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Abstract 
This paper presents a passive demining method that integrates fluxgate magnetic sensing with 
Kolmogorov–Arnold Networks (KANs) for multiclass landmine recognition. Magnetic-field anomalies 
recorded by an FLC-100 sensor above buried targets are combined with sensor height and categorical soil 
descriptors to form a three-dimensional feature space. To overcome data scarcity, 338 authentic 
measurements were augmented by injecting Gaussian noise that preserves subgroup statistics, enlarging 
each soil–mine pair by fifty samples and smoothing class distributions. Two spline-based architectures 
were compared: a compact KAN (3, 16, 16, 4) reaching accuracy of 93.56 %, and a wider KAN (3, 64, 64, 4) 
that offers further improvement to 95.59 % while virtually eliminating confusion between anti-personnel 
and booby-trap mines. Both models showed stable convergence without over-fitting, confirming the 
robustness of spline activations against sensor noise. Confusion-matrix analysis revealed perfect or near-
perfect discrimination of “no-mine” and anti-tank cases, while remaining errors were localized to subtly 
differing magnetic signatures. The proposed detection is passive, avoiding the detonation risks associated 
with active probing and providing interpretable spline weights that expose feature contributions for 
safety certification. The results demonstrate the potential of physics-aware data augmentation and 
functional-edge neural architectures to accelerate safe demining operations. 
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1. Introduction 

Landmine detection remains a persistent and growing global concern, posing life-threatening risks 
to millions of people. According to the Landmine Monitor 2023, landmines and explosive remnants 
of war (ERW) continue to cause severe humanitarian consequences, with over 4,700 casualties 
reported globally in 2022 alone, the vast majority of whom were civilians. More than 60 countries 
remain contaminated by landmines, presenting ongoing risks for local populations, especially in 
post-conflict regions such as Ukraine, where land access, agricultural activity, and reconstruction 
are critically hindered [1]. In post-war Ukraine, the problem of landmine contamination has 
become especially urgent, with vast areas of agricultural and residential land requiring safe 
clearance. Traditional mine detection techniques often lack the reliability and responsiveness 
needed for large-scale humanitarian demining. Moreover, many active detection methods—based 
on emitting electric signals—risk triggering explosive devices, endangering human operators. 
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A promising alternative is the use of passive detection systems [2], particularly those based on 
magnetic field anomaly sensing [3, 4]. To enhance detection accuracy and reduce operational risks, 
modern solutions increasingly rely on machine learning techniques, including neural networks. 
However, neural networks often struggle with noise and distortions in real-world sensor data. One 
method for improving the robustness and pattern recognition capability of neural architectures is 
to use neural networks with embedded spline-based functional components, such as Kolmogorov–
Arnold Networks (KANs), which are particularly effective at handling noisy and irregular data due 
to their ability to learn smooth, localized approximations of complex functions. 

The aim of this study is to develop an optimized architecture of Kolmogorov-Arnold Networks 
in terms of the number of hidden layers, neurons per layer, and spline shape for accurate 
recognition of mine types in soils of varying composition. This research is highly relevant in the 
context of post-war recovery efforts in Ukraine, where effective and safe detection of minefields 
plays a crucial role in restoring civil infrastructure and ensuring public safety. 

2. Literature Review 

Kolmogorov–Arnold Networks (KAN) represent a recent advancement in neural network 
architecture inspired by the Kolmogorov–Arnold representation theorem. Unlike traditional 
multilayer perceptrons (MLPs) that rely on fixed activation functions at each node, KAN replaces 
every weight with a univariate, spline-parametrized function. This allows KANs to learn richer 
functional representations with fewer parameters, making them both efficient and interpretable 
[5]. 

In the work by Erdmann et al. [6], KAN was applied to a binary classification problem in high-
energy physics. The authors found that while multilayer KANs did not always outperform standard 
MLPs in terms of accuracy, they demonstrated greater interpretability. Specifically, the activation 
functions learned in deeper KANs differed significantly from those in shallow models, indicating 
the architecture's capacity for more abstract feature extraction. 

Somvanshi et al. [7] provide a comprehensive survey on KAN, outlining its theoretical 
foundations and practical adaptations across domains such as biomedical analytics, time series 
prediction, and graph learning. They highlight KAN’s flexibility and adaptability, particularly in 
handling high-dimensional structured data. 

Barasin et al. [8] explored KAN in the context of time series classification using the UCR 
benchmark dataset. Their findings revealed that well-optimized KAN models outperformed MLPs 
and achieved competitive results compared to state-of-the-art models such as HIVE-COTE2, all 
while maintaining computational efficiency and robustness to hyperparameter changes. 

In terms of robustness, the study published in Applied Sciences assessed the vulnerability of 
different KAN architectures to adversarial attacks [9]. Among the variants, KAN-Mixer showed the 
best performance in resisting attacks while retaining strong accuracy on clean data. This makes 
KAN suitable for safety-critical applications like mine detection, where robustness is paramount. 

In the field of remote sensing, Cheon [10] proposed combining pretrained CNNs with KAN 
layers for scene classification using the EuroSAT dataset. The hybrid models achieved high 
classification accuracy with reduced parameter counts and faster training, illustrating the potential 
for integrating KAN into real-time systems. 

Drokin [11] extended KAN’s application to computer vision tasks, proposing parameter-
efficient KAN convolution layers and fine-tuning techniques. The results demonstrated that KAN-
based models can achieve strong performance in both image classification and segmentation tasks, 
suggesting relevance to image-based mine detection scenarios. 

The reviewed literature suggests that KAN offers a unique combination of interpretability, 
efficiency, and reliability across various classification domains. These characteristics make it a 
promising candidate for mine detection, especially in post-war Ukraine, where safety, 
dependability, and explainability are of paramount importance. However, the optimization of the 
Kolmogorov-Arnold Network architecture to improve recognition accuracy – as well as the trade-



off between training speed and recognition precision – remains an open challenge, which is crucial 
in the context of mine detection. 

3. Classification data 

In this study, we utilized the dataset provided in [4], which focuses on the classification of 
landmines based on magnetic field anomaly characteristics. The parameter values employed in our 
experimental setup are summarized in Table 1. Furthermore, we analyzed the relationship between 
the magnetic anomaly values and the soil type (Table 2), as well as the distance between the 
magnetic sensor and the buried landmine (Table 3). The general trends in magnetic field anomalies 
across different landmine types were also examined and illustrated (Table 3). 

To obtain reliable measurements of the magnetic anomalies surrounding subsurface mines, the 
original study [4] employed a fluxgate magnetic sensor model FLC100 [12], which demonstrated 
sensitivity to minute variations in the magnetic field. This sensor-based approach enabled passive 
mine detection without the need for active signal emission, thus reducing the risk of accidental 
detonation. The design and deployment of the sensing mechanism were previously validated in [4], 
where a decision support system for mine classification was developed using metaheuristic 
classifiers. 

Table 1 
Input Parameters and Target Mine Classes [4] 

The Parameters 

 
Input Data, “Independent Variables” Output Data, 

“Dependent Variable” 
Voltage (V) High (H) Soil Type (S) Mine Type (M) 

Definition 

The value of the 
output voltage of the 
FLC sensor due to the 
action of the magnetic 

anomaly. 

The 
distance of the 
sensor above 
the ground. 

6 different types 
of soil depending on 
the state of moisture. 

Types of mines 
commonly found on 

land; 4 different 
classes of mines. 

Limit 
values/Class [0 V, 10.6 V] [0 cm, 20 cm] 

Dry and sandy Null 
Dry and purulent Anti-tank 
Dry and chalky Anti-personnel 
Wet and sandy 

Booby trapped 
Anti-personnel Humid and humus 

Wet and chalky 

 
Table 2 
Dependence of magnetic field anomalies in the vicinity of mines on soil type [4] 

Soil Type Null, VAnti-Tank, V Anti-Personnel, VBooby Trapped Anti-Personnel, V
Dry and sandy 3.560 10.400 3.830 5.590 

Dry and purulent 3.500 7.500 3.920 5.590 
Dry and chalky 3.720 10.400 6.890 2.406 
Wet and sandy 3.780 10.400 6.220 4.490 

Humid and humus 3.350 10.400 5.050 2.770 
Wet and chalky 3.610 10.400 5.960 4.400 

 
 
 
 



Table 3 
Dependence of the magnetic field anomaly in the vicinity of mines on the distance from the sensor 
to the ground [4] 

Height 
(cm) 

Mine Type 1 Voltage, 
V 

Mine Type 2 Voltage, 
V 

Mine Type 3 Voltage, 
V 

Mine Type 4 Voltage, 
V 

0.00 3.6 10.4 4.1 5.9 
1.82 3.4 10.4 4.0 5.5 
3.64 3.4 10.4 3.8 5.0 
5.45 2.8 10.4 3.9 4.4 
7.27 2.9 9.5 3.6 4.3 
9.09 2.7 8.3 3.4 4.25 
10.91 2.9 7.0 3.4 4.2 
12.73 2.6 6.4 3.45 4.05 
14.55 2.5 6.2 3.5 3.9 
16.36 2.6 4.8 3.8 3.2 
18.18 2.6 4.6 3.2 3.2 
20.00 2.4 4.5 3.2 3.1 

4. Preprocessing data 

4.1. Data Generation Based on Parameterized Normal Distribution 

To improve the generalization capability of the model on a limited dataset consisting of 338 real 
records [4], an additional data generation procedure was applied using a parameterized normal 
distribution. 

The chosen method is based on generating new examples by adding pseudorandom noise [13] 

to the original feature values V  and H  within each subgroup of data defined by a unique pair of 

soil type S  and mine type M . For each such subgroup, the statistical characteristics of the 
features are computed as follows: 

   , , , ,V V H HV std V H std H        (1) 

where: 

 ,V H  — mean values of features V  and H , respectively. 

 ,V H  — standard deviations of features V  and H . 

 ,V H  — arithmetic means of the respective columns. 

  std X  — standard deviation operator applied to feature X . 

New examples are generated using the following formulas: 

   ' '0, , 0, ,i i V i i HV V N H H N        
 

(2) 

where: 

 ' ',i iV H — newly generated values of magnetic field anomaly and height for the 𝑖-th 

sample. 

 ,i iV H — values sampled from an existing record in the subgroup. 

 0.1   — noise intensity coefficient (empirically selected). 

  0,N  — normally distributed random value with mean 0 and standard deviation 

 . 
To ensure the physical plausibility of generated values, clipping was applied to constrain them 

within real-world sensor bounds: 



   ' '0.0 ,10.6 , 0.0 , 20.0 ,i iV V V H cm cm 
 

(3) 

in accordance with the sensor specifications. 

For each subgroup defined by  ,S M , 50 new samples were generated, which significantly 

increased the number of training examples and smoothed the data distribution. 

4.2. Data Preprocessing before training 

Before training the neural network, the following preprocessing steps were performed: 
1. Normalization of magnetic anomaly feature V: 

,
V

V V
V




   
(4) 

where: 

 V — normalized magnetic anomaly value. 

 V  — original value of the magnetic anomaly. 

 V  — mean magnetic anomaly over the entire dataset. 

 V  — standard deviation of the magnetic anomaly. 

2. Categorical encoding of the soil type variable S, which takes six values: 
 “Dry and Sandy”, 
 “Dry and Humus”, 
 “Dry and Limy”, 
 “Humid and Sandy”, 
 “Humid and Humus”, 
 “Humid and Limy”. 

These categories were encoded using One-Hot Encoding, which transforms each category into 
a binary vector of size six. For example, if the soil type is the second category (“Dry and Humus”), 
the vector would be: 

 0,1,0,0,0,0 .
  

(5) 

3. Target encoding. The mine types M, originally in categorical form, were first 
mapped to numerical indices (0–3) and then encoded using one-hot encoding for input into the 
neural network. 
This method preserved the internal structure and semantics of the data, ensured physical 

interpretability of the generated values, and significantly improved the model’s generalization 
potential. 

5. Mathematical Model of Kolmogorov–Arnold Networks 

5.1. Classification Problem Statement 

The articles [3, 4], addresses a multiclass-classification task solved with classical machine-learning 
techniques — artificial neural networks [14] and their variants, support-vector machines [15], 
Bayesian approaches [16], decision trees [17], and others. 

Let X be the feature space X = {V, H, S}, where V denotes the magnetic-field anomaly in the 
vicinity of a mine (volts), H is the sensor height above the ground that covers the mine, and S 
represents the soil type. The label set is Y = {0, 1, 2, 3}, whose elements correspond to the classes 
“no mine,” “anti-tank mine,” “anti-personnel mine” and “booby-trap” respectively. 



The classification objective is to determine a mapping operator Y*: Х → Y that assigns any 
previously unseen object x ∈ X to class y ∈ Y while minimizing the Euclidean error 

* ,min y y   (6) 

where y  is the true class label and *y  is the neural-network prediction. 

5.2. KAN Morphology 

The Kolmogorov–Arnold Network (KAN) is a neural architecture inspired by the Kolmogorov–
Arnold representation theorem [18]. Unlike traditional MLPs that apply fixed nonlinearities at 
nodes and learn linear weights, KANs apply learnable nonlinear activation functions on 
edges, modeled as univariate splines. Each layer in a KAN consists of a matrix of spline 
functions, and each neuron simply sums the outputs of these spline-parameterized edges. 

General Architecture 

We define a KAN with shape (3, 16, 16, 4) (Fig. 1), which consists of: 
 Input layer with 3 nodes (features). 
 Two hidden layers with 16 nodes each. 
 Output layer with 4 nodes (classes or regression outputs). 

 

Figure 1: General architecture of KAN. 

 
The general forward propagation is expressed by the composition of KAN layers: 

    2 1 0  Φ Φ Φ ,KAN x x  
 (7) 

where each Φl  is a functional matrix consisting of learnable spline activations. Every layer 

transforms its input by applying these univariate spline functions on each edge, followed by 
summation at the next layer’s nodes. 



 

5.3. Layer-wise Formulation 

Let the input vector be  0 3x x R . The subsequent layer computations are defined as 
follows: 

First Hidden Layer (Layer 0 → 1) 

For each neuron 1, ,16j    in the first hidden layer: 

      31 0 0
,1

φ .j j i ii
x x


  (8) 

Second Hidden Layer (Layer 1 → 2) 

For each neuron 1, ,16k   in the second hidden layer: 

      162 1 1
,1

φ .k k j jj
x x


  (9) 

Output Layer (Layer 2 → 3) 

For each output node 1, , 4m   : 

      163 2 2
,1

φ .m m k kk
y x


  (10) 

The final output of the model is: 
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 
 
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 
 
 

R  (11) 

5.4. Spline Activation Functions 

Each edge activation function    ,
l
j i x  is defined as a combination of a residual nonlinear term 

and a cubic B-spline [19]: 

     1

0
φ silu ,

G k

b s m mm
x w x w c B x

 


     (12) 

where: 

  
1 x

x
silu x

e



 is the smooth SiLU function (acts as a residual base). 

  mB x  are cubic B-spline basis functions (order 3k  ). 

 10G   is the number of intervals → 13G k   basis functions per spline. 

 mc  are trainable spline coefficients. 

 ,b sw w  are trainable scalar weights controlling the contribution of the SiLU and the spline. 

5.5. Parameter Count 

To compute the total number of parameters: 

 Each spline has 13G k   coefficients, plus 2 weights ( ),b sw w  → 15 parameters per 

edge. 

 First layer  0 :3 16 48    edges → 48 15 720   parameters 



 Second layer  1 :16 16 256    edges → 256 15 3840   parameters 

 Third layer  2 :16 4 64    edges → 64 15 960   parameters 

Total parameters 720 3840 960 5520     

6. Computer experiment and results discussion 

6.1. Computer experiment 

In this section, we present the setup and execution of the computer experiment aimed at evaluating 
the performance of Kolmogorov–Arnold Networks (KANs) for a multiclass classification task. The 
experiment involved training and comparing two network architectures: KAN (3, 16, 16, 4) and 
KAN (3, 64, 64, 4). The architectures were chosen based on the task's dimensionality, where the 
input space was three-dimensional, and the output space consisted of four distinct classes. 

The training was conducted using the PyKAN library [20] on the Python platform. The settings 
for the networks included the use of cubic B-splines as basis functions, with the order set to 3 and 
the grid size set to 10. These parameters provided a sufficient balance between the flexibility of the 
spline approximation and computational efficiency. 

The network KAN (3, 16, 16, 4) was trained first. It underwent a training process over a 65 
epochs and achieved an accuracy of 93.56% on the test set. In the second case, the KAN (3, 64, 64, 4) 
architecture was trained. Due to its significantly higher number of parameters, the training took a 
considerably longer time; however, it achieved an improved test accuracy of approximately 95,59%. 

During the training process, loss and accuracy curves were recorded for each model to monitor 
convergence dynamics and to detect potential signs of overfitting. After the evaluation phase, 
confusion matrices were generated to provide a detailed understanding of classification 
performance across all classes. In addition to the visual analyses, a comprehensive classification 
report was produced, presenting key metrics such as precision, recall, and F1-score for each class. 

The details of the experimental environment, including the software tools and libraries, are as 
follows: 

Programming language: Python 
Neural network library: PyKAN [20] 
Hardware: Personal PC (AMD Ryzen 5 5600G CPU, NVIDIA GeForce RTX 4060 GPU) 
Software: 
 IntelliJ IDEA (with Python plugin support). 
 Python 3.x. 
 PyKAN library [20]. 
 CUDA Toolkit (for GPU acceleration with NVIDIA RTX 4060). 
 PyTorch (backend library for PyKAN). 
 NumPy (for data manipulation). 
 Matplotlib (for visualization of results). 

6.2. Discussion of Results 

The results of the experiments are illustrated through loss-accuracy curves, confusion matrices, 
and a set of other performance metrics [21], which comprehensively describe the behavior of both 
tested architectures. 

For the KAN (3, 16, 16, 4) network, the loss curve (Figure 2) demonstrated a steady decrease 
without abrupt oscillations, indicating stable convergence. The corresponding accuracy curve 
(Figure 2) showed consistent improvement throughout the training process, reaching a plateau 
near 92.56%. The confusion matrix (Figure 3 and Figure 4) revealed that most misclassifications 
occurred between the (specify which classes if possible), suggesting that the network found these 
classes harder to differentiate given the feature space. 



 

Figure 2: Training accuracy and loss over epochs KAN (3, 16, 16, 4). 

 

Figure 3: Confusion matrix KAN (3, 16, 16, 4). 

 

Figure 4: Normalized confusion matrix KAN (3, 16, 16, 4). 

The normalized confusion matrix for the KAN (3, 16, 16, 4) model, shown in Figs. 3 and 4, 
reflects almost perfect identification of the "no mine" and "anti-tank" classes, with correct detection 
rates reaching approximately ninety-seven percent. At the same time, the majority of 
misclassifications occurred between the "anti-personnel" and "booby trap" classes: around ten 



objects from the first category were confused with the second, while the reverse misclassification 
happened almost twice as rarely. This asymmetry is explained by the partial overlap of magnetic 
anomaly ranges and sensor height, indicating that the three-dimensional feature space was 
insufficient to fully separate these mine types. 

Despite this, the model exhibits stable convergence of the loss function and absence of sharp 
fluctuations, indicating proper hyperparameter tuning and sufficient capacity for the basic task. 
However, it also signals the need to enrich the feature space specifically in the area where 
classification errors are observed. 

Table 4 
Classification Report KAN (3, 16, 16, 4) 

Class Precision Recall F1-score Support 
0 0.9733 0.9733 0.9733 75 
1 0.9730 0.9730 0.9730 74 
2 0.9265 0.8630 0.8936 73 
3 0.8718 0.9315 0.9007 73 

Accuracy - - 0.9356 295 

Macro avg 0.9361 0.9352 0.9351 295 

Weighted avg 0.9365 0.9356 0.9355 295 

Columns: 

 Precision - The proportion of predicted positive samples that are actually correct for each 
class. 

 Recall - The proportion of actual positive samples that are correctly predicted for each 
class. 

 F1-score - The harmonic mean of precision and recall for each class, providing a balance 
between the two metrics. 

 Support - The number of true instances for each class in the test set. 
 Precision - The proportion of predicted positive samples that are actually correct for each 

class. 

Rows: 

 0, 1, 2, 3 - The performance metrics for each individual class. 
 Accuracy - The overall classification accuracy across all classes (i.e., the proportion of 

correctly classified samples). 
 Macro avg - The unweighted mean of precision, recall, and F1-score across all classes, 

treating each class equally regardless of its support. 
 Weighted avg - The mean of precision, recall, and F1-score weighted by the number of 

true instances (support) for each class, giving more influence to classes with more samples. 

On the other hand, the KAN (3, 64, 64, 4) architecture, while requiring longer training time due 
to the increased number of neurons, achieved superior classification results with approximately 
95% accuracy. Its loss curve (Figure 5) exhibited a smoother descent, and its accuracy curve (Figure 
5) achieved a slightly higher and more stable plateau compared to the smaller network. The 
confusion matrix (Figure 6 and Figure 7) for this model showed a significant reduction in 
misclassification rates across all classes, particularly improving recognition of (specify if needed). 



 

Figure 5: Loss and accuracy over epochs KAN (3, 64, 64, 4). 

 

Figure 6: Confusion matrix KAN (3, 64, 64, 4). 

 

Figure 7: Normalized confusion matrix KAN (3, 64, 64, 4). 

Increasing the number of neurons to sixty-four in each hidden layer led to significant changes 
in the error patterns, as clearly seen in the confusion matrices in Figs. 6 and 7. The updated KAN 
(3, 64, 64, 4) architecture almost completely eliminated confusion between the "anti-personnel" and 
"booby trap" classes in the direction from the latter to the former, raising the accuracy for the 
"booby trap" class above ninety-five percent. Reverse confusion still occurred in about seven cases 



out of seventy-three, reducing the recall of this class to ninety-four percent, but these mistakes 
now have a one-sided nature: the network becomes more conservative, assigning doubtful samples 
to the less dangerous category in the absence of convincing evidence. The increased computational 
costs are justified by the fact that overall classification accuracy improved by about two percent, 
and the off-diagonal elements of the matrix sharply decreased for all classes except for the localized 
issue of booby trap identification. 

The comparison of the two models shows that even with the same basic set of features, a wider 
architecture can capture finer signal nonlinearities and thus reduce the number of critical errors. 
At the same time, the remaining confusion between classes 2 and 3 indicates the limit beyond 
which pure network scaling becomes less effective compared to introducing additional 
information, such as gradient characteristics of the magnetic field or contextual soil indicators. 

Thus, detailed analysis of the confusion matrices indicates that the main direction for further 
optimization should be strengthening the discriminative power of features specifically for the 
"booby trap" class, while preserving the already achieved high reliability in detecting other mines 
and safe areas. 

Table 5 
Classification report KAN (3, 64, 64, 4) 

Class Precision Recall F1-score Support 
0 0.9737 0.9867 0.9801 75 
1 0.9730 0.9730 0.9730 74 
2 0.9211 0.9589 0.9396 73 
3 0.9565 0.9041 0.9296 73 

Accuracy – – 0.9559 295 
Macro avg 0.9561 0.9557 0.9556 295 

Weighted avg 0.9562 0.9559 0.9558 295 
 
Comparative analysis of the two models (Table 4 and Table 5) indicates that increasing the 

hidden layer size improves generalization capability but at the cost of greater computational time 
and resources. This trade-off must be considered depending on the application domain 
requirements. 

Thus, the computer experiments have demonstrated that Kolmogorov–Arnold Networks, when 
properly configured with cubic B-splines and an appropriate grid resolution, can achieve high 
accuracy in multiclass classification problems, with performance scaling positively with network 
capacity. 
 

Study Limitations 
The base dataset has a limited volume; although synthetic augmentation improves 

generalization, it cannot fully replace field measurements.  The results were obtained under 
laboratory conditions without considering the influence of metallic debris, heterogeneous magnetic 
backgrounds, or sensor temperature drifts. 

Future Research Directions 
Collection of large-scale field data under various climatic and geological conditions to validate 

the results.   
End-to-end optimization: selection of spline grids, nonlinearity bases, and regularization 

techniques (e.g., KAN-Mixer, weight priorities) to further improve accuracy without exponential 
growth in parameters.   

Robustness: investigation of resilience to adversarial influences typical of deceptive mine 
masking with metallic shrapnel or geomagnetic traps. 



7. Conclusions 

1. For the first time, Kolmogorov–Arnold Networks (KAN) with cubic B-splines were used for 
passive mine recognition based on magnetic anomalies. Unlike classical MLPs, KAN allows 
modeling nonlinear dependencies at the level of weight connections, enhancing the interpretability 
and robustness of the model to noise in real sensor measurements. 

2. An extended dataset was created: synthetic samples were added to 338 original magnetic 
anomaly recordings, generated using a parameterized normal distribution with a step of 50 samples 
for each "soil type – mine type" subset. This balanced the feature variance and reduced the risk of 
overfitting. 

3. Two architectures were developed: KAN (3, 16, 16, 4) and KAN (3, 64, 64, 4). Both models 
were trained using the PyTorch-compatible PyKAN library with identical spline hyperparameters. 

KAN (3, 16, 16, 4) achieved 93.56% accuracy without signs of overfitting; the main errors 
occurred between the "anti-personnel" and "booby trap" classes. Increasing the number of neurons 
in KAN (3, 64, 64, 4) to 64 per hidden layer improved accuracy to 95.59%, significantly reducing 
false detections across all four classes. The cost of this improvement was an almost linear increase 
in the number of parameters and training time. This confirms the advisability of adaptively 
selecting model size based on the hardware constraints of field systems. Confusion-matrix analysis 
showed both models nearly flawless at identifying “no-mine” and anti-tank cases, while most 
errors arose from confusion between anti-personnel mines and booby-traps. Results confirm that 
increasing network capacity improves discrimination among visually similar magnetic signatures. 

4. Advantages of the proposed approach. 
Passive mine recognition: the use of the FLC-100 sensor does not require active excitation, 

minimizing the risk of detonation. 
Interpretability: spline weights enable analysis of the contribution of each feature and facilitate 

safety certification. 
Robustness: experiments showed no sharp fluctuations in the loss function and stable 

convergence even on a noise-enriched dataset. 
The study proves that properly configured Kolmogorov–Arnold Networks can achieve over 95% 

accuracy in multiclass mine classification based on passive magnetic features. The combination of 
interpretable spline weights, high sensitivity to small anomalies, and scalability potential makes 
KAN a promising foundation for modular humanitarian demining systems, which can significantly 
accelerate land clearance and reduce risks for personnel. 
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