/c model (green 
line). The black line represents the empirical RTT values obtained from the dataset. The grey 
shaded area around this curve represents the confidence interval, reflecting the fluctuation of RTT 
under real-world operating conditions. The high data dispersion indicates significant variability in 
latency across different network load scenarios. 



 

 
Figure 2: Verification Results of the Proposed Mathematical Framework. 

 
An analysis of the real data dynamics in Fig. 2 reveals a gradual increase in RTT as the load 

grows, represented by the argument  , which denotes the input flow intensity. In the low-load 

range 2  , RTT values remain low, as the system operates in a regime where the servicing 
capacity exceeds the volume of incoming requests, resulting in minimal delays. In the mid-load 

range 2 6  , a noticeable increase in RTT is observed, indicating a gradual saturation of 

network resources and the emergence of queue formation within the system. Under 6  , the 
latency continues to grow, though at a slower rate, as the system reaches a relatively stable 
operational region under high-load conditions. The confidence interval (grey area) reflects the 
variability of measured RTT values across different conditions, driven by the heterogeneity of the 
network environment and the influence of adaptive resource management in 5G. In the masked 

region  4,6 , empirical data were unavailable; however, interpolation of the confidence 
interval allows for an estimation of the likely RTT distribution within this range. 

The red line representing the proposed model demonstrates a high degree of alignment with the 

empirical data, particularly in the mid- and high-load ranges  . In the low-load region 2  , the 
model slightly overestimates RTT, which can be attributed to its design focus on providing more 
accurate predictions of system behaviour under high-load conditions. It is important to note that, 
beyond the masked region, the proposed model naturally continues the trend of the empirical data, 
reinforcing its predictive capability. In contrast, the classical M/M/1 model (blue line) exhibits 

substantially different behaviour. It predicts a sharp increase in RTT with increasing  , which is a 
typical characteristic of systems with a single server and an unbounded queue. This can be 

observed in the graph, where for 6  , the RTT values predicted by the M/M/1 model significantly 
exceed the empirical results. The main reason for the discrepancy between M/M/1 and the real data 
lies in the model’s inability to account for adaptive resource management, which is intrinsic to 5G-
IoT systems, as well as its lack of support for parallel request servicing. The green line, 

representing the M/M/c model with 3с  , exhibits a more moderate increase in RTT compared to 
M/M/1, which can be attributed to the presence of multiple service channels. However, RTT values 
in this model remain substantially lower than the empirical measurements, particularly under 

high-load conditions  , indicating its overly optimistic assumption of uniform request distribution 
across service channels. In reality, in 5G-IoT ecosystems, channel load is dynamically variable and 
influenced by numerous factors, including traffic type, adaptive radio resource scheduling, and 
retransmission mechanisms (such as HARQ and ARQ), which are not considered in the M/M/c 
model. 

To visually demonstrate the effectiveness of the proposed mathematical framework, a block of 
three-dimensional visualisations was developed (see Figure 3), illustrating the dynamics of key 



performance parameters of the 5G-IoT ecosystem model for a selected dataset instance under 
varying operational conditions. The visualisation is based on the analytical expressions presented 
in Sections 2.2 and 2.3 of the article, particularly formulas (7)-(9), which describe the average 

response time respT
, blocking probability blockP , and idleness probability idleP ; formula (1), which 

models resource waiting time at the base station gNBT
; and the expression for sensor network 

throughput s sQ  , which determines the volume of processed requests. 

As independent variables, we selected the input request intensity  0.5,1.0, ,10  , which 
characterises the load arriving at the base station from multiple sensor devices, and the number of 

devices in the sensor network  1,10sN  , which influences the overall throughput of the subnet. 

The selected range for sN  reflects a typical volume of sensor nodes within a single communication 

domain in a distributed environment. The load coefficient was fixed at level 0.8Q  , simulating a 
near-saturation operating condition characteristic of critical applications. For the baseline 
performance visualisation, we considered a 5G-IoT ecosystem scenario with a single representative 

sensor network s S  under fixed routing conditions. This setup isolates the effects of request 
intensity and device count on performance metrics, avoiding interference from inter-network 
interaction effects, which will be the subject of subsequent experiments. 

The three-dimensional visualisation  ,resp s sT N
 presented in the block Figs. 3 revealed a 

consistent increase in latency with rising input traffic intensity  , particularly under conditions 
where the sensor network comprises a small number of devices. This result is based on formula (8), 

where latency is defined through the effective throughput s , which in turn depends on the load 

coefficient Q , the number of devices sN , and the input intensity. In contrast to classical models—
where such effects are either described in general terms or not accounted for at all—the proposed 
model enables the generation of a detailed latency curve, which is critically important for 5G 

scenarios with strict URLLC requirements. The plot of request blocking probability  ,block s sT N  

made it possible to identify high-risk zones for system overload. At low values of sN  and high  , 
the model exhibits a sharp increase in blocking probability, as captured by formula (7), which 
accounts for radio resource limitations and the exponential nature of conflicts during simultaneous 
access. These findings are particularly significant for mMTC scenarios, where data loss can have a 
systemic impact and blocking at a single node may trigger a cascading failure effect. Of particular 

analytical value is the visualisation of resource idleness probability  ,idle s sT N , which shows that 
under low traffic conditions, the system is underutilised and resources remain unused. This 
information enables assessment not only of the system’s capacity limits but also of its efficiency 
under partial load conditions, which is critical for designing balanced and resilient 5G-IoT 
infrastructures. This is particularly important for distributed or energy-efficient architectures in 
5G-IoT systems, where DRX or HARQ mechanisms introduce intermittency in data transmission 

and processing. The plot of resource allocation waiting time at the base station  ,gNB s sT N
 

enables the assessment not of the final delay, but of the internal time losses associated with 
accessing local servers. In a real 5G-IoT ecosystem, this process is governed by complex NR 
Scheduling mechanisms, which take into account pre-established priorities and the dynamic 
switching between local servers and global cloud processing environments for sensor data. The 
proposed mathematical framework enables the modelling of these effects through variable service 
parameters, accounting not only for traffic intensity but also for the structural characteristics of the 
ecosystem itself. 

To confirm the practical effectiveness of the proposed mathematical framework, three targeted 



experiments were conducted, the results of which are presented in Fig. 4. Each of these 
experiments provides informative representation of a corresponding key operational scenario 
within a 5G-IoT ecosystem, namely, the energy-saving mode of the base station (formula (12)), 
collision reduction through fragmentation (formulas (14), (15)), and adaptation to frequency 
dynamics under the AFH mode (formulas (16), (17)). 

The objective of the first experiment was to evaluate the probability of the gNB transitioning 
into the DRX energy-saving state in the absence of requests during the control period TCM. The 
calculation was based on an exponential dependency (formula (12)), which aggregates the influence 
of traffic intensity, processing capacity, and the number of sensor networks. The modelling process 

employed both fixed and independent parameters denoted by 1s  , 
0.7proc 

, 
0.65gNB 

, 

0.85Q  ,  5,50S . This experiment was designed to analyse the model’s sensitivity to changes 
in topology and load at the gNB level, providing insights into its adaptability under varying 5G-IoT 
deployment conditions. 

 

  

  
Figure 3: Performance Metrics of the 5G-IoT Ecosystem under Varying Traffic Intensity and 
Device Count. 

 
The objective of the second experiment was to determine the impact of packet fragmentation on 

the probability of communication channel blocking. The calculation of the effective length of a 
fragmented packet was performed using formula (14), taking into account the average fragment 
length and the length of the final segment. To evaluate the blocking probability, expression (15) 
was applied, which models its dependency on traffic with exponential saturation characteristics. 
The computational procedure was implemented in two modes: with fragmentation and without it, 

using the following fixed and independent parameters: 
4fn 

, 0.045mz  , 0.12lz  ,  0.5,10 . 
This experiment characterises the model’s capability to account for resource holding time 



reduction effects resulting from traffic segmentation. 
The third experiment tested the model’s adaptability to frequency dynamics under NR-U 

conditions. Within this scenario, the processing and response times were adjusted according to 
formula (16), which accounts for time losses due to frequency switching. The total response delay 

was evaluated using formula (17), which incorporates the non-linear influence of parameter dwellT , 

varied within the range  5,30dwellT   ms. During modelling, the values of parameters respT
, procT

, 

s  were balanced using appropriate correction coefficients, which were set proportionally to 
changes in the available frequency window. This experiment focused on validating the model’s 
adequacy under adaptive frequency planning, which is typical of scenarios with high interference 
levels and spectrum usage constraints. 

 

 
Figure 4: Analytical Validation of Performance Metrics in a High-Loaded 5G-IoT Ecosystem under 
Packet- and Frequency-Level Adaptation. 

 
The results of the first experiment, presented in Fig. 4, demonstrate an exponential decrease in 

the probability of the gNB base station transitioning to the DRX energy-saving state as the number 
of sensor networks increases. This leads to a key practical conclusion: scaling the ecosystem by 
increasing the number of devices contributes to the stabilisation of its active state. As the number 
of nodes grows, the probability of a complete absence of global traffic drops, even when the load 
on each individual local sensor network remains moderate. From the second experiment, a clear 
distinction can be observed between the packet fragmentation and non-fragmentation modes. 
Fragmentation proves to be an effective strategy for reducing blocking probability, especially under 
moderate load conditions. This effect can be explained by the fact that dividing transmitted data 
reduces the resource holding time per device, which in turn lowers contention for access channels. 
Practically, this supports the application of fragmentation as a flexible access control mechanism in 
overloaded network segments, particularly at the MAC layer. The third experiment analysed 
response delay under AFH operation mode in the NR-U frequency band. The dependencies 

visualised in Fig. 4 show a sharp increase in latency as the parameter dwellT , which defines the dwell 
time on a single frequency, decreases. The region below 10 ms is particularly critical, where time 
losses due to frequency switching begin to outweigh effective data transmission. From a practical 
standpoint, this highlights the need for careful tuning of frequency planning parameters in high-



interference environments. Taken together, the results of the three experiments confirm the 
model’s capability to accurately capture the complex interplay between architectural, protocol-
level, and frequency-level components of a 5G-IoT ecosystem. 

4. Conclusions 

The relevance of this research topic is driven by the rapid rise in the importance of 5G-IoT 
ecosystems in mission-critical domains, where the efficient aggregation of traffic from multiple 
sensor networks with guaranteed real-time Quality of Service (QoS) is a fundamental requirement 
for system operation. Traditional analytical approaches fail to account for the dynamic nature of 
such networks, which manifests in topological variability, traffic fragmentation, the need for 
energy efficiency, and adaptation to frequency instability. Therefore, the development of a novel 
mathematical model capable of accurately representing the operation of high-loaded 5G-IoT 
ecosystems is both scientifically justified and practically essential. 

The scientific novelty of this work lies in the formalisation of a multi-component mathematical 
framework for the analytical evaluation of the performance of 5G-IoT ecosystems, taking into 
account key factors such as NR Scheduling, packet fragmentation, DRX mode, HARQ mechanisms, 
and adaptive frequency hopping in NR-U mode. The proposed model is the first to integrate the 
interaction of multiple sensor networks with a gNB base station within a generalised system of 
equations, enabling the estimation of blocking and idleness probabilities, average response, 
processing, and waiting times, as well as the evaluation of boundary operating regimes with 
consideration for energy-saving mechanisms. 

The conducted experiments confirmed the adequacy and high effectiveness of the proposed 
model. Verification was performed using the open-access dataset from Simula Research Lab, which 
contains seven weeks of data on the real-world operation of 5G, LTE, and NB-IoT networks. The 

analytical estimation of the respT
 showed a deviation of less than 12% compared to empirical RTT 

values, and within the medium load range 2 6  , this error was only 6–9%, significantly 
outperforming the accuracy of classical models such as M/M/1 and M/M/c, which exhibited errors 
of up to 40%. Within the experimental block, it was also demonstrated that the probability of the 
gNB transitioning to the energy-saving DRX mode does not exceed 2% when operating with more 

than 30 sensor networks at a request generation intensity 1  , confirming efficient system 

utilisation. Moreover, packet fragmentation with parameters 
4fn 

, 0.045mz  , 0.12lz   resulted 
in a 17% reduction in channel blocking probability compared to the non-fragmented scenario. 

Adaptation to frequency dynamics in AFH mode, with parameters 10dwellT   and 2ct  , led to an 
8–11% reduction in effective throughput, which was accounted for in the model through modified 
waiting time coefficients. 

The practical value of the developed analytical framework lies in its ability to safely predict 
system behaviour under load without the need for resource-intensive simulations. This opens 
promising opportunities for applying the model in real-world 5G-IoT infrastructure design, 
overload risk assessment, optimisation of energy-saving modes, and adaptation to frequency 
instability. The proposed approach accounts for dynamics at both the physical channel level and 
the logical traffic routing level, making it suitable for multi-service scenarios in mission-critical 
applications. 

Future research will focus on extending the model to incorporate heterogeneous QoS traffic 
classes (URLLC, mMTC, eMBB), developing integrated models for multi-gNB topologies, 
integrating Network Slicing functionality, and designing analytical mechanisms for monitoring 
performance recovery following peak load conditions. 
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