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Abstract 
This study explores the effectiveness of deep learning models for the automated detection and classification 
of skin lesions in dermoscopic images. A combination of models was tested, starting with an autoencoder 
for preliminary detection of mole presence. This step helps filter out irrelevant images before further 
processing. The subsequent stage involves comparing several models for lesion classification, with a custom 
ResNet-50-based classifier achieving the highest performance, with a validation F1-score of 0.886, 
confirming its suitability for diagnostic tasks. For segmentation, a Mask R-CNN model was employed, 
achieving an Intersection over Union (IoU) of 87%. This model accurately detects and segments all visible 
moles, regardless of their size or location, enabling the classification of each individual lesion – addressing 
a key limitation of traditional methods. The models were trained and evaluated using a combination of 
publicly available datasets and synthesized images with artificially added lesions, enhancing dataset 
variability and realism. The findings indicate that combining the ResNet-50 classifier with the Mask R-CNN 
segmentation model constitutes a robust pipeline for integration into clinical decision-support systems, 
providing valuable assistance for healthcare professionals in skin lesion analysis. 
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1. Introduction 

One of the pressing challenges in modern medicine is the early detection of malignant skin 
tumors, particularly melanoma and other types of skin cancer. According to the World Health 
Organization (WHO), skin cancer is among the most common types of cancer worldwide. However, 
there is good news: early diagnosis significantly increases the chances of successful treatment [1], 
making the automation of skin image analysis [9] a highly relevant task. 

The application of deep learning methods such as segmentation and classification opens new 
opportunities for improving diagnostic accuracy. These approaches help reduce the time required 
for image analysis, support clinical decision-making, and ease the workload on healthcare 
professionals. 

The relevance of this research lies in the need to develop efficient tools for analyzing and 
segmenting skin lesions. This is especially important under conditions of increasing pressure on 
medical personnel and the need for rapid decision-making. The use of image analysis methods will 
contribute to more accurate diagnostics, which in turn will improve the quality of healthcare services 
and reduce the risk of missing potentially dangerous tumors. 

The goal of this work is to enhance the efficiency of skin cancer detection, which includes primary 
image validation, lesion classification, and segmentation. The object of this study is the process of 
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analyzing skin lesion photographs using deep learning methods, while the subject is the algorithms, 
models, and tools for their effective monitoring and classification. 

To achieve this goal, the following key objectives have been defined: 

 To conduct an analysis of current research and scientific publications in the field of 
automated skin lesion diagnostics, particularly in the context of segmentation and 
classification methods. 

 To investigate the effectiveness of various image processing algorithms for detecting and 
analyzing skin lesions. 

 To justify, select, and develop neural network models for building an automated skin image 
analysis system, including data preprocessing steps and result evaluation methods. 

This study is aimed at creating an effective tool for medical professionals in the process of 
diagnosing skin cancer. The proposed methods and models have the potential to improve the 
accuracy of diagnostic decisions and support early detection of dangerous pathologies, which may 
significantly impact patient survival rates. 

2. Literature review 

In the article “Skin Cancer Detection Using Deep Learning – A Review” by Naqvi et al. (2023) [9], 
five key networks are identified as the foundation for modern skin cancer detection systems: AlexNet 
(Krizhevsky et al., 2012) [13], VGG (Simonyan & Zisserman, 2015) [17], ResNet (He et al., 2016) [12], 
DenseNet (Huang et al., 2017) [18], and MobileNet (Howard et al., 2017) [19]. However, it is worth 
noting that these architectures are relatively outdated, as they were proposed between 2012 and 
2017. Nowadays, an increasing number of modern models are emerging, particularly transformer-
based and hybrid approaches, designed for enhanced performance in medical computer vision tasks. 
Some of them, especially commercial solutions, are not accessible for academic research, 
complicating their implementation. Therefore, adapting state-of-the-art architectures to the task of 
skin lesion detection remains an important area of scientific investigation. 

One innovative direction involves the use of Spiking Neural Networks (SNNs) for mole image 
classification. These networks mimic the way information is transmitted in the human brain, where 
data is passed through short pulses rather than continuous signals, as in traditional networks [20]. 
A neuron in an SNN "decides" to send a spike when the accumulated information reaches a certain 
threshold. SNNs aim to merge neurobiology and machine learning by employing biologically realistic 
neuron models for computation [20]. 

Gilani et al. [21] demonstrated that SNNs, trained with fewer parameters, can outperform 
traditional CNNs in terms of F1-score and overall accuracy, while consuming significantly less 
energy. However, specificity and precision remain lower compared to VGG-13, and the hardware 
implementation of SNNs requires additional modules to process spiking events [9]. 

Abdar et al. [22] proposed a hybrid neural network model with uncertainty quantification, which 
is crucial for understanding the reliability of deep neural network predictions. Traditional neural 
networks do not provide information about the confidence of their decisions, which can be critical 
for medical applications. To address this issue, various uncertainty estimation methods have been 
developed, such as Monte Carlo Dropout (randomly deactivating neurons to generate different 
predictions for the same input), Ensemble MC Dropout (creating several models with different 
parameters, each generating predictions for the same input combined with Monte Carlo Dropout), 
and Deep Ensemble (training multiple independently initialized models on different data subsets) 
[22]. The proposed method achieved 88.95% accuracy and an F1-score of 0.909 on the ISIC 2019 
dataset, indicating high potential [9]. 

Lu and Firoozeh Abolhasani Zadeh [23] proposed a modified version of XceptionNet using the 
Swish activation function (which combines properties of the linear function and ReLU). Xception, 
first introduced by François Chollet (2017) [24], is based on depthwise separable convolutions – a 



two-step convolutional operation that first performs spatial filtering on each channel individually 
and then combines the extracted features using a 1×1 convolution. This design significantly reduces 
the number of parameters and computational cost while maintaining a high capacity for capturing 
complex spatial features. 

Thanks to the integration of the Swish function, the improved XceptionNet trained on HAM10000 
data demonstrated excellent performance: classification accuracy reached 100%, and the F1-score was 
0.953. Additionally, there was a notable improvement in metrics compared to other convolutional 
networks, confirming the effectiveness of the proposed approach for mole detection tasks. 

Khan et al. [25] presented a fully automated CNN-based approach that combines preprocessing, 
segmentation, and classification stages for skin lesion analysis. In the preprocessing phase, the Local 
Color-Controlled Histogram Intensity Values (LCcHIV) method was used to enhance contrast and 
normalize local skin region lighting. The enhanced images were then used as input for the 
segmentation network. Segmentation was performed using a novel Deep Saliency Segmentation 
method, which generates a heatmap and then converts it into a binary mask via a thresholding 
function. After that, deep features were extracted using pre-trained ResNet101 and DenseNet201 
models, and classification was performed using a Kernel Extreme Learning Machine. While the 
model demonstrated high classification accuracy on the HAM10000 dataset, its segmentation 
effectiveness was evaluated on a small set of 200 images only, indicating the need for further 
validation on larger datasets [9]. 

All of the above-mentioned methods show high performance and significant potential for 
application in skin lesion detection, particularly due to innovative approaches such as spiking neural 
networks, hybrid models with uncertainty estimation, or enhanced architectures like XceptionNet 
with Swish activation. However, implementing such solutions requires a deep understanding of the 
corresponding methods as well as access to open-source code or specific hardware. Given this, the 
present study focuses on verified and more accessible architectures, emphasizing their adaptation 
and practical application to the task of mole detection. This approach helps maintain a balance 
between implementation complexity and the quality of the results obtained. 

2.1. Validation model 

In the task of mole detection in images, it is essential to synthesize a model capable of correctly 
and reliably identifying their presence despite high variability in skin appearance and the presence 
of noise. One-Class Classification (OCC) proves to be appropriate in this context, as it enables the 
model to focus on learning only the positive class and detecting deviations from it [3]. 

One of the most effective tools for implementing OCC is the autoencoder – a type of unsupervised 
neural network capable of generating a compressed representation of input data [7]. Literature [3,7] 
highlights that autoencoders are highly effective for anomaly detection tasks due to their ability to 
reconstruct only those data that share common features with the training set. A significant 
discrepancy between the original and reconstructed image indicates atypical input data, allowing the 
detection of anomalies – such  as the absence of a mole or its unusual appearance. 

In particular, in work [7], an autoencoder with fully connected layers was implemented and tested 
on the MNIST dataset. Despite the small image size, the model showed high effectiveness (AUC = 
0.960 ± 0.002), indicating the potential of autoencoders in one-class classification tasks. However, for 
medical images characterized by more complex structures, it is advisable to apply convolutional 
architectures and test them on real medical data with higher resolution. 

Thus, autoencoders are a justified choice for implementing OCC in the task of mole detection, as 
they allow for effective modeling of the "normal" skin structure and detecting deviations from it. 

2.2. Segmentation model 

One of the key challenges when using neural networks for skin cancer diagnosis is the presence 
of artifacts in dermatoscopic images, such as hair, shadows, marker lines, bubbles, or rulers, which 
can reduce classification quality [9]. To improve results, segmentation is often used as a 



preprocessing step, enabling the separation of relevant objects (e.g., moles) from the background and 
extraneous elements. Given that several moles may be present in a single image, it is appropriate to 
apply instance segmentation, which allows identifying each individual object within the same 
category [10]. 

One of the most common architectures for segmentation is Mask R-CNN – a model that combines 
localization, classification, and pixel-level mask generation for each detected object [11]. The model 
consists of several key components: a feature extractor (e.g., ResNet), a RPN (Region Proposal 
Network), a RoI Align (Region of Interest Align) module for precise region alignment, and separate 
branches for classification, bounding box regression, and binary mask generation (see Figure 1). This 
combination ensures high segmentation accuracy even in cases of complex mole morphology. 

 

 

Figure 1: Mask R-CNN Schema [11] 

 
Modern versions of the YOLO model, particularly YOLOv8, combine high processing speed with 

accurate object segmentation [30]. YOLOv8 is based on an improved CNN architecture that 
effectively extracts image features while maintaining a balance between speed and accuracy. It 
supports instance segmentation by generating precise masks for each detected object, making it 
suitable for real-time applications. To train the model on a custom dataset, the COCO format must 
be used, which includes object coordinates, polygon contours, and class information, providing 
flexibility in representing complex annotations. 

2.3. Classification model 

In the context of automated image classification tasks for detecting malignant skin lesions, the 
use of deep convolutional neural networks (CNNs) is highly relevant. The complexity of this task is 
due to the high visual similarity between different types of pathologies, the variability in mole 
appearance, the presence of artifacts, and inconsistent lighting. Therefore, numerous studies focus 
on comparing different architectures to determine the most effective approach. 

One of the first breakthrough architectures in the field of computer vision was AlexNet [13]. It 
introduced the use of deeper networks, ReLU activation functions, Dropout, and efficient max 
pooling techniques. This approach not only achieved high classification accuracy on ILSVRC-2012 
but also initiated the deep learning era in medical image analysis. 

This was further developed with the appearance of ResNet [12], which introduced residual 
connections (skip connections) – an effective solution to the vanishing gradient problem when 
training deep models. Using bottleneck blocks and Batch Normalization, the model enables stable 
training even with considerable network depth, which is especially important for analyzing complex 
dermatological images. 

The issue of limited computational resources prompted the development of more compact models, 
such as SqueezeNet [14], which achieves results comparable to AlexNet while having 50 times fewer 
parameters. Thanks to its unique Fire modules combining 1×1 and 3×3 convolutions, the model 



efficiently extracts features while maintaining low complexity, making it suitable for mobile 
applications. 

Another direction of optimization involves multi-scale feature processing. In this context, the 
Inception network model [15] stands out due to the use of modules that simultaneously analyze 
information using convolutions of different sizes (1×1, 3×3, 5×5) and pooling. The architecture is 
optimized by factorizing large filters and using auxiliary classifiers, improving the training quality 
of deeper layers. 

Another modern approach is implemented in EfficientNet [16], which proposes scaling the model 
in three dimensions simultaneously-depth, width, and image resolution (compound scaling). This 
strategy allows achieving a better balance between performance and accuracy. Depending on 
available computational resources, one can choose from multiple variants (from B0 to B7), which 
provides additional flexibility. 

Among the classic models, it is also worth mentioning the VGG architecture, which, thanks to its 
simple but deep structure (sequential 3×3 convolutions with ReLU and max pooling), demonstrates 
stable accuracy across many tasks. Its main drawbacks remain the large number of parameters (~138 
million) and high computational load, which limit its applicability in real-world medical settings [17]. 

Thus, the literature presents a wide range of architectures, each with its advantages depending 
on the requirements for accuracy, speed, and available resources. Comparing these models in the 
context of skin cancer diagnosis enables a well-grounded selection of the most relevant solution. 

3. Materials and methods 

3.1. Input data and sources 

For this study, we used the publicly available HAM10000 dataset (Human Against Machine with 
10,000 training images) [2, 5]. This dataset contains 10,000 images of moles, most likely captured 
using a dermatoscope. All images have a resolution of 600×450 pixels and are stored in three-channel 
RGB format. 
 The dataset includes images from the following seven classes: 

 Actinic keratoses and Bowen’s disease are non-invasive skin lesions that can progress into 
squamous cell carcinoma and are often caused by UV exposure (AKIEC – Actinic Keratoses 
/ Bowen’s Disease, see Figure 2) [5]. 
 

 

Figure 2: Images of Actinic Keratoses 

 Basal cell carcinoma is a common form of skin cancer that rarely metastasizes but can grow 
destructively if left untreated (BCC – Basal Cell Carcinoma, see Figure 3) [5]. 
 



 

Figure 3: Images of Basal Cell Carcinoma 

 Benign keratosis includes seborrheic keratoses, lentigines, and lichen planus-like keratoses – 
pigmented lesions that may mimic melanoma (BKL – Benign Keratosis, see Figure 4) [5]. 
 

 

Figure 4: Images of Benign Keratosis 

 Dermatofibroma is a benign skin lesion that often features a central white area and may 
develop due to minor injuries (DF – Dermatofibroma, see Figure 5) [5]. 
 

 

Figure 5: Images of Dermatofibroma 

 Melanocytic nevi are benign tumors of melanocytes that typically exhibit symmetric 
structures and homogeneous coloring (NV – Melanocytic Nevi, see Figure 6) [5]. 

 

 



Figure 6: Images of Melanocytic Nevi 

 Melanoma is a malignant tumor that can be effectively treated through surgical excision if 
diagnosed early (MEL – Melanoma, see Figure 7) [5]. 

 

Figure 7: Images of Melanoma 

 Vascular lesions, such as angiomas or hematomas, usually appear as red or purple spots with 
well-defined borders (VASC – Vascular Lesions, see Figure 8) [5]. 
 

 

Figure 8: Images of Vascular Lesions 

One of the key advantages of using the HAM10000 dataset is the availability of segmentation 
masks. This enables not only image classification but also the improvement of segmentation 
algorithms. 

3.2. Balancing and preprocessing of input data 

Due to a significant class imbalance in the input dataset for classification (e.g., the NV class 
contains 6705 images, while the DF class includes only 115), a balancing strategy was applied [26]. 
The oversampling method SMOTE [8] was used to increase the number of samples for minority 
classes. Additionally, to ensure an even distribution of images across data subsets, stratified splitting 
was employed. 

The balancing was performed using the following strategy: 

 A subset was selected for each class, not exceeding the maximum number of images per class. 
 Stratified splitting ensured that all subsets contained proportionally the same number 

of images from each class. 
 The final data split consisted of a training set (~83%), validation set (~10%), and test 

set (~7%). 

To increase the model’s robustness to variations in lighting, scale, and image positioning, 
moderate data augmentation was applied. All images were subjected to light blurring with a 
probability of 30%, minor shifts, rotations up to 5°, and scaling. Additionally, brightness and contrast 



adjustments were made, and pixel values were normalized to the [0,1] range. This approach helped 
improve the model's generalization ability while preserving key features (see Figure 9). 

 

 

Figure 9: Data preprocessing pipeline 

The segmentation model was trained on data containing images with multiple moles and their 
corresponding segmentation masks (see Figure 10). This approach allows for proper processing of 
scenes with multiple lesions. To expand the dataset, 1000 synthetic images were generated by 
randomly placing 2–4 mole fragments from the original HAM10000 dataset onto an artificial 
background. Object scaling was applied, and overlaps were avoided. A corresponding segmentation 
mask was automatically created for each image. 

 

 

Figure 10: Synthesized images for model training 

Additionally, a validation neural network model based on an autoencoder was developed to detect 
the presence of a mole in the image. The same augmentation strategy used for the classification 



model was applied here, ensuring data consistency and improving the image processing 
effectiveness. 

3.3. Developed models and their characteristics 

As part of this study, neural network models were developed based on existing architectures, each 
with specific structural features and advantages for image classification tasks. For example, 
ResNet50, due to its residual connections, effectively minimizes the vanishing gradient problem and 
achieves high accuracy. EfficientNet provides a balance between accuracy and the number of 
parameters through optimal scaling of depth, width, and resolution. VGG, despite its simple 
architecture, performs well in image processing tasks. For comparison, AlexNet was used – one of 
the first successful CNN architectures that laid the foundation for deep learning development. 
SqueezeNet, due to its compactness, processes images quickly without loss of accuracy. Inception, 
by using filters of various sizes, efficiently extracts features, which is particularly useful for analyzing 
complex structures of skin lesions. 

Image validation was performed using an autoencoder, specially designed for this task. As a one-
class classifier, it was trained on mole images, enabling it to effectively reconstruct known patterns 
and detect anomalous deviations related to the presence of skin lesions. The schema of the developed 
autoencoder is shown in Figure 11. 

 

 

Figure 11: Schema of the developed autoencoder 

For segmentation, a neural network model based on Mask R-CNN was developed, which enabled 
not only the identification of moles in images but also the precise delineation of their boundaries. 
This is critically important for further analysis and diagnosis. 



3.4. Neural network model optimization 

To ensure stable training of the neural network and reduce the risk of overfitting, a number of 
well-established techniques were applied. In particular, the use of the Adam (Adaptive Moment 
Estimation) optimizer enabled effective adaptation to the specifics of the data and contributed to fast 
and stable convergence during training. Adam is one of the most popular optimizers due to its ability 
to automatically adjust the learning rate for each parameter individually, thereby improving training 
efficiency. 

To overcome overfitting, the early stopping technique was used. This involves halting the training 
process when the model's performance on the validation set stops improving over a certain period. 
This helps avoid overfitting and ensures better generalization to new, unseen data. 

In addition, a dynamic learning rate reduction approach was implemented when a “plateau” was 
reached – i.e., when model performance metrics stopped improving. This helped further optimize 
training and avoid stagnation. 

The use of these techniques collectively significantly improved the stability of the training 
process, optimized the model parameters, and enhanced its generalization capability on new data. 

3.5. Software tools used 

The models were implemented using the Python programming language and the PyTorch [27], 
scikit-learn [28] and NumPy [29] libraries. Python was used for general data processing and 
manipulation, PyTorch for efficient neural network construction and training, scikit-learn for 
performance evaluation. NumPy was utilized for efficient mathematical operations and handling 
large data arrays. 

The models were trained on a GPU (Graphics Processing Unit) in the Kaggle environment, which 
significantly accelerated the training process and enabled the handling of large data volumes. The 
use of such an environment ensured stable and fast data processing due to access to powerful 
computational resources. 

4. Research results and their discussion 

4.1. Developed validation model 

An autoencoder was selected as a one-class classifier based on the study by Isuru Jayarathne and 
Michael Cohen [7]. The model described in their work was adapted: instead of fully connected layers, 
convolutional layers were used, which allowed for more efficient processing of large-sized images. 
Additionally, moderate data augmentation was applied, which is described in detail in the section 
“Balancing and Preprocessing of Input Data.” 

The loss function was calculated using Mean Squared Error (MSE), which is better suited for 
multi-class classification of color images. This differs from the approach in the original paper [7], 
where Binary Cross Entropy Loss (BCELoss) was used, which is more appropriate for binary 
classification, particularly in the case of grayscale MNIST images. 

 The Binary Cross Entropy Loss formula (see Formula 1): 

where N is the number of samples in the dataset, y₁ is the true label for the i-th sample (y  = 1 for 
the positive class and y  = 0 for the negative class), and ŷ  is the predicted probability that the i-th 
sample belongs to the positive class. 

 The Mean Squared Error formula (see Formula 2): 

𝐵𝐶𝐸 =  −
1

𝑁
෍[𝑦௜ log(𝑦ො௜) + (1 − 𝑦௜) log(1 − 𝑦ො௜)]

ே

௜ ୀ ଵ

, 
 
(1) 



where N is the number of samples in the dataset, x  is the pixel value of the original image, and 
x̂  is the pixel value of the reconstructed image. 

To convert the autoencoder into a fully functional one-class classification tool, the PSNR (Peak 
Signal-to-Noise Ratio, see Formula 3) method was selected, as it provides a more accurate assessment 
of similarity between the input and reconstructed images. 

where PSNR is measured in decibels (dB), 
𝑀𝐴𝑋௣௜௫௘௟ denotes the maximum possible pixel value of the image (e.g., 1.0 for normalized images or 
255 for 8-bit images) and MSE is defined in Formula (2). 

Preliminary analysis of other metrics-cosine similarity and MSE (Mean Squared Error) – showed 
that they are not sensitive enough to small but important changes in the images, which is critical in 
medical analysis tasks. 

The classification method involves transforming both the original and reconstructed images into 
vectors and computing their similarity. 

 If the PSNR value exceeds 25, the image is classified as correct (i.e., contains a mole). 
 If the value is below the threshold, the image is classified as potentially anomalous or in 

need of retaking. 

Additionally, synthetic data with artificially added moles was used for training. Several model 
configurations were tested during training of the autoencoder by changing parameters such as latent 
space size (latent_dim – the size of the compressed representation of the input data), learning rate, 
and batch size. The platform Weights & Biases [4] was used to monitor metrics and save model 
weights. 

The table below (see Table 1) presents the training results for different model configurations; the 
best results are marked in green, based on a gradient from worst (red) to best (green): 

Table 1 
Validation model training results 

Models latent_dim batch_size learning_rate epoch loss psnr 

Autoencoder 256 32 0.0001 20 0.004 24.20 
Autoencoder 256 32 0.0001 17 0.003 24.86 
Autoencoder 100 32 0.001 20 0.003 25.26 
Autoencoder 100 8 0.001 3 0.028 15.60 
Autoencoder 100 16 0.001 6 0.014 18.80 
Autoencoder 100 16 0.001 10 0.021 16.82 
Autoencoder 200 16 0.0001 10 0.004 23.95 
Autoencoder 200 16 0.01 10 0.011 19.67 
Autoencoder 200 16 0.001 10 0.003 25.07 
Autoencoder 200 15 0.0001 10 0.004 23.71 
Autoencoder 200 15 0.0001 1 0.494 1.65 
Autoencoder 100 8 0.002 10 0.357 3.77 
Autoencoder 200 8 0.002 1 0.507 1.17 
Autoencoder 64 8 0.002 10 0.519 0.96 
Autoencoder 32 8 0.002 10 0.562 -0.02 
Autoencoder 32 16 0.001 10 0.563 -0.06 

𝑀𝑆𝐸 =  
1

𝑁
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Models latent_dim batch_size learning_rate epoch loss psnr 
Autoencoder 32 8 0.001 10 0.645 6.03 
Autoencoder 128 8 0.001 10 0.621 10.79 
Autoencoder 200 8 0.001 10 0.590 26.38 

 First configuration: batch_size = 32, learning rate = 0.0001, latent_dim = 256. Training lasted 
for 17 epochs and was automatically stopped due to the absence of further improvement in 
metrics. Obtained metrics: PSNR = 24.8586, loss = 0.0032. The analysis of the graphs indicated 
no overfitting and stable model convergence (see Figure 12). 

 

Figure 12: Metrics dynamics for the model with the first configuration: loss curves (top) and PSNR 
metric (bottom) on the training and validation datasets. 

 Second configuration: batch_size = 32, learning rate = 0.001, latent_dim = 100. Training lasted 
for 20 epochs. Obtained metrics: PSNR = 25.228, loss = 0.003. The graph analysis shows no 
overfitting and stable model convergence (see Figure 13). 

 

Figure 13: Metrics dynamics for the model with the second configuration: loss curves (top) and 
PSNR metric (bottom) on the training and validation datasets. 



 Third configuration: batch_size = 32, learning rate = 0.0001, latent_dim = 200. Training ended 
after 10 epochs. Metrics: PSNR = 25.07, loss = 0.0031 (see Figure 14). 

 

Figure 14: Metrics dynamics for the model with the third configuration: PSNR (left) and loss function 
(right). 

Analysis of the results shows that the reconstruction quality strongly depends on the latent space 
size. Reducing the latent_dim to 32 significantly degrades accuracy, regardless of the learning rate. 
Reducing the batch size slows down model convergence. As for the learning rate, 0.001 turned out 
to be optimal: at 0.01, convergence was unstable, further reduction to 0.0001 did not yield significant 
improvement. The obtained results confirm the importance of proper hyperparameter tuning for 
stable and efficient autoencoder training.  

To evaluate the algorithm's performance, visual examples are provided for both successfully 
reconstructed images and those with noticeable reconstruction errors (see Figures. 15–16). 

 

 

Figure 15: Example of a successfully reconstructed image 

 

Figure 16: Example of a reconstructed image with noticeable errors 



The developed model is used for the initial validation step of the service: the user uploads an 
image, the autoencoder analyzes it, and returns a decision on whether a new image is needed or 
whether the current image is of sufficient quality for further analysis. 

4.2. Developed segmentation model 

After passing the validation check, the image is sent to the preliminary segmentation stage, for 
which a neural network model based on Mask R-CNN was developed. The chosen model does not 
require significant preprocessing of the data. Training was conducted in fine-tuning mode: most of 
the pre-trained network weights were retained, except for the roi_heads module, which was adapted 
to the specifics of the task. 

Experiments were conducted with various hyperparameter configurations, including changes in 
the learning rate, choice of optimizer, and number of epochs. Satisfactory results were achieved after 
just five epochs of training. The quality of segmentation was evaluated on both the training and 
validation datasets, confirming the effectiveness of the chosen approach. 

An example of the resulting mole segmentation is presented (see Figure 17): 
 

 

Figure 17: Example of mole segmentation: reference images on a black background, predictions on 
a blue background. 

The model demonstrated high IoU  (Intersection over Union, see Formula 4) values even after 
minimal modifications and only five epochs of training (see Figure 18).  

where area of overlap is the region where the predicted bounding box and the ground truth 
bounding box intersect, and area of union is the total area covered by both the predicted and ground 
truth bounding boxes combined. 

However, the main issue remains the duration of training: one epoch of Mask R-CNN takes at 
least 40 minutes due to the large amount of training data, even on a high-performance GPU. 

 

 

Figure 18:  Metrics evolution during the training of the segmentation model: average loss (left) and 
IoU (right). 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
, 

 
(4) 



4.3. Developed classification models 

To compare the performance of different neural network architectures, various models were 
trained on the same dataset. This process included testing different model variations, particularly by 
tuning hyperparameters such as batch size and learning rate. However, not all models showed 
significant improvements even after hyperparameter optimization. Some models continued to yield 
poor results, indicating their insufficient effectiveness for this study regardless of configuration 
adjustments. 

Model performance was evaluated using the Accuracy (see Formula 5), Precision (Formula 6), 
Recall (Formula 7), and F1-score (Formula 8) metrics on both the training and validation datasets. 
The following formulas were used to compute these metrics: 

where TP is the number of true positive predictions, TN is true negatives, FP is false positives, 
and FN is false negatives. 

The table below (see Table 2) presents the training results of models with various configurations; 
the best results are highlighted in green, following a gradient from worst (red) to best (green): 

Table 2 
Comparison of classification model results across various metrics 
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VGG 10 16 0.0001 0.864 0.861 0.288 0.861 0.864 0.764 0.760 0.730 0.769 0.764 

EfficientNe
t b0 

29 16 0.001 0.900 0.900 0.235 0.903 0.900 0.882 0.882 0.509 0.883 0.882 

VGG 12 16 0.001 0.131 0.111 1.968 0.161 0.131 0.126 0.062 1.960 0.089 0.126 

EfficientNe
t b0 

23 16 0.0001 0.724 0.724 0.632 0.744 0.724 0.742 0.743 0.654 0.759 0.742 

AlexNet 33 16 0.001 0.738 0.728 0.524 0.731 0.738 0.710 0.701 0.808 0.707 0.710 

SqueezeNet 23 16 0.001 0.635 0.629 0.814 0.678 0.635 0.596 0.595 0.948 0.634 0.596 

InceptionV
3 

38 16 0.001 0.574 0.571 0.918 0.628 0.574 0.688 0.690 0.710 0.741 0.688 

EfficientNe
t b5 

6 16 0.001 0.106 0.094 1.943 0.208 0.106 0.098 0.087 1.942 0.213 0.098 

Resnet50 18 16 0.001 0.956 0.956 0.098 0.956 0.956 0.886 0.886 0.565 0.888 0.886 

EfficientNe
t b5 

8 16 0.001 0.146 0.090 1.941 0.113 0.142 0.170 0.108 1.934 0.149 0.143 

Resnet50 10 16 0.001 0.921 0.913 0.238 0.917 0.911 0.714 0.729 1.013 0.746 0.723 

EfficientNe
t b5 

4 16 0.0001 0.147 0.105 1.943 0.182 0.136 0.143 0.060 1.939 0.197 0.122 

EfficientNe
t b5 

3 16 0.001 0.144 0.106 1.946 0.276 0.147 0.164 0.100 1.943 0.274 0.142 

EfficientNe
t b5 

16 8 0.001 0.126 0.091 1.942 0.304 0.154 0.155 0.105 1.941 0.128 0.169 

AlexNet 22 8 0.001 0.719 0.715 0.743 0.724 0.719 0.536 0.530 1.173 0.547 0.536 

AlexNet 17 8 0.001 0.636 0.633 0.916 0.671 0.636 0.506 0.494 1.132 0.546 0.506 

SqueezeNet 16 8 0.001 0.738 0.734 0.722 0.751 0.738 0.574 0.564 1.054 0.596 0.574 

InceptionV
3 

27 8 0.001 
 

0.500 1.188 0.543 0.499 
 

0.524 1.119 0.585 0.546 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 , 

 
(5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 +  𝐹𝑃
 , 

 
(6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁
 , 

 
(7) 

𝐹1  = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 , 

 
(8) 



EfficientNe
t b5 

1 8 0.001 
 

0.114 1.948 0.289 0.165 
 

0.133 1.900 0.690 0.213 

Resnet50 16 8 0.001 
 

0.876 0.311 0.877 0.875 
 

0.720 0.907 0.732 0.718 

Resnet50 10 8 0.001 
 

0.763 0.551 0.773 0.759 
 

0.656 1.020 0.714 0.645 

According to the research findings, the best results were demonstrated by the following models 
(see Table 3): 

Table 3 
Best model results based on the study findings 

Models val_accuracy val_f1_score val_loss val_precision val_recall 

ResNet-50 (lr=0.001) 0.886 0.886 0.565 0.888 0.886 
EfficientNet-B0 

(lr=0.001) 
0.882 0.882 0.509 0.883 0.882 

VGG (lr=0.0001) 0.764 0.76 0.73 0.769 0.764 
ResNet-50 (lr=0.0001) 0.714 0.729 1.013 0.746 0.723 

To assess the training effectiveness of the best-performing models, graphs showing changes in 
the training loss function were constructed (see Figure 19). 

 

 

Figure 19: Comparative visualization of training loss functions for the best-performing models 
ResNet, VGG, EfficientNet 

Among the tested architectures, ResNet-50 achieved the best classification performance, 
significantly outperforming others in key metrics. The VGG and EfficientNet-B0 models also showed 
strong results, although they slightly lagged behind ResNet-50. 

On the other hand, architectures such as Inception v3, SqueezeNet, AlexNet, and EfficientNet-B5 
were less effective for the given task. In particular: 

 Inception v3 achieved a validation F1-score of 0.690 and accuracy of 0.688; 
 SqueezeNet – F1-score of 0.596 and accuracy of 0.595; 
 AlexNet showed an F1-score of 0.701 and accuracy of 0.710; 
 EfficientNet-B5 significantly underperformed compared to other models, with an F1-

score of just 0.105 and accuracy of 0.155. 



This may be due to their architectural characteristics, insufficient adaptation to the specific task, 
or suboptimal hyperparameter settings. Figure 20 shows the loss dynamics for all models and 
training runs for comparison: 

 

 

Figure 20: Loss curves for all runs of the classification models 

5. Conclusions 

In the course of this study, various scientific publications were reviewed regarding the application 
of neural networks in computer vision, particularly in dermatology. Several deep learning models 
were tested for the classification and segmentation of skin images, and the most effective approaches 
were identified based on empirical evaluation.  

For the skin lesion classification task, the custom model based on ResNet-50 achieved the best 
results, with a validation accuracy of 88.6%, F1-score of 0.886, outperforming the EfficientNet-B0, 
EfficientNet-B5 SqueezeNet, AlexNet, Inception v3 and VGG-based models tested under similar 
conditions. This performance indicates a strong generalization capability even with a relatively 
limited number of training epochs.  

For segmentation, the Mask R-CNN-based model demonstrated high reliability, achieving an 
Intersection over Union (IoU) of 87%. It effectively detects all visible moles in an image, regardless of 
size or location. This model is particularly valuable for distinguishing individual lesions from the 
background, enabling the precise extraction of each mole for subsequent classification. Although 
computationally intensive, its high precision in localized analysis supports its use for detailed lesion 
identification and individual mole classification. 

An autoencoder model was also employed for preliminary mole presence detection, effectively 
filtering out irrelevant images and contributing to overall pipeline efficiency. All the tested models 
are planned to be integrated into a unified AI-based module for automated skin lesion analysis. The 
system will include stages of initial image validation, mole segmentation, and lesion classification.  

Future work will focus on developing a clinical prototype capable of delivering actionable 
recommendations. This integrated approach has the potential to significantly enhance early 
detection of skin conditions, streamline dermatological workflows, and improve patient outcomes. 

Declaration on Generative AI 

During the preparation of this work, the authors used GPT-4 to assist with grammar and spelling 
check, paraphrasing and rewording, and improving the writing style. After using this tool, the 
authors reviewed and edited the content as needed and take full responsibility for the publication’s 
content. 
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