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Abstract

We propose a two-scale epidemic model that distinguishes intra-community infection dynamics from inter-
community transmission. At the micro-layer, an epidemic outbreak within a community is simulated with
the Gillespie SIR engine with additional infections. At the macro scale each community collapses to a single
node in a mobility-weighted meta-population graph; stochastic transmissions between nodes are timed with
a hazard-integral implementation of Gillespie’s SSA allows dynamically varying infectivity and susceptibility
parameters to account for behavior changes, interventions, or emerging variants. We aim to reduce the complexity
of visual analysis and simulation by introducing techniques to capture key aspects of two-scale network dynamics.
For visualization, we propose Sankey diagrams to depict virus strain infection rates across communities. Our
two-scale simulation approach considers cumulative infection exposure, allowing nodes to continue receiving
infection pressure from external sources after initial outbreaks, capturing the effect of ongoing inter-community
interactions. By abstracting macro-edges from point-to-point contacts a complexity reduction by a multiplicative
factor proportional to the squared average size of a community can be achieved.
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List of Abbreviations

BA Barabasi-Albert model of complex scale-free network
CTMC Continuous-Time Markov Chain

ICU Intensive-Care Unit (special Infectious state)

SIR Susceptible-Infectious—Removed epidemic model

SSA Stochastic Simulation Algorithm (Gillespie)

1. Introduction

The aim of the paper is to develop a stochastic simulation and visual analysis technique for epidemic
outbreaks on complex networks that would be possible to scale up to a country with millions of
inhabitants. We condense a community into a single node (metanode) to model transmission between
metanodes and use an agent-based simulation with infections from the outside to depict infection
dynamics within communities.

Pandemic preparedness depends on our ability to anticipate how quickly and in what way an
infection will spread, so that intensive care capacity, test-and-trace teams, and vaccination logistics can
be mobilized in time and in the right places. In practice, the most critical policy indicators are how high
the simultaneous case load climbs and how long the authorities have before that peak arrives. Classical
compartmental models capture long-term averages, but they smooth out exactly those local surges that
overwhelm hospitals. A finer-grained lens is, therefore, essential.

MoMLeT-2025: 8th International Workshop on Modern Machine Learning Technologies, June, 14, 2025, Lviv-Shatsk, Ukraine
*Corresponding author.

"These authors contributed equally.

& yulian.a kuryliak@lpnu.ua (Y. Kuryliak); michael.t.m.emmerich@jyu.fi (M. Emmerich)

® 0000-0002-6600-2637 (Y. Kuryliak); 0000-0002-7342-2090 (M. Emmerich)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B



mailto:yulian.a.kuryliak@lpnu.ua
mailto:michael.t.m.emmerich@jyu.fi
https://orcid.org/0000-0002-6600-2637
https://orcid.org/0000-0002-7342-2090
https://creativecommons.org/licenses/by/4.0/deed.en

One principled way to incorporate such fine-grained detail is to represent every individual as a node
in a contact network and let infection propagate along its edges. Our previous work [1] presented a
continuous-time Markov chain simulator (CTMC) based on an efficient customized Gillespie algorithm
that realizes this idea without mean-field approximations, i.e., simulating the stochastic trajectory of
an epidemic outbreak with realistic timing of events. The method works well with tens of thousands of
individuals and accurately resolves the timing and magnitude of the infection peak. The complexity of
single infection of modeling an infection event is O(kN), k - average degree of a node, N - number
of nodes in the network. Taking into account the complexity, scaling the same agent-based engine
from a 10 thousand-person community suburb to a country of 40 million multiplies the state space by
three orders of magnitude per each iteration. Even if the contact graph remains sparse (average degree
k ~ 10) a single stochastic iteration grows from seconds to hours and modeling of one full iteration
grows from minutes to weeks. Therefore, even with aggressive algorithmic optimization and access to
powerful hardware, the agent-based engine is not an option for policy studies that require hundreds of
replications across multiple parameter sets.

To overcome this limitation, we introduce a two-layer simulation model. By isolating the infection
process within each community (micro layer) from the inter-community spread (macro layer), we
effectively eliminate a large fraction of the network edges from the simulation space. This reduces
overall complexity: the simulation time scales roughly linearly with the number of communities, in
contrast to the quadratic growth in a full agent-based model. Moreover, representing each community
as a node on the macro layer opens up new avenues for localized intervention. Policies such as mobility
restrictions, targeted vaccination, or school closures can be applied to individual communities and their
impact on national-level epidemic dynamics can be efficiently simulated and analyzed.

2. Related Work: Multi-Scale Network Simulation in Epidemics

Out work is mainly inspired by Colizza et al. [2], who describe a metapopulation system using transport
flow data as city connections.

Multi-scale epidemic models extend classical compartmental models by embedding them in metapop-
ulation frameworks, where nodes (metanodes) represent spatially distinct populations (e.g., cities or
regions), and edges (metalinks) represent interactions such as travel or migration. The foundational
work by Colizza and Vespignani [2] demonstrated how global disease spread can be modeled by coupling
intra-population SIR dynamics with inter-population mobility networks.

Recent developments focus on integrating high-resolution mobility data, heterogeneous contact patterns,
and agent-based models at the local level while maintaining coarse-grained population-level transmission
dynamics between communities. Notable approaches include the GLEaM (Global Epidemic and Mobility
model) [3], which combines stochastic compartment models with global airline and commuting networks,
and patch-based models for integrating real-world commuting and transportation data [4].

Advances in computational tools have also enabled scalable simulations across multiple levels of
granularity. For instance, EpiGraph [5] and Covasim [6] allow for nested simulations where community-
level dynamics inform inter-community transmission rates.

One more work that describes multiscale agent-based model is [7].

Ongoing challenges include aligning model granularity with data availability, handling non-
Markovian transitions, and calibrating heterogeneous models under uncertainty.

3. Two-Scale Epidemic Model: Conceptual Framework

3.1. Overview of the Two-Scale Epidemic Model

National-level epidemic simulations must reconcile two conflicting requirements: (i) microscopic realism
inside each locality and (ii) computational tractability across millions of individuals. Our Two-Scale



(a) Microscopic view. Agent-level contact graph (b) Two-layer abstraction. The inter-community
comprising four densely connected communities  links have been abstracted to appear as single links
(colours) and a sparse set of inter-community links.  (black edges) instead of point-to-point connections.

Figure 1: Community-structured network at two resolutions.

Epidemic Model achieves that balance by running two inter-connected layers whose time lines advance
in perfect synchrony (Fig. 1b):

Micro layer. Every community is treated as an independent population and simulated with a stochastic
Gillespie-based engine. At the end of each micro step Tyicro (typically a few hours) the model
outputs two scalars: contagiousness C;(¢) and susceptibility S;(t).

Macro layer. Communities are the nodes of a mobility-weighted graph. A continuous-time Markov
chain (CTMC)whose time-dependent rates \;;(t) = Sw;;C;(t) S;(t) capture cross-community
mobility generates the moments at which one community seeds a new infection in another. Event
timing is obtained with the hazard-integral method described in Section 3.2.

Layer synchronisation. The two layers are updated in strict lock-step:

1. During each micro interval Ty, €very community integrates its own SIR dynamics and refreshes
(Ci, S;); those numbers are immediately passed to the macro layer to update all \;;(¢).

2. The macro CTMC accumulates hazard H(t) = [ ©(s)ds on the same grid s, = to + N 7Tmicro;
when H (t) reaches its random budget F ~ Exp(1) it triggers exactly one inter-community
infection, seeds an infectious individual in the destination micro model, sets ¢y + t*, draws a
new E’, and resumes.

This bidirectional handshake guarantees that the two layers remain numerically consistent at every
discrete step.

Sankey Flow diagram. The diagram in Fig. 2 summarizes the simulation output of a simulated
epidemic outbreak on the ‘network of communities’ scale. Figure 2 arranges the communities in two
vertical bands. The bigger a node that represents a community is, the more infections the community
transmitted or received. Nodes on the (left) represent the source community of an infection event,
while those on the central and right marks the recipient communities. The flow from left to central
column counts all inter-community (macro-layer) infection events, while the frow from central to
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Figure 2: Sankey diagram of an epidemic outbreak in a two-layer visualization of flows of infections. The
diagram is built on a median simulation in Barabasi—Albert network model of 1000 nodes and 3 initial edges
per node. The total number of inter infections is 502, intra infections is 474. The communities were detected by
Louvain method.

right column tallies the accumulated intra-community (micro-layer) infections. The thickness of each

ribbon is scaled as
wij =k +/Tij,

where T;; is the total number of transmissions and % a global scale factor chosen so that the thinnest
visible edge remains ~ 0.4 pt. This square-root mapping preserves small but epidemiologically relevant
flows without allowing the largest outbreaks to dominate the canvas.

Start by following the thickest ribbons leaving the macro-layer. The most prominent stream pinpoints
the community that exports the bulk of infections. Next, compare the width of its return flow: a narrow
link back to itself but broad outgoing links to others signals a net exporter of infection pressure. In
contrast, symmetric back-and-forth ribbons between two nodes indicate reciprocal mixing. The micro-
layer further reveals where those imports amplify, because the right-hand node width is proportional to
the cumulative intra-community burden. Thus, a modest import flow that swells into a thick micro-layer
node flags a vulnerable community with intense local spread. quick visual estimate of the proportional
contribution of each external source to a given outbreak.

Because the underlying contact graph (in which the simulation 2 was performed) is generated with
the Barabasi-Albert (BA) model, it contains high-degree hubs that contact many nodes in almost every
community. As a result, the in the network are not strongly separated communities, therefore the
totals of inter-community and intra-community infections are similar. Real-world contact networks
are also approximately scale-free but typically have hubs of lower degree—households, workplaces, or
schools rather than global “super-connectors.” We therefore expect real data to show a larger share of
intra-community transmission than the BA benchmark depicted here.

Complexity advantage. Let N be the total number of agents (nodes) split into M communities.
Denote by N; their local sizes, by F; the number of edges in the intra-community contact graph of
community ¢, and by Einter the number of inter-community mobility edges in the macro graph. A naive
agent-level SSA stores and updates one channel per susceptible—infectious edge, i.e. O( Eor) memory
and O(Ei T') run time, with Eyot = > ; Es + Einter, T - total number of events. In dense networks
with N nodes, up to O(N?) edges may occur which can significantly strain the memory and time



resources, complicating simulations. Assuming the population can be partitioned into M equally sized
communities, and that all inter-community connections between the same pair of communities are
aggregated into a single weighted macro-link, the space complexity of the model can be reduced to

(@) (M (%)2> . Simplifying the expression, we obtain that the space complexity reduces by a multi-

plicative factor O (%) . The time complexity can be precisely determined using specific community

sizes and Gillespie techniques as discussed in [1]. With the two-scale split:

« each Gillespie micro engine costs O(E;) memory and O(;(k;)) time per infection, where I; and
(k;) are the current number of infectious nodes and their average intra-degree;

« the macro layer needs only O(Fiyter) channels and advances them in O(Ejper) per macro event
by the hazard-integral rule.

Overall storage scales as O(ZZ E; +Einter) < O(F4ot) and the run time per global step as O(ZZ Iik;)+
Einter), yielding near-linear scaling in the number of communities.

Targeted-intervention capability. Because each community evolves in its own micro simulator,
the platform naturally supports spatially targeted measures—lock-downs, surge vaccination or travel
restrictions—are applied by simply altering that community’s parameters. An intervention applied to
community k simply modifies its micro parameters (e.g. infection and recovery rates, edge weights or
community structure), which in turn alters C(t) and S (). Those updated scalars automatically feed
into the macro rates Ay (t) and A\ (), letting the model capture knock-on effects such as reduced export
of cases from a locked-down community or heightened import risk for under-vaccinated comminuty.

3.2. Macro-Layer: Inter-Community Transmission Model

Network representation. The national (or regional) population is partitioned into M discrete
communities—cities, districts, university campuses, etc.— which become the nodes of a directed,
weighted meta-population network. The weight w;; on edge (7, ;) measures how easily infection
can pass from community ¢ to community j; it can be estimated from commuting statistics, transporta-
tion schedules, mobile-phone mobility data, or other social-interaction proxies.

Node attributes. Every node carries two time-dependent scalars, obtained from a within-community
(micro-layer) simulator:

« Contagiousness C;(t) — proportional to the current number of infectious individuals in the
community ¢;

« Susceptibility S;(t) - proportional to the remaining susceptible individuals in the community j.

Inter-community transmission rate. The instantaneous hazard (rate) that one infection is seeded
from community ¢ to community j is

Aij(t) = Bwi; Ci(t) S;(t) T,

where [ is infection rate or the biological transmission rate of the pathogen and T is a constant
calibration factor that matches the macro layer infection rate to the micro layer one. Only one kind of
stochastic event exists at the macro layer: “one additional infection appears in community j”. After such
an event, both C;(t) and S;(t) are updated by the micro-layer models and all \;;(t) are refreshed.



3.2.1. Modelling the Waiting Time Between Events

Why the classical exponential draw is insufficient. With a constant total rate © = Z#j Aij, the
Gillespie algorithm samples the waiting time as

InU
@ )
This relies on the density f(t) = ©e~®" of the Exp(©) distribution. In our application the rate is

not constant because C;(t) and S;(t) evolve continuously. The correct total rate is therefore a function
of time:

At = U~ U(0,1) .

O) =Y _ Nij(t).
i#j

Non-homogeneous Poisson formulation. For a time-dependent rate, the probability that the next
macro event has not occurred by real time ¢ is

P(Tevent > t) = exp(f ftt) O(s) ds),
—_——
H(t)
where t( is the moment the previous macro event happened and H (t) is the cumulative hazard.

This survival function generalises the familiar e~®* of the homogeneous case. For more information
see [8].

Hazard-integral sampling rule. Let ¢y be the calendar time of the last macro-layer event. Define
the cumulative hazard

H(t)= t@(s) ds,

to

where ©(t) = >_, ,; Aij(?) is the instantaneous network rate. Draw one uniform deviate U ~ 1(0, 1)
and convert it through the inverse cumulative distribution function (CDF) of the unit-rate exponential:
E =F1YU) = —InU = E ~ Exp(1).

Thus E is a sample obtained from the CDF of the Exp(1) distribution. The next inter-community
infection occurs at the first calendar time ¢* > ¢ satisfying
H(t")=FE.

Intuitively, F acts as a random “risk budget”; the event fires when the accumulated hazard reaches
this threshold. If O(t) is constant, H(t) = O(t — to) and the rule collapses to the familiar Gillespie
formula At = —InU/©.

Numerical scheme for a black-box O(t). Because O(t) is available only at discrete micro-layer
update times, we approximate the integral in rectangles of width 7 (e.g. 7 = 0.1 day):
Hpp1 = He+O(te +5) 7, thyr =t + 7.

We accumulate these rectangles until Hy,1 > E. The event must occur inside the last interval
[tk, tk+1); assuming © is nearly constant there, we interpolate to obtain the exact calendar time



Selecting the transmitting edge. At ¢t* the probability that edge (4, j) is the one that fires is
A (1)
o(t*)

We seed one infection in community j, update the micro models for ¢ and j, set ¢ < t*, draw a new
E’' ~ Exp(1), and repeat the cycle.

Pr{(i,j) firesat t* } =

Accuracy and step-size choice. The local error of the midpoint rectangle is O(73); choosing T one
order of magnitude smaller than the reporting interval (e.g. 0.1 day when epidemiological data are daily)
keeps timing errors below a few minutes—negligible relative to epidemiological uncertainty.

Constant-rate sanity check. If ©(¢) = 0 is constant, the integral collapses to 0(¢t — t() and the
method reproduces the classical formula At = —In U/6. Thus the hazard-integral procedure is a true
generalisation of Gillespie’s original algorithm.

3.3. Micro-Layer: Intra-Community Infection Dynamics

This layer runs an exact continuous-time SIR process on the contact graph of a single community. It
is implemented with the incremental Gillespie algorithm described in our earlier work [1] and extended
here to cooperate with occasional imported (macro-driven) infections.

Reaction channels.

# Transition Propensity ay,
ﬁmicro S I
1 S+1 — I+1 alzﬁmicrow
2 I 5 R ag = I
imp (¢
5 g Lm0 az = Pimp(t)

Channel 1 captures within-community contagion, channel 2 recovery, and channel 3 the import
process: every macro-layer jump seeds one new infectious individual, drawn uniformly at random from
the current susceptible list (alternative heuristics—e.g. degree-weighted seeding— are possible).

Synchronising with the macro layer. At the end of each micro step of length Tpicr, the engine
exports

Gi(t) = I(t),  Si(t) = S(),

which refresh the inter-community rates \;;(¢). Conversely, when the macro CTMC fires an inter-
community infection at time ¢*, the micro model of the destination community receives one additional
I via channel 3, after which all propensities and the next-event clock are recomputed. Hence the two
layers remain fully synchronised at every discrete tick.

Impact of imports on epidemic curves. Figure 3 illustrates how two external seeding events (red
arrows) alter the virus dynamics within a single community: the first import at ¢ = 7 (orange curve)
raises and advances the peak, while a second import at ¢ = 9 (black curve) produces an even higher
and earlier epidemic crest. The plot confirms that the micro-macro simulator is supposed to accurately
capture the compound effect of imported infections on local dynamics.

Challenge: waiting-time modelling with imports. External arrivals break the memoryless prop-
erty that underpins the classic Gillespie exponential draw:

« The internal hazard Oin(t) = BmicroSI /N + I evolves continuously.
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Figure 3: The impact of external infections on infected curve

« The import hazard pimp(t) changes asynchronously whenever the macro layer injects a case,
producing instantaneous jumps in the total hazard.

Two technical issues follow:

1. Interrupted exponentials. If an import lands before the next internally scheduled event, the
pending exponential draw becomes invalid and must be discarded; a new draw is generated from
the updated state.

2. Cumulative-hazard evaluation. A draw-once strategy keeps a running integral H(t) =

ftl; Oint(s) ds and fires when H () first exceeds E ~ Exp(1), but the integral must be reset each

time pjmp (£) jumps.

These complications motivate a dedicated time-estimation scheme, presented in the following sub-
section, that merges internal CTMC dynamics with macro imports without biasing event times.

3.3.1. Modelling Waiting Time Between Events at Micro Layer

The intra-community clock must decide which happens first:

1. an internal infection or recovery generated by the SIR Gillespie channels (propensity Oy (t) =
ﬂmicroSI/N + 'YI): or

2. an import scheduled by the macro layer at a deterministic calendar time Timp m (m =1,2,...).

Because the SIR propensities are constant between events, Oy, does not vary on [to, min{TimpJ, t*}).
This permits an exact, O(1) waiting—time draw without numerical integration.

Residual-budget algorithm for deterministic imports.



1. Initial draw. At time ¢( sample one exponential budget
E = —-InU, U~U(0,1).

If no import were pending, the internal waiting time would be Aty = E/Ojyy.

2. Compare with next import. Let 7},,, be the next deterministic import time (or +oc0 if the
queue is empty).
< Aty  import arrives first,
Thar — to

> Aty internal event wins.
3. Case A: internal event wins. Fire the infection or recovery at t* = to + Atyy, update (S, I, R),
set tg < t*, and return to step 1.

4. Case B: import arrives first. Advance the clock to T}, = tg + 0 with § < Atjyy; insert one
infectious node (channel 3), which changes the rate to ©/ .

Compute the residual hazard budget
Eres =F - 6int(57

and resume the clock with
Eres

o,

int

Atafter =

Pop the next import from the queue (if any) and go back to step 2.

4. Summary and Outlook

We introduced a two-scale modeling framework for large-scale epidemic simulation that decouples
intra-community infection dynamics from inter-community transmission. The core idea is to model
each community independently at the micro-layer — using stochastic agent-based algorithm — and
aggregate inter-community interactions via a macro-level meta-population graph. This separation of
scales enables significant computational savings while preserving the essential structure of disease
spread across regions.

Our analysis shows that, assuming a balanced partition into M equally sized communities, simulation
and storage complexity can be reduced by a factor of M, from O(N?) to O((£7)? - M), where N is the
total population. This reduction is achieved both through an optimized two-level Gillespie algorithm
and by learning intra-community dynamics via machine learning surrogates, enabling near-quadratic
gains in some configurations. Similar principles apply to visualization: abstracting macro-transmissions
and aggregating infection curves allows epidemic flow diagrams to remain interpretable even at national
scale.

The important next step would be a thorough analysis of the approximation error introduced by our
abstraction to macro-edges and the approximation of inter-infection error introduced by infection of a
random node inside a community. We could use Gillespies model on the full network as a reference
model, at least for moderate size graphs, and use empirical data or paralllel computing clusters for
sampling micro-simulation reference data for large scale reference networks.

Looking ahead, several extensions are promising. First, improving the fidelity of intra-community
dynamics through hybrid machine learning—mechanistic models could boost both accuracy and speed.
Second, using data from real-world mobility and contact data for macro-layer weighting will enhance
policy relevance. Finally, we envision this framework as a foundation for real-time decision support
systems that simulate interventions interactively across spatial and social layers.
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