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Abstract 
Approaches to modeling and simulating processes related to elections and changing voters’ opinions in 
bipartisan democracies on the basis of Markov chains are discussed. The basic approach suggested by the 
“state-probability of action” model (SPA model) is combined with ideas featured by pairwise comparisons 
and the Analytic Hierarchy Process. The one-level SPA model, focusing on election results, and the two-
level model regarding criteria which affect decisions are considered. 
Some modifications of traditional homogenous Markov chains, such as switching roles or random transition 
probabilities, are explored. Some approaches to using non-homogenous Markov chains are outlined. 
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1. Introduction 

In [1, 2] an approach to modeling elections in an established bipartisan democracy combining 
uncertain decisions with the Analytic Hierarchy Process (AHP) [3-7] has been introduced. The main 
idea is to apply what is referred to as the “state-probability of action” model, or SPA-model, which 
has been suggested in [8]. In [8] a parametrized version of this basic model, which acquired ideas of 
pairwise comparisons and of the AHP, and of taking into account degrees of decisiveness typical for 
reinforcement learning techniques [9, 10] as well, has been considered. 

Decisions are typically made on the ground of some criteria, which leads us to using a very 
common and ubiquitous two-level scheme of AHP, in which the top level corresponds to eventual 
decisions, and the bottom level corresponds to the specific criteria. Some ways to implement similar 
ideas for the two-level SPA-model of decision making on the base on the approach suggested in [11] 
have been discussed in [1] as well. 

The question of modeling changes in voters’ opinions resulting in different outcomes of elections 
and therefore in changing parties which are in power, is a question of great interest. The basic and 
the simplest point is finding and exploring situations of so-called dynamic equilibrium, when no 
alternative has advantages over the others. Some sufficient conditions for an equilibrium between 
alternatives within the SPA-model for the case when there are two alternatives only were reported 
in [8]; in [2] some ways to how agents of influence might move the situation away from the 
equilibrium were described. But the approach considering only equilibrium situations is very basic 
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and not sufficient one, the question is much more profound. So, in this paper we are going to point 
out some other approaches to modeling changes in voters’ opinions. 

2. Methodology 

The basic one-level SPA-model, as it was described in [8], is as follows. Let there be n alternatives 
forming a set 𝐴 = {𝑎ଵ, … , 𝑎௡}, one of which is to be chosen. Let 𝜉 be a random variable corresponding 
to a certain choice. Then we can consider a vector 𝑝 = {𝑝ଵ, … , 𝑝௡}, where 𝑝௜ is a probability that the 
alternative 𝑎௜ is chosen, that is 𝑝௜ = 𝑃(𝜉 = 𝑎௜). 

Then we regard some states, each of them corresponds to a certain distribution of probabilities of 
making certain choices. More formally, let 𝑆 = {𝑠ଵ, … , 𝑠௠} be a given set of states, and 𝜂 be a random 
variable denoting a state in which the agent is at the specific moment. We are considering conditional 
probabilities ℎ௜௝ = 𝑃(𝜉 = 𝑎௜|𝜂 = 𝑠௝). These probabilities form a matrix denoted as H, which is called 
the SPA-matrix. Eventually, we have to specify the vector of input probabilities 𝑝̅ = (𝑝ଵതതത, … , 𝑝௠തതതത), 
where 𝑝ఫഥ = 𝑃(𝜂 = 𝑠௝). 

Then, as it was shown in [8], 
 

𝑝 = 𝑝̅𝐻 
 
In the paper we are regarding the most important case n=2, when there are two competing 

alternatives only. This particular case is typical for bipartisan democracies, where there are two 
competing political parties, which are gaining power in turn according to results of elections. For 
this case, equilibrium means that 𝑝 = (0.5, 0.5). 

If n=2, equilibrium between alternatives holds if the 𝑝̅ vector is symmetric, and the H matrix is 
centrosymmetric [8], this follows directly from the properties of centrosymmetric matrices [12, 13]. 

The H matrix might be specified in very different ways. The 𝑀(𝑞, 𝜏, 𝛽) model suggested in [1] 
appears to be quite suitable for our purposes. Within this approach, each state of the SPA-model 
corresponds to a certain level of preference of an alternative over the other in terms of pairwise 
comparisons. The q parameter reflects the granularity of preference levels, we pose there are 2q+1 
preference levels been numbered from -q to q. For quantifying, that is for ascribing certain values to 
those levels, we are using so-called transitive scales of comparisons [14]. Then the value ascribed to 
the k-th grade of preference shall equal 𝜏௞. 

The 𝛽 parameter reflects the agent’s level of confidence. Given the preference values 
(𝑣௞ଵ, … , 𝑣௞௡) for the k-th state, the corresponding probabilities should be obtained as follows [2]: 
 

𝑝௞௝ =
𝑒ఉ௩ೖೕ

∑ 𝑒ఉ௩ೖೕ௡
௝ୀଵ

 

 
The bigger is 𝛽, the more decisive the agent is. This approach is typical for reinforcement learning 

techniques [9, 10]. 
For example, the 𝑀(𝑞, 𝜏, 𝛽) model with the parameters 𝑞 = 3, 𝜏 = 1.4, 𝛽 = 4.5 yields the 

following SPA-matrix (approximately): 
 

𝐻 =

⎝

⎜
⎜
⎜
⎛

1.0 0.0
0.9985 0.0015
0.9563 0.0437

0.5 0.5
0.0437 0.9563
0.0015 0.9985

0.0 1.0 ⎠

⎟
⎟
⎟
⎞

 

 



In the paper we are going to use this matrix as a starting point. 
Given the input probabilities 𝑝̅ = (0.1, 0.1, 0.15, 0.3, 0.15, 0.1, 0.1), we obtain the resulting 

probabilities 𝑝 = (0.5, 0.5). Equilibrium holds; no alternative has advantages. 
The two-level multicriteria decision making model, based on combining two-level SPA-model 

[11] with classical two-level AHP, has been suggested in [1]. Shortly, we consider a two-level state 
system: the bottom level corresponds to separate criteria, and the top one corresponds to the eventual 
choice. For connecting these levels, the following logical rules are suggested: if the alternative A has 
a preference over the other alternative B by the separate k-th criterion, then A has the overall preference 
over B. For reflecting these rules, we are introducing transitional matrices for each criterion. For the 
reason of simplicity, we may consider the same transitional matrix R for all criteria as long as we 
believe that the actual measures of influence for different criteria may be adequately reflected by 
weighting coefficients for these criteria. These weighting coefficients form the vector 𝜆 =

(𝜆ଵ, … , 𝜆௄), where K is the total number of criteria, 𝜆௞ is the importance of the k-th criterion, and 
 

෍ 𝜆௞

௄

௞ୀଵ

= 1 

 
Like for the top-level SPA-matrix, the states for the bottom-level matrices related to specific 

criteria correspond to grades of preference between alternatives. For each k-th criteria we have to 
specify probabilities for being in certain states. Let’s introduce the matrix 𝐷 = (𝑑௞௜ , 𝑘 = 1, 𝐾,തതതതതത 𝑖 =

1, 𝑚തതതതതത), where 𝑑௞௜is the probability of being in the i-th state with respect to the k-th criteria. 
Then [1] 
 

𝑝 = 𝜆 ∙ 𝐷 ∙ 𝑅 ∙ 𝐻 
 
Equilibrium holds if 𝜆 is a symmetric vector, and D, R, H are centrosymmetric matrices [1]. It is 

important to mention that, like the similar condition for the one-level model, this is the sufficient 
condition for equilibrium only, but not the necessary one. 

There might be many approaches to specifying the matrix R [1]. However, now for our purposes 
it appears enough to take it as the unit matrix: R=I. Then 

 
𝑝 = 𝜆 ∙ 𝐷 ∙ 𝐻 

 
It is necessary to mention that if the number of voters is large enough, then a losing alternative 

has almost no chances to be chosen. So, if equilibrium holds permanently, both alternatives have 
equal chances, and they are chosen by turn. Indeed, political parties in bipartisan democracies are 
chosen by turn and changing each other in power. But the assumption of permanently held 
equilibrium seems to be unrealistic. To the moment of elections either one or other party should get 
an advantage, but afterwards this shall change. 

In our previous papers we mainly considered input probabilities as something given. But for 
exploring and modeling processes of changing voters’ opinions more rigorously we should look at a 
Markov chain which these probabilities result from. 

3. Regarding homogenous Markov chain 

Let’s consider a one-level SPA model with m states. Let’s introduce a Markov chain having the 
transition matrix Π = (𝜋௜௝(𝑡), 𝑖, 𝑗 = 1, 𝑚തതതതതത), where 𝜋௜௝(𝑡) is the probability that an agent who is in the 
i-th state at the moment t jumps to the j-th one. Note that meaningfully transitional probabilities 
𝜋௜௝(𝑡)  describe changes in voters’ opinions, since each state reflects a certain opinion about which 



alternative is better and to which extent. A Markov chain is said to be homogenous if transitional 
probabilities 𝜋௜௝  don’t depend on t. 

Provided a Markov chain is homogenous, the stationary probability distribution exists under 
certain conditions; it can be found from the following known equation: 

 
𝑝Π = 𝑝 

 
But can we really describe changing power in bipartisan democracies on the basis of homogenous 

Markov process within the SPA model? Seemingly not, since if we consider a homogenous process 
in the traditional sense, the only situation when both parties win elections by turn is a situation of 
the permanent equilibrium of alternatives, which is unrealistic. 

4. Homogenous chain with switching roles 

However, we can try to retain the assumption about homogenous features if we consider a process 
which is homogenous in some generalized sense. Namely, we can consider a Markov chain, in which 
the states are bound not with the certain party but with the role of being in power. 

Let’s take the matrix H from Section 2, but the alternatives now will be of another sort. The first 
alternative is to vote for the party which is currently in power, and the other is to vote for their 
opponents. We can consider two important cases. 

Case 1. Let’s take the transition matrix as follows: 
 

Π =

⎝

⎜
⎜
⎜
⎛

0.5 0.5 0 0 0 0 0
0.3 0.5 0.2 0 0 0 0
0 0.3 0.5 0.2 0 0 0
0 0 0.3 0.5 0.2 0 0
0 0 0 0.3 0.5 0.2 0
0 0 0 0 0.3 0.5 0.2
0 0 0 0 0 0.6 0.4⎠

⎟
⎟
⎟
⎞

 

 
This case means that an agent has more chances to improve their opinion about the party which 

is in power than to worsen it. 
This yields the stationary distribution as follows: 
 

𝑝̅ = (0.1834     0.3057     0.2038     0.1359     0.0906     0.0604     0.0201) 
 
The resulting probabilities of voting results are as follows: 
 

𝑝 = 𝑝̅𝐻 = (0.7556     0.2444) 
 
This means that the ruling party will win again and will win permanently. 
 
Case 2. This is the situation opposite to the previous one. 
Let the transition matrix be as follows: 
 

Π =

⎝

⎜
⎜
⎜
⎛

0.5 0.5 0 0 0 0 0
0.2 0.5 0.3 0 0 0 0
0 0.2 0.5 0.3 0 0 0
0 0 0.2 0.5 0.3 0 0
0 0 0 0.2 0.5 0.3 0
0 0 0 0 0.2 0.5 0.3
0 0 0 0 0 0.4 0.6⎠

⎟
⎟
⎟
⎞

 

 



Such a matrix means that the rating of the ruling party tends to decrease. This yields the following 
stationary distribution 

 
𝑝̅ = (0.0230     0.0575     0.0863     0.1294     0.1941     0.2912     0.2184) 

 
and the resulting probabilities 
 

𝑝 = 𝑝̅𝐻 = (0.2366     0.7634) 
 

Now the ruling party loses, and the power moves on to their opponents. 
Summarizing the section and combining it with the considerations about the equilibrium of 

alternatives, we can formulate the following statement. 
Let 𝑝(ோ) be the probability that an agent will vote for the ruling party. If within the SPA model 

changes of voters’ opinions are described by a homogenous Markov chain with switching roles and 
the chain always reaches its stationary mode before the moment of election occurs, then repeated 
changing of power is possible if and only if 𝑝(ோ) ≤ 0.5. 

5. Why the winners are to lose: some explaining models 

It appears interesting to explore how the fact that the party which recently won the election 
promptly gets into the losing situation can be explained within the SPA model. In this section we are 
going to provide some considerations about this issue. 

Firstly, modern bipartisan democracies are typically considered to be mature and established 
democracies. On the other hand, they probably have already harnessed most available resources to 
reach an overall situation which is near to being as good as possible. No party can improve the social 
situation drastically. Some betterments surely happen. But good things are usually taken for granted 
whereas faults in governance, which are absolutely inevitable, are rapidly getting into the focus of 
public discussion. 

So, if the ruling party does things similarly to what their opponents did while being in power, 
and their mistakes are similar as well, the overall situation likely can be described in terms of the 
homogenous Markov chain with changing roles. In addition to this, in established democracies most 
people, generally satisfied with their life, are usually conservative and are not going to approve of 
drastic changes. 

People usually tend to estimate ongoing betterment or worsening not just as they are, but rather 
in comparison with what they think other politicians could secure. 

And last, but not least, the situation is near to being Pareto-optimal with respect to criteria 
indicating the quality of social well-being. This means that it is hard or even impossible to improve 
any criterion without worsening some others. 

We are going to illustrate the latter with the following example. 
Let’s regard the two-level model. We are considering two criteria: average income and 

environmental issues. Of course, there actually are many other criteria, but this example is very basic 
and illustrative. 

Average income is considered to be more important. So are the weighting coefficients: 0.6 for 
average income and 0.4 for environmental issues. Then 

 
𝜆 = (0.6, 0.4) 

 
The average income gradually rises permanently. Voters take this for granted. Nevertheless, the 

transitional matrix with respect to this criterion indicates gradual movement in favor of the ruling 
party. Let it be as follows: 

 



Πଵ =

⎝

⎜
⎜
⎜
⎛

0.5 0.5 0 0 0 0 0
0.3 0.5 0.2 0 0 0 0
0 0.3 0.5 0.2 0 0 0
0 0 0.3 0.5 0.2 0 0
0 0 0 0.3 0.5 0.2 0
0 0 0 0 0.3 0.5 0.2
0 0 0 0 0 0.6 0.4⎠

⎟
⎟
⎟
⎞

 

However, environmental issues are deteriorating, and people are really worried about this. So, 
the transitional matrix with respect to this criterion reflects sharper movement in favor of the 
opponents. Let it be as follows: 

 

Π =

⎝

⎜
⎜
⎜
⎛

0.2 0.8 0 0 0 0 0
0.1 0.3 0.6 0 0 0 0
0 0.1 0.3 0.6 0 0 0
0 0 0.1 0.3 0.6 0 0
0 0 0 0.1 0.3 0.6 0
0 0 0 0 0.1 0.3 0.6
0 0 0 0 0 0.6 0.4⎠

⎟
⎟
⎟
⎞

 

 
This yields the following matrix D formed by the eigenvectors of reciprocal transitional matrices 

as of rows: 
 

𝐷 = ቀ
0.1834 0.3057 0.2038 0.1359 0.0906 0.0604 0.0201
0.0000 0.0002 0.0014 0.087 0.0521 0.3125 0.6250

ቁ 

 
Then the resulting vector of probabilities is 
 

𝑝 = 𝜆 ∙ 𝐷 ∙ 𝐻 = (0.4569     0.5431) 
 

The opponents win. 
Considering homogenous Markov chain with switching roles as a basis for modeling changes in 

voters’ opinions appears to be a sound starting point. But there is an issue which hardly can be 
explained within such a model. 

If real-word processes strictly complied with assumptions about homogeneity, changing of power 
would occur with perfect regularity. The party which won the latest election definitely would lose 
the next one. However, that doesn’t hold in the real world. So, we a going to discuss possible non-
homogenous enhancements. 

6. Non-homogenous modeling 

Generally, non-homogenous Markov chains, featuring varying transitional probabilities, are not 
studied very well. However, some approaches, which at list could be used for modeling and 
simulation, might be outlined. 

We are considering discrete moments of time 𝑡ଵ, 𝑡ଶ, …. For each moment of time the reciprocal 
transitional matrix Π(௞) = (𝜋௜௝(𝑡௞), 𝑖, 𝑗 = 1, 𝑚തതതതതത, 𝑘 = 1,2, … ) exists. 

For a one-level SPA-model, given SPA-matrix H, current input probabilities 𝑝(௞)തതതതത , and current 
transitional matrix Π(௞), we can calculate current probabilities for choosing alternatives as follows: 

 

𝑝(௞) = 𝑝(௞)തതതതത𝐻, 
 
input probabilities at the next moment of time are as follows: 
 

𝑝(௞ାଵ)തതതതതതതത = 𝑝(௞)തതതതതΠ(௞) 



 
and probabilities for choosing alternative at the next moment of time are as follows: 
 

𝑝(௞ାଵ) = 𝑝(௞ାଵ)𝐻 = 𝑝(௞)തതതതതΠ(௞)𝐻 
 
Both homogenous Markov chains with switching roles and non-homogenous Markov chains are 

suitable for modeling changes in voters’ opinions, but their areas of relevance are quite different. 
Whereas homogenous Markov chains appear to describe rather established situations, non-
homogenous ones are to reflect unstable dynamics in situations featuring significant changes. What 
appears to be a trigger for changing dynamics of opinions is various events occurring in real life and 
information occasions, which may relate to actual ongoing flow of events, or may not. 

A simple view on the matter may be as follows. When an information occasion arises, transitional 
probabilities start changing. Eventually they are stabilized, and then the Markov chain reaches the 
stationary distribution of probabilities across the states corresponding to different opinions in our 
case. There are various approaches to modeling dissemination of information itself [15-22]. The 
question of how information occasions really affect changes in opinions has not been studied well 
so far, but some approaches can be outlined. 

However, this simple view is not sufficient. The issue is that information occasions may arise too 
frequently, so there may not be enough time for the Markov chain to be established and to reach the 
new stationary point. Moreover, agents of influence often are addicted to creating information 
occasions, sometimes far-fetched, scripted and choreographed or even merely fake. Their opponents 
are doing the same but aiming to affect the situation in the opposite direction. 

 Such things can be considered as an informational noise causing occasional fluctuations in 
voters’ opinions which don’t affect the situation very much unless something crucial happens. This 
prompts an idea to consider a homogenous model but that features random transition probabilities. 

7. Homogenous modeling with random transition 
probabilities 

For simplicity, let’s consider the one-level SPA-model with random transition probabilities having 
the following view: 

 

Π௞ = Π + 𝐸  
 
where Π is a constant matrix, and 𝐸 is a random matrix. The important thing to be cared is that 

Π௞  must remain stochastic. That’s why components of 𝐸 must not be distributed normally or so. 
Under some conditions, this assumption allows us to estimate upper and lower bounds of 

resulting probabilities of choice, for instance based on the following evident inequality for the 
components of the eigenvector v of the given stochastic matrix A: 

 
min

௜
𝑎௜௝ ≤ 𝑣௝ ≤ max

௜
𝑎௜௝ 

Such a model based on the homogenous Markov chain with switching roles and with random 
transition probabilities can explain how both sides can win elections by turn even if equilibrium of 
alternatives does not hold. Now we are going to illustrate this with the following experiment. 

For simplicity, we took the one-level model with three states only (m=3) and the SPA matrix as 
follows: 

 

𝐻 = ൭
1.0 0.0
0.5 0.5
0.0 1.0

൱ 

 



We started with the transition matrix 
 

Π = ൭
0.05 0.8 0.15
0.05 0.8 0.15
0.05 0.8 0.15

൱ 

 
having the main left eigenvector 
 

𝑝̅ = (0.0500     0.8000     0.1500) 
 
As was explained above, this situation means that the opposition wins the next election. Indeed, 

the vector of choice probabilities equals 
 

𝑝 = (0.4500     0.5500) 
 
We are starting from the vector 𝑝̅. On each step we are forming the randomized transition matrix 

Π′ in the following way: 

 either state 1 or 3 is randomly chosen; let’s denote the chosen state as L 
 𝜋′௜௅ = 𝜋௜௟ + 𝜀௜, 𝑖 = 1, 𝑚തതതതതത, where 𝜀௜ are random values from the interval [0,1] multiplied by 

0.2 
 𝜋′௜ଶ = 𝜋௜ଶ − 𝜀௜, 𝑖 = 1, 𝑚തതതതതത 

 
After 15 steps we have got the following series of choice probability distributions: 

      
     0.3729     0.6271 
     0.3867     0.6133 
     0.5285     0.4715 
     0.4131     0.5869 
     0.5154     0.4846 
     0.3805     0.6195 
     0.5181     0.4819 
     0.3728     0.6272 
     0.3985     0.6015 
     0.3586     0.6414 
     0.5074     0.4926 
     0.3988     0.6012 
     0.4737     0.5263 
     0.5292     0.4708 
     0.5333     0.4667 

 
This illustrates that within the described model competing parties really can win elections by 

turn and change each other in power. 

8. Conclusions and discussion 

The paper addresses issues related to modeling processes in bipartisan democracies including 
changes in voter’s opinions and elections within the model named “state-probability of action” (SPA 
model). Changes in opinions are described in terms of transition matrices of Markov chains, where 
the states represent different levels of preference of one alternative over another, which is typical 
for pairwise comparisons and the Analytic Hierarchy Process. Both one-level model regarding final 
choices only and two-level model regarding criteria influencing possible choices are considered. 



Possibilities related both to homogenous models considering constant transition matrices and 
non-homogenous ones considering varying matrices are discussed and illustrated by provided 
examples. Homogenous models turn out to be very constrained, and under pure homogenous 
assumptions the only situation when two competing parties have chances to win elections in turn, 
that is to change each other in power, is the situation of permanent equilibrium between alternatives. 
This means that the probability for each alternative must permanently equal 0.5, however in practice 
this seems to be unrealistic. 

The model based on homogenous Markov chains with switching roles, which bounds the states 
of the SPA model not just to specific parties but to their roles, that is to whether they are in power 
or not, is considered. This model doesn’t require an equilibrium of alternatives for modeling 
changeable results of elections. So, the homogenous model can be used as a basis for modeling, but 
it has its own constraints. If an equilibrium isn’t held permanently, then either one party wins each 
time, or parties change each other in power with perfect regularity. This means that according to the 
model a party which won the previous election must lose just the next one. Evidently, any of those 
options doesn’t take place in the real world. 

Using Markov chains with switching roles, basically homogenous, but featuring random 
transitional probabilities, is considered in the paper. It was shown experimentally that such a model 
performs proper behavior in the sense that it demonstrates that alternatives can be chosen by turn. 

Possible approaches to modeling and simulation on the basis of non-homogenous Markov chains 
are discussed as well. 

In the paper only possibilities related to describing changes of opinions on the basis of transition 
matrices across the states are discussed. However, other parameters affecting opinions, such as 
measures of confidence or weighting coefficients reflecting importance of different criteria should 
be considered. 

Last but not least, it is very important to consider models of spreading information influence and 
how information influences and information occasions affect changing opinions. Since agents of 
influence are counteracting each other, game aspects of the matter should be considered as well. 
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