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Abstract 
This paper explores key challenges in machine learning classification for optimizing the identification of 
unmanned aerial vehicles (UAVs) using radio frequency (RF) features and introduces an improved approach 
based on specific fingerprinting techniques. The study begins by discussing essential data preprocessing 
steps and feature extraction techniques relevant to RF-based signal analysis for UAVs identification. Several 
RF feature representations—such as Power Spectral Density (PSD), Short-Time Fourier Transform (STFT), 
and wavelet-based methods—are tested and compared. The proposed strategy is evaluated on an open-
source dataset using different machine learning classifiers. Results indicate that convolutional neural 
networks (CNNs), when paired with wavelet-based feature extraction, offer the highest classification 
accuracy, making it possible to differentiate UAV types more effectively. These findings underscore the 
growing role of deep learning in RF-based UAV identification, with important implications for security and 
spectrum monitoring. 
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1. Introduction 

The growing use of autonomous systems has led to the widespread adoption of unmanned aerial, 
ground, and marine vehicles in various industries. These technologies play a key role in areas such 
as surveillance, logistics, and industrial automation. To enhance their performance, researchers have 
explored AI-based control methods, including fuzzy logic and swarm optimization [1-3]. AI-driven 
techniques have proven particularly useful in improving drones' and robotic systems' decision-
making and navigation capabilities [4-6]. At the same time, as UAVs become more common in both 
civilian and military settings, the need for effective detection systems has become increasingly 
important to ensure security and regulatory compliance. 

Researchers have explored various machine learning approaches for detecting drones, using 
different sensing methods. One broad survey discusses a plethora of drone detection strategies [7], 
including those based on audio analysis [8, 9], computer vision [10-12], and data fusion [13, 14]. 
Audio-based techniques identify drones by analyzing their unique sound signatures, while computer 
vision methods rely on deep learning models like YOLO and Mask R-CNN to recognize drones in 
images or video. Meanwhile, fusion models combine multiple data sources to improve identification 
accuracy and reliability. 
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As UAV identification becomes more complex, artificial intelligence methods—such as fuzzy 
logic—offer a promising way to enhance both accuracy and adaptability. Fuzzy logic has been 
successfully applied to a range of intelligent decision-making tasks, from optimizing rule-based 
systems to improving classification techniques [15, 16]. Studies have shown its effectiveness in 
refining detection models and making them more flexible in dynamic environments. 

Radio frequency machine learning (RFML) has recently emerged as a powerful tool for UAV 
identification, thanks to its ability to recognize electromagnetic signal patterns. Researchers have 
focused on several key areas, including signal processing and feature extraction [17-19], modulation 
classification [20, 21], and specific emitter identification [22-24]. More recently, the use of generative 
adversarial networks (GANs) in RFML has helped strengthen models against adversarial attacks [25, 
26]. While these advancements show promise, RFML is still a developing field, with ongoing research 
needed to refine optimization techniques and enhance real-world performance. 

Recent research demonstrates increasing interest in multimodal fusion techniques, particularly 
those that integrate radio frequency signals with audio data to enhance identification accuracy [27]. 
It has been suggested that incorporating audio information may improve the robustness of RF 
datasets to noise and environmental variability. Nevertheless, the practical implementation of such 
approaches poses significant challenges, particularly in constructing well-balanced, synchronized 
datasets of radio and audio signals under real-world conditions. Moreover, additional constraints 
emerge when capturing UAV acoustic signatures in actual operating environments. Despite these 
difficulties, recent studies have proposed viable ways of integrating audio-based feature extraction 
techniques for raw RF signal data, which are extended and incorporated in the present work. 

In parallel, efforts have emerged to create open-source datasets of drone RF signals, most notably 
the initiative described in [28], which outlines a systematic framework for the collection and 
preliminary analysis of raw RF emissions from unmanned aerial vehicles. While this work lays 
foundational groundwork, it provides only a cursory demonstration of the dataset's applicability to 
machine learning tasks. 

In this study, we expand upon the abovementioned methodologies, and propose a method for 
constructing features using radio frequency fingerprinting techniques, namely power spectral 
density, short-time Fourier transform, and wavelets. The resulting feature vectors are applied to 
several machine learning methods for drone identification. By conducting extensive experiments, we 
assess the potential of these feature extraction techniques for practical applications in real-world 
environments. 

Proposed approach 

This section presents the approach used for the discussed problem. We follow the recommendations 
provided by [28], and extend the methodology with our proposed RF fingerprinting techniques and 
deep learning models.  

This approach utilizes three RF fingerprinting techniques: power spectral density (PSD), short-
time Fourier transform (STFT), and wavelets. These extraction methods rely on physical 
imperfections in analog components that arise from the device manufacturing process. The 
effectiveness of convolutional neural networks (CNN) and recurrent neural networks (RNN) is 
assessed for drone identification. 

The proposed approach is shown on Figure 1.  



 

Figure 1: The proposed approach flow diagram. 

It includes the following phases:  

1. Dataset retrieval and extraction; 
2. Data preprocessing; 
3. Feature vector extraction; 
4. Application of ML-based methods for drone identification. 

Dataset 

This section describes the RF dataset used to evaluate the effectiveness of the proposed approach — 
the DroneRF dataset. This is a public dataset provided by [28]. It contains raw RF signal data acquired 
from two 40MHz receivers that capture the 2.4-2.48 MHz range. The dataset contains background 
noise data when no drone is present, as well as data captured from three types of drones: Parrot 
Bebop, Parrot AR, and DJI Phantom. Since two receivers were used, every data sample consists of 
two signals: low-band and high-band. 

Figure 2 depicts the raw sample of the DroneRF dataset. The data packets related to drone 
activity are clearly observable, as the signal’s amplitude drastically increases. 

 

Figure 2: Raw RF signal from the DroneRF dataset. 



Table 1 illustrates the summary of the DroneRF dataset. The dataset authors provide 3 experiment 
levels to work with: drone presence, drone type and drone flight mode. For this research, only the 
second level experiment level was chosen.  

One can pinpoint the class imbalance of the dataset, which is a result of different sample sizes of 
different classes and of the varying numbers of flight mode classes for each drone. Therefore, data 
resampling techniques and stratified cross-validation will be used to address this issue. 

Table 1 
Details of the raw DroneRF dataset 

Class Segments Samples Ratio (%) 

Background noise 41 820 ×  10 ଺ 18.06% 

Bebop 84 1680 ×  10 ଺ 37.00% 

AR 81 1620 ×  10 ଺ 35.68% 

Phantom 21 420 ×  10 ଺ 9.25% 

 

Data preprocessing 

Since the dataset consists of long data packets that include silent intervals, only the RF data packets 
on drone activity have to be extracted. The main reason for this decision is to obtain meaningful 
temporal feature information. 

In the preprocessing stage, a thresholding technique was used to segment signal data into RF 
packets. Considering that the background noise packets lack any RF information related to drone 
activity, thresholding is not applied to them. The resulting packets are subsequently split into 
equally-sized chunks that contain 4000 samples each. Finally, the dataset is balanced using an 
undersampling technique via generating centroids based on K-means clustering [29, 30]. This 
technique is applied only to the majority class (background noise data). 

Feature extraction 

To train various classifiers, several groups of features have been used: PSD, STFT-based features, and 
wavelet-based features. All of these feature types are extracted from the DroneRF dataset. 

Analyzing UAV signals in the frequency domain is essential for detecting their unique spectral 
patterns. Methods like spectral analysis, wavelet transforms, and frequency-based filtering help 
improve classification accuracy by capturing these distinct features. Similar frequency-domain 
approaches have been successfully applied in other domains to optimize the performance of a 
complex system [31]. These insights suggest that frequency-domain analysis is a valuable tool for 
enhancing UAV identification capabilities. 

Power Spectral Density 

The power spectral density (PSD) describes how the power of a signal or process is distributed across 
different frequency components [32]. To calculate PSD, one must obtain a frequency-domain 
representation of a signal using the discrete Fourier transform (DFT) [33], which is calculated as 
follows: 

where 𝑥(𝑛) is the time signal at time index 𝑛, 𝑁 denotes the total number of samples in the signal, 
𝑘 is the index of the frequency component ranging from 0 to 𝑁 − 1, and 𝑗 is the imaginary unit. 

Consequently, the formula to determine the PSD of the signal would be: 
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where 𝑓௦ describes the sampling frequency of the signal.  
According to the Nyquist-Shannon sampling theorem, the sample rate must be at least twice the 

bandwidth of the signal to avoid aliasing. Ergo, the sampling rate of 80MHz was chosen, due to the 
fact the signal bandwidth is 40MHz. 

Because every signal packet is represented by a low- and high-band component, both of these 
components should be used for computing the PSD [28]. Therefore, after computing the DFT of both 
segments, we concatenate the resulting spectral information as such: 

where 𝑋஽ி்
(௅)  and 𝑋஽ி்

(ு)  denote the DFT of the low- and high-band components respectively, and 𝑐 is 
the normalization factor. It is calculated as follows: 

where 𝑄 is the number of samples to take from the end of the lower spectra 𝑋஽ி்
(௅)  and the star of the 

upper spectra 𝑋஽ி்
(ு) , and 𝑀 is the total number of frequency bins in 𝑋஽ி். The normalization factor 

ensures spectral continuity between the two parts of the spectrum, while introducing spectral bias. 
Figure 3 shows the average PSD for each of the classes present in the dataset. During the 

preprocessing stage, PSD vectors are calculated separately for each signal frame.  

 

Figure 3: Average power-over-frequency distribution of the DroneRF dataset. 

For the proposed approach, the following values have been chosen: 𝑄 = 10, 𝑀 = 2048. This way, 
the value of 𝑄 is small enough to combine the two spectral vectors while being large enough to 
average out any random fluctuations. 

Short-time Fourier Transform 

While DFT outputs the frequency-domain representation of a signal, analysis of the temporal 
characteristics proves ineffective. Instead, one may use the short-time Fourier transform (STFT) [34, 
35]. It splits the signal information into smaller overlapping segments and applies the Fourier 
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transform to each segment. The resulting output is the spectrogram: a two-dimensional array that 
describes the frequency content of a signal over time. 

The discrete STFT is given by: 

where 𝑋(𝑚, 𝑘) is the STFT at time index 𝑚 and frequency index 𝑘, 𝑥(𝑛) is the original discrete time-
signal, 𝜔(𝑛) is the window function applied to the signal, 𝑚 is the index of the window and 𝑁 is the 
length of the window. 

For the purposes of this research, the following values have been chosen: 𝑁 = 511, and 𝜔(𝑛) — 
Hanning window, a classic windowing function used in signal processing. Additionally, the signal is 
also zero-padded at the end to ensure the signal fits exactly into an integer number of window 
segments [36], so that all of the signal is included in the output. As a result, the STFT computed with 
these parameters has 17 timeframes and 256 frequency bins. An example of the generated STFT 
spectrogram is displayed on Figure 4. 

 

Figure 4: Visualization of the STFT spectrogram of a sample’s low-band segment. 

Following the STFT transformation of the signal data, instead of using the raw spectrogram itself, 
several other features are inferred from this representation: spectral centroid, spectral flux and 
spectral entropy. The following features are then concatenated in a single feature vector. 

Spectral centroid is a measure of the "center of mass" of a spectrum and is often used in signal 
processing, particularly in the analysis of audio signals. It indicates the perceived brightness or 
timbre of a sound. In simple terms, it tells us where the "center" of the power distribution is in the 
frequency domain. For a discrete signal, the spectral centroid 𝐶(𝑡) at time 𝑡 can be calculated as: 

where 𝑡 is the time frame, 𝑓 is the frequency bin index, 𝑋(𝑡, 𝑓) is the STFT of the signal at time 𝑡 
and frequency bin 𝑓, and 𝐹 is the total number of frequency bins. 

Spectral flux is a measure of how much the spectral content of a signal changes between 
consecutive frames or time windows. It is often used in audio signal processing to detect changes in 
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the sound over time, such as transitions between different musical notes, chords, or sounds in an 
audio signal. The spectral flux 𝑆(𝑡) at time 𝑡 is given by: 

Spectral entropy is a measure of the disorder or unpredictability in a signal's frequency content. 
It quantifies the spread or concentration of power across the frequency spectrum, with higher 
entropy indicating a more complex or "noisy" spectrum, and lower entropy indicating a more 
predictable or "peaked" spectrum. The spectral entropy 𝐻(𝑡) at time 𝑡 is calculated based on the 
equation: 

where 𝑝(𝑡, 𝑓) is the normalized power at frequency bin 𝑓 and time 𝑡. 
For the STFT spectrogram with 256 frequency bins and 17 timeframes, the number of time frames 

of the spectral centroid and spectral entropy is 17 as well. However, the spectral flux vector contains 
only 16 timeframes, because it calculates the difference between sequential time instants. Hence, the 
resulting feature vector contains 17 + 16 + 17 = 50 features. 

Wavelets 

Wavelet transforms are a mathematical tool used in signal processing to analyze data at multiple 
scales or resolutions [37]. Unlike Fourier transforms, which decompose a signal into sine and cosine 
functions with fixed frequencies, wavelet transforms break the signal into components that capture 
both frequency and time information, allowing for the analysis of signals that are non-stationary 
(i.e., their frequency content changes over time).  

In this work, wavelet packet decomposition (WPD), an extension of discrete wavelet transform 
(DWT), is used to generate a flexible and detailed multi-resolution analysis of a signal [38]. While 
the DWT only decomposes the signal into approximation and detail coefficients (low and high-
frequency components), the WPD goes further by decomposing both the approximation and detail 
components at each level. The result is a binary tree structure of wavelet coefficients, where each 
node represents either approximation or detail coefficients. This binary tree structure allows for a 
more flexible and complete decomposition, as each node can be further decomposed into finer 
frequency bands. 

Figure 5 shows the visual representation of the WPD: the time- and frequency-domain 
representations of each decomposition level.  
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Figure 5: Visual representation of wavelet packet decomposition. 

We use 6 levels of decomposition in WPD, resulting in 64 set of coefficients, and apply the FIR 
approximation of the Meyer wavelet. Finally, each vector is characterized with two features: the root 
mean squared error (RMS) and the standard deviation (STD) of each coefficient vector. As a result, 
each feature vector consists of 64 ∙ 2 = 128 features. 

Classification 

We investigate two machine-learning-based classification methods used for the identification of 
UAVs: convolutional neural networks (CNN) and recurrent neural networks (RNN). The 
effectiveness of these methods is evaluated for the synthesized RF feature vectors.  

CNN 

Convolutional neural networks (CNNs) are deep learning models designed to process structured grid 
data, including images and spectrograms. Their ability to automatically extract features and 
recognize patterns makes them especially useful for tasks like radio frequency fingerprinting. 

Figure 6 depicts the CNN used in this research. Its architecture was proposed in [28], which was 
in turn motivated by LeNet architecture [39]. This classifier is composed of three convolution 
modules, four dense modules and a SoftMax output layer.  

Every convolution module consists of a one-dimensional convolution layer, batch normalization 
layer, rectified linear unit (ReLU) activation layer and a max pooling layer. Every subsequent layer 
decreases the dimension sizes: 64, 32, and 16 for the filters, and 11, 5 and 3 for kernels, respectively. 

The dense modules receive the flattened input vector from the convolution modules. Every dense 
module consists of a fully connected (dense) layer, a batch normalization layer, and a parametric 
rectified linear (PReLU) unit activation layer. A default value of 0.25 was chosen for the PReLU’s 
learnable parameter 𝑎. The four fully connected layers incorporate 512, 256, 128 and 4 neurons, 
respectively. 

 



 

Figure 6: CNN model architecture. 

RNN 

Recurrent neural networks (RNNs) are specialized for handling sequential data, making them ideal 
for tasks like time-series analysis or recognizing patterns that change over time [40]. Unlike 
traditional feedforward networks, RNNs feature recurrent connections that allow information to be 
passed through from one time step to the next, which helps them capture temporal dependencies in 
data. 

Figure 7 describes the RNN architecture. This model is composed of 2 long short-term memory 
(LSTM) modules, four dense modules and a SoftMax output layer.  

 

 

Figure 7: RNN model architecture. 



The long short-term memory (LSTM) modules incorporate 64 units each, meaning a number of 
neurons that comprise the hidden state of the layer. 

The dense module pipeline is identical to the CNN model architecture. The fully connected 
modules receive the flattened input vector from the convolution modules and are composed of a fully 
connected (dense) layer, a batch normalization layer, and a parametric rectified linear (PReLU) unit 
activation layer with a default value of 0.25. The four dense layers contain 512, 256, 128 and 4 
neurons, respectively. 

Model training parameters 

Choosing the right training methods and parameters is paramount for achieving the best model 
performance. In this study, various hyperparameters, including learning rate, batch size, and the 
number of epochs, were fine-tuned to optimize classification accuracy. 

To evaluate the models’ performance as precisely as possible, a stratified K-fold cross-validation 
procedure [41] was integrated in the training pipeline, where 𝐾 = 5. In summary, a provided dataset 
is split into 𝐾 folds of training and testing data, which are fit and evaluated separately from each 
other. Every fold is made by preserving the percentage of samples in each data to address class 
imbalance. 

The following training parameters have been chosen for both CNN and RNN: 

 Optimizer: adaptive moment estimation (Adam) [42]; 
 Loss function: categorical cross entropy; 
 Epochs: 50; 
 Batch size: 32; 
 Learning rate: 0.01. 
 Performance metric: accuracy. 

2. Results 

This section describes the experimental results for the various feature vectors (PSD, STFT and 
wavelet) and the two ML-based classification methods (CNN, RNN). 

As specified in section 2, the CNN classifier consists of three convolution modules, four dense 
modules (composed of 512, 256, 128 and 4 neurons, respectively), and SoftMax output layer. The RNN 
classifier, in turn, replaces the three convolution modules with two long short-term memory layers, 
each containing a state vector of size 64. 

The classification performance is validated using a stratified K-fold cross-validation (with 𝐾 =

5). The accuracy is evaluated by using the test subsets generated by each fold’s split, and the resulting 
evaluations are used to generate confusion matrices. This allows us to visualize the average 
performance of the trained model. 

Figures 8, 9 and 10 illustrate the confusion matrices for the PSD, STFT and wavelet datasets, 
respectively, using CNN(a) and RNN(b) model architectures.  



 

Figure 8: PSD: CNN (a) and RNN (b) results. 

 

Figure 9: STFT: CNN (a) and RNN (b) results. 

Additionally, Table 2 offers a comparative analysis of the performance metrics obtained during 
the training process. The accuracy and F1-score metrics are computed for each obtained test 
evaluation vector.  

It is evident from Figures 8-10 and Table 2 that the CNN using the feature vector computed from 
WPD coefficients achieves the best results with 97% accuracy and an F1-score of 0.97. In comparison, 
the PSD dataset shows the worst results: the CNN is unable to correctly determine the background 
noise packets, while the RNN overfits on them. The STFT-based dataset exhibits slightly better 
results; however, in this case, the CNN still underfits on the background noise, while the RNN fails 
to ascertain enough features to distinguish different drone types from each other.  



 

Figure 10: Wavelets: CNN (a) and RNN (b) results. 

 
Table 2 
Analysis of performance metrics of the ML-based classification methods 

Dataset types 
Performance metrics per model 

CNN RNN 
Accuracy (%) F1 Accuracy (%) F1 

PSD 50% 0.43 53% 0.54 

STFT-based 62% 0.54 63% 0.63 

Wavelet-based 97% 0.97 72% 0.71 

 

3. Conclusion 

This study conducts research and comparative analysis on machine learning classification methods 
for optimizing the identification of unmanned aerial vehicles using radio frequency fingerprinting 
techniques, namely power spectral density, short-time Fourier transform, and wavelets. Specifically, 
the proposed approach has been evaluated with an open-source dataset (DroneRF), and compared 
against different ML-based classification methods using various feature vectors (PSD, STFT-based 
and wavelet-based). 

The results demonstrate the effectiveness of convolutional neural networks for RF-based machine 
learning using wavelet-based feature extraction. The proposed CNN shows a high classification 
accuracy of 97%, effectively determining the drone type. The classifier demonstrates a 7% 
improvement in classification accuracy over the model presented in [27], despite both approaches 
utilizing wavelet-based feature vectors. This improvement is primarily attributed to careful tuning 
of the training parameters, wavelet packet decomposition settings, and the CNN architecture, which 
collectively enhanced the model's ability to extract and learn discriminative features for UAV 
identification. 

These findings highlight the potential of deep learning models, particularly CNNs, in enhancing 
the accuracy and reliability of UAV identification through RF fingerprinting. The ability to 
distinguish between different drone types with high precision is crucial for applications such as 
airspace security, unauthorized drone identification, and spectrum monitoring. Moreover, the use of 
wavelet-based feature extraction proves to be a significant factor in improving classification 
performance, reinforcing its viability as a preprocessing technique for RF-based machine learning 
tasks. 



Future research could explore the integration of additional deep learning architectures, such as 
hybrid models, or augmentation of the data preprocessing stage to optimize the feature vectors, or 
further optimization of the RNNs in the context of radio frequency machine learning. Additionally, 
testing the proposed model on real-time or larger-scale datasets could provide insights into its 
robustness under varying environmental conditions and signal interference. Expanding this work 
could lead to the development of more efficient and scalable UAV identification systems, 
contributing to advancements in security and autonomous air traffic management. 
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