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Abstract 
The rapid advancement of deep learning has significantly improved object detection tasks, including license 
plate. This paper explores the application of deep learning for the detection of vehicle license plates in 
images. The study evaluates and compares various generations of the YOLO (You Only Look Once) model 
to determine the most effective architecture in terms of both accuracy and speed. YOLO models are widely 
used for real-time object detection due to their efficiency in processing images in a single forward pass 
through the neural network. 
A systematic approach was applied to train and compare YOLOv5, YOLOv6, YOLOv8, YOLOv9, YOLOv10, 
and YOLOv11. Each model was trained on a dataset of vehicle images containing license plates, with 
annotations marking the exact location of the plates. The training process lasted 100 epochs, allowing the 
models to stabilize and reach optimal performance. The evaluation metrics included mean Average 
Precision (mAP) at different IoU thresholds, detection speed, and generalization capability on unseen data. 
Based on the analysis, YOLOv9 was selected as the most efficient model, balancing accuracy and processing 
speed. 
The selected models were tested on real-world images of vehicles captured under varying conditions, 
including different angles, lighting, and license plate formats such as Cyrillic characters, green electric 
vehicle plates, and American-style layouts. The results confirmed the robustness of most YOLO models, 
although YOLOv11 showed lower stability in more complex scenarios. 
The findings of this research highlight that careful evaluation of YOLO architectures enables the selection 
of an effective model for automatic license plate detection. The chosen YOLOv9 model demonstrates strong 
performance and is well suited for real-time applications such as traffic monitoring, automated access 
control, and law enforcement. 
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1. Problem statement 

Automated license plate detection is an important task in the areas of traffic control, security and 
traffic management. Such systems are essential for law enforcement agencies, utilities, and traffic 
monitoring companies, allowing them to effectively detect traffic violators, track down stolen cars, 
and automate access control processes at various facilities. Modern approaches based on deep 
learning, such as the YOLO architecture [1], demonstrate significant improvements in the speed and 
accuracy of object detection. However, the effectiveness of different generations of YOLO for the 
task of number plate detection remains insufficiently studied. It is important to determine which 
architecture best balances performance and accuracy in the face of varying lighting conditions, 
different angles, and possible object overlap. 

This study focuses on Ukrainian number plates, which are distinguished by a variety of formats 
and styles. The main difficulty is posed by number plates of a different design used on imported cars, 
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which are characterized by different sizes, fonts and character arrangements. Additional challenges 
are posed by Cyrillic characters, where some characters are visually similar to Latin characters, 
which can cause confusion during detection. 

Particular attention is paid to the detection of number plates with non-standard color schemes, 
such as green number plates used for electric vehicles and red number plates typical of transit 
vehicles. These color variations require the model to adapt to different levels of contrast and 
illumination, which increases the complexity of the number plate detection task. 

YOLO (You Only Look Once) is one of the most popular deep learning architectures for detecting 
objects in images and classifying them. The main feature of this architecture is the ability to search 
for objects in real time, processing images in one pass through the neural network, which ensures 
high speed of the model while maintaining accuracy. 

The YOLO prediction principle is based on the fact that the input image is divided into a grid of 
size 𝑆 × 𝑆, where 𝑆 — the number of horizontal and vertical image divisions, which is selected 
depending on the size of the input image and the model architecture (for example, 7×7 or 13×13). 
Each cell of this grid is used to detect objects whose center falls within its boundaries, so the model 
makes predictions for each cell: 

1. The parameters of the bounding box (a rectangular area that outlines the detected object in 
the image): the coordinates of the upper left corner of the box (𝑋₀, 𝑌₀), its width 𝑊 and height 
𝐻. 

2. Confidence score — a numerical indicator that indicates the probability that the bounding 
box really contains an object, as well as the accuracy of the predicted box coordinates. If the 
confidence value is below a certain threshold, the prediction can be rejected as unreliable. 

3. Object class — the category to which the found object belongs. 

The final output of the model is a matrix of size 𝑆 × 𝑆 × (𝐵 × 5 +  𝐶), where 𝐵 the number of 
predicted frames for each cell, 5 — the number of parameters of each frame (coordinates of the upper 
left corner of the frame, width, height, and confidence), and 𝐶 — the number of possible classes. 

Next, the Non-Maximum Suppression (NMS) method [2] is used to remove unnecessary frames.  
The results of the model are the parameters of the bounding boxes that most closely match the 

objects in the image and the classification of these objects. 
The described approach is implemented by a neural network whose architecture consists of three 

main parts (Fig. 1): Backbone, which detects features in the input image, Neck, which combines 
features to improve the quality of detecting objects of different scales, and Heads, which performs 
the final prediction of frames and classes. 

Before training the neural network and setting up the YOLO model, a training set must be 
prepared in a special way. This sample should consist of a set of image files with objects to be 
recognized and their annotations in a format supported by YOLO models. This format includes, for 
each image, the class identifier of the existing object, the coordinates of the center of its bounding 
box, and the width and height of the box normalized to the image size. This dataset is used by the 
model for training, allowing it to identify license plate features such as shape, proportions, and 
contrast relative to the background. 

YOLO training is based on minimizing the Loss Function, which is the sum of three components, 
such as Localization Loss (mean square error (MSE) for the predicted coordinates of the bounding 
box), Classification Loss (cross-entropy or MSE for the object class prediction), and Objectness Loss 
(probability that the box contains an object). 

 



 

Figure 1: Architecture of the YOLOv9 model. 

2. YOLO generations 

During the development of the YOLO architecture, eleven generations from YOLOv1 to YOLOv11 
have appeared, each of which takes into account the shortcomings of the previous one and offers 
certain improvements to increase the accuracy, speed and efficiency of work, as well as adaptation 
to new tasks: 

1. YOLOv1 (2015): Introduced the concept of “You Only Look Once” by offering a one-step 
approach to object detection. For the first time, the image was divided into a grid, predicting 
the coordinates of the frames and classes of objects in each cell. 

2. YOLOv2 (2016): Batch Normalization was added, Anchor Boxes and Dimension Clusters were 
introduced, which improved the accuracy and stability of training. 

3. YOLOv3 (2018): A multi-level model architecture is used to handle objects of different sizes, 
as well as an improved base layer (Darknet-53), which improved speed and accuracy. 

4. YOLOv4 (2020): Introduced Mosaic – data augmentation, a new Anchor-Free Detection Head 
and an optimized loss function. The model became more efficient on large data sets. 



5. YOLOv5 (2020): Automatic optimization of hyperparameters, integration of an experiment 
tracking system, and the ability to export models to various formats have been provided, 
making it popular for commercial use. 

6. YOLOv6 (2022): Introduced Bi-directional Concatenation module to improve localization 
signals, an anchor-aided training strategy that combines the benefits of both approaches, and 
improved Base and Neck to achieve the best accuracy on Microsoft's Common Objects in 
Context (COCO) dataset. 

7. YOLOv7 (2022): Added support for Pose Estimation tasks and other improvements, such as 
optimization for keypoints. 

8. YOLOv8 (2023): Expanded functionality to support all major computer vision tasks: detection, 
segmentation, classification, pose estimation. Improved accuracy and efficiency of computing 
resources. 

9. YOLOv9 (2024) [3]: Implemented Programmable Gradient Information and Generalized 
Efficient Layer Aggregation Network technologies, which provides more flexible work with 
gradients. 

10. YOLOv10 (2024): The concept of End-to-End Detection Head is integrated, instead of Non-
Maximum Suppression (NMS). This has reduced real-time delays. 

11. YOLOv11 (2024): Improved architecture and increased efficiency through optimization for 
different environments, support for different export formats, and the ability to work on 
different platforms. 

3. Research and publication analysis 

The effectiveness of using different generations of YOLO for vehicle, road sign, and license plate 
detection has been considered in many scientific papers. In particular, [4] analyzes the results of 
using YOLO for automated license plate detection. The study confirms that YOLO is an effective 
approach, but the main challenges remain the variability of lighting, shooting angles, and partial 
overlap of license plates. 

Study [5] provides an overview of methods for improving YOLO performance for real-world 
applications, including the use of various options after processing the detection results. The authors 
note that to improve accuracy, it is necessary to adapt the model to specific environmental conditions 
and improve the balance between speed and performance. 

Paper [6] investigates the impact of using pre-trained models and methods before training YOLO 
on new datasets. The authors emphasize that adapting models to specific scenarios significantly 
increases their efficiency, especially in conditions of variable lighting and low image quality. 

Also worth mentioning is the VEZHA LPR system from Incoresoft [7], which is actively used for 
automatic recognition of Ukrainian license plates in video surveillance and traffic speed control 
systems. VEZHA LPR demonstrates high accuracy in difficult real-world conditions, such as fast 
traffic, poor lighting, difficult angles, and partial overlap of license plates. 

While such systems are already in operation, there is a need for systematic academic evaluation 
and comparison of different deep learning architectures tailored to Ukrainian license plate formats. 
This research aims to fill that gap by analyzing and benchmarking various YOLO model generations, 
which can serve as a basis for developing flexible, open, and easily deployable solutions or for 
enhancing existing systems with empirically validated architectures. 

4. Approaches to assessing model performance 

To evaluate the performance (efficiency) of a model, YOLO model training uses a function called 
fitness, which is a weighted sum of key machine learning metrics calculated based on the accuracy 
of the predictions made for the objects in the training set [8]: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤ଵ ∗ 𝑃 + 𝑤ଶ ∗ 𝑅 + 𝑤ଷ ∗ 𝑚𝐴𝑃50 + 𝑤ସ ∗ 𝑚𝐴𝑃50-95,  (1) 



where 𝑃 – precision, 𝑅 – recall, 𝑚𝐴𝑃50 – mean average precision calculated at an intersection 
over union (IoU) threshold of 0.50, 𝑚𝐴𝑃50-95 – average of the mean average precision calculated 
at varying IoU thresholds, ranging from 0.50 to 0.95. The weighting coefficients 𝑤௜ are chosen 
heuristically, based on practical experience. By default, 𝑤ଵ = 𝑤ଶ = 0, 𝑤ଷ = 0,1, 𝑤ସ = 0,9. In this 
study, different weights were applied, specifically 𝑤ଵ = 𝑤ଶ = 0,1, 𝑤ଷ = 0,3, 𝑤ସ = 0,5. 

Precision and Recall are calculated as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

(2) 

where 𝑇𝑃 (True Positive) – the number of correctly detected objects, 𝐹𝑃 (False Positive) – the 
number of incorrectly detected object, 𝐹𝑁 (False Negative) – the number of actual objects that were 
missed. 

A key metric for assessing prediction accuracy in object detection tasks is the Jaccard Index (𝐼𝑜𝑈), 
which is defined as the ratio of the area of intersection to the area of union between the ground truth 
bounding box and the predicted bounding box: 

𝐼𝑜𝑈 =
ห𝐵௣ ∩ 𝐵௥ห

ห𝐵௣ ∪ 𝐵௥ห
, 

(3) 

where 𝐵௣ – the bounding box predicted by the model, 𝐵௥ – the ground truth bounding box. 
Average Precision (𝐴𝑃) – the area under the AUC (area under ROC curve), formed by the ROC 

curve, which is based on 𝑃(𝑅) – the dependence of precision on recall, i.e. 

𝐴𝑃 = න 𝑃(𝑅) 𝑑𝑅
ଵ

଴

, 
(4) 

The average accuracy for the threshold value of the Jaccard coefficient 𝐼𝑜𝑈 = 0.5 is defined as: 

𝑚𝐴𝑃50 = 𝐴𝑃(𝐼𝑜𝑈 = 0.5). (5) 

The average accuracy in the range of 𝐼𝑜𝑈 thresholds from 0.5 to 0.95 with a step of 0.05 is 
calculated by the formula: 

𝑚𝐴𝑃50-95 =
1

10
෍ 𝐴𝑃(𝐼𝑜𝑈 = 𝑡)

଴.ଽହ,௱ୀ଴.଴ହ

௧ୀ଴.ହ

. 
(6) 

  

5. Data preparation, training, and object detection stages 

For this task, we collected about 11500 images of cars from open sources using an automated parser 
based on the Selenium library [9]. To annotate the data, we used the CVAT (Computer Vision 
Annotation Tool) [10], which generates a text annotation of the required format according to the 
rectangular area with an object selected in the image. In our case, the objects we are looking for in 
the images are license plates. They will be assigned to the class with the identifier 0. That is, the 
model is trained exclusively on detecting license plates without dividing them into subcategories. 

Figure 2 shows an example of a car image with license plate annotation (marked with the area 
where the license plate is located), and Figure 3 shows the corresponding text file with the required 
parameters.  

The resulting sample was randomly divided into training and test samples. The training set 
contains 10000 images that were used to train the models, while the remaining 1500 images were 
included in the test set to evaluate the quality of license plate recognition and determine the speed 
of the model. 



For the study, we trained the YOLOv5, YOLOv6, YOLOv8, YOLOv9, YOLOv10, and YOLOv11 
models. YOLOv7 was not included in the experiments due to the lack of significant improvements in 
object detection compared to other versions. The obtained results allowed us to determine the most 
optimal architecture for the license plate detection task, taking into account the balance between 
accuracy, speed and stability of the model. 

 

  
Figure 2: An example of a car image with a 
bounding box around the license plate 

Figure 3: An example of a text file with an 
object annotation 

 
The process of training YOLO models of different generations lasted 100 epochs using standard 

settings (batch size – 16, optimizer – Adam, input image size – 640 pixels, frame error weight – 7.5, 
class identification error weight – 0.5). The training was performed using PyTorch [11] on a system 
with an Intel i5-14600KF, Nvidia RTX 4070, and 32 GB of RAM. The total training time was: 

 YOLOv5 – 7494,9 seconds 
 YOLOv6 – 7099,8 seconds 
 YOLOv8 – 6819,7 seconds 
 YOLOv9 – 6584,6 seconds 
 YOLOv10 – 8744,7 seconds 
 YOLOv11 – 8073,9 seconds 

  

  

 

a) b) c) d) 

Figure 4: License plate prediction process using the YOLO model: a) input image; b) scaled image 
to the standard model size; c) model prediction on the standard model size image; d) display of the 
prediction on the input image 

With the help of the obtained YOLO models, the search (prediction) of a license plate in a new 
image consists of several main stages (Fig. 4). 



At the first stage, the model accepts an image of arbitrary size (Fig. 4.a), which must be scaled to 
a standard size in accordance with the requirements of the input layer of the neural network. In the 
case of YOLO, the image is scaled to a square, usually 640×640 pixels (Fig. 4.b). 

After that, the model makes predictions: the neural network processes the image and finds 
potential objects based on the obtained characteristics. The output of the model contains the 
parameters of the detected bounding box, the object class, and the level of confidence in the 
prediction. Figure 4.c shows the result of prediction on a 640×640 pixels image. 

At the last stage, the frame is scaled and applied to the original image (Fig. 4.d). This is necessary 
to preserve the input resolution and correctly display the detection results in real conditions, i.e., the 
exact positioning of the bounding box and the correspondence of the prediction to the real 
coordinates of the license plate. 

6. Comparison of the performance of YOLO models of 
different generations 

Using the test sample, we calculated the performance indicators of each model. Table 1 shows the 
results of evaluating the performance of different generations of YOLO based on four key metrics: 
Precision (P), Recall (R), mean average precision at IoU = 0.5 (mAP50), and average of the mean 
average precision at IoU from 0.5 to 0.95 (mAP50-95). Based on these values, we calculated the overall 
fitness of the model, which allows us to assess its balance between accuracy, completeness, and 
overall detection quality. 

Table 1 
YOLO models performance metrics 

Model P R mAP50 mAP50-95 Fitness 
YOLO5 0.975 0.964 0.973 0.768 0.87 
YOLO6 0.978 0.966 0.973 0.777 0.875 
YOLO8 0.975 0.959 0.973 0.776 0.874 
YOLO9 0.973 0.951 0.971 0.781 0.874 
YOLO10 0.973 0.949 0.969 0.766 0.866 
YOLO11 0.973 0.968 0.979 0.782 0.879 

 

 

Figure 5: Speed and fitness of YOLO models of different generations 



Figure 5 shows the relationship between the average processing speed of one image from the test 
set for object detection (on the X-axis, measured in milliseconds) and the fitness of the models (on 
the Y-axis). The fastest model was YOLOv9 with a processing time of about 1.45 ms, making it the 
best choice for applications where performance is critical. The YOLOv6, YOLOv8, and YOLOv11 all 
have slightly faster processing times (approximately 2.4-2.6 ms) while still providing a high level of 
usability, making them well-balanced options. The slowest was YOLOv10 with a time of about 2.7 
ms, which, combined with its low fit, makes it the least effective model. 

The fitness of the models confirms the high potential of YOLOv11, which demonstrates the best 
ratio of accuracy to efficiency. Despite the highest speed, YOLOv9 has a slightly lower suitability 
score, which may be due to the trade-off between accuracy and speed. 

In summary, the YOLOv9 is the best choice as it provides the highest image processing speed 
with an acceptable level of fitness. 

7. Comparison of prediction accuracy of YOLO models of 
different generation 

For the first experiment on license plate detection, three images with different types of Ukrainian 
license plates were selected: green license plates for electric cars, Cyrillic license plates of the 
standard format, and American license plates. 

a) b) c) 

Figure 6: Varieties of Ukrainian license plates: a) license plate of an electric vehicle; b) license plate 
with Cyrillic characters; c) license plate of the American format 

Table 2 contains the parameters of the bounding boxes with license plates detected in the images 
(Fig. 6). Each row of the table contains the coordinates of the upper left corner of the frame (X₀, Y₀), 
as well as its width(W) and height(H), calculated by a YOLO model of a specific generation for the 
corresponding image. For comparison, the ground truth coordinates are also provided. 

The results presented in Table 2 demonstrate the overall consistency of various YOLO generations 
in detecting license plates in images: the models produce nearly identical bounding box coordinates 
compared to the ground truth, indicating strong alignment in their performance.   

 
 
 
 
 



Table 2 
Coordinates of predicted and actual bounding boxes for license plates in test images 

Figure 
Model 

6.a 6.b 6.c 
X₀ Y₀ W H X₀ Y₀ W  X₀ Y₀ W H 

YOLOv5 121 259 72 16 102 512 57 26 124 272 55 29 
YOLOv6 121 259 72 16 102 512 57 28 124 272 55 30 
YOLOv8 121 259 72 16 102 512 58 27 124 272 55 30 
YOLOv9 121 259 72 16 102 512 58 27 124 272 55 28 
YOLOv10 121 258 72 17 102 512 58 27 124 272 55 29 
YOLOv11 120 259 71 16 102 513 57 23 124 270 53 31 
Ground truth 121 259 73 15 102 512 58 27 124 271 55 30 

 

The largest deviation in license plate detection is observed in Figure 6.b, likely due to the 
challenging angle and specific lighting conditions. The car is positioned at an angle that alters the 
perspective of the license plate, potentially complicating accurate detection by YOLO models. 
YOLOv11 delivered the weakest result on this image. Meanwhile, other YOLO versions provided 
similar predictions, confirming the general robustness of the architecture to such challenges. This 
highlights potential directions for further optimization, particularly in improving the adaptability of 
models to variations in license plate orientation.   

The non-standard height of the license plate in Figure 6.c contributes to differences in the 
predicted bounding box dimensions. 

a) b) c) 

Figure 7: Examples of challenging conditions for license plate detection: a) angled license plate; b) 
poor lighting; c) non-standard placement 

For the second experiment, images with challenging conditions for automatic license plate 
detection were selected (Fig. 7): an angled license plate, poor lighting, and non-standard placement. 
Table 3 contains the parameters of the detected bounding boxes for the license plates, obtained using 
YOLO models of different generations. 

The results of model testing on the presented images demonstrate generally high accuracy in 
license plate detection, with minor deviations caused by lighting and angle variations. However, in 
all of the given cases, the YOLOv11 model showed the weakest performance, with more significant 
errors in determining the bounding box position, especially in terms of height. Other models 
produced results close to the ground truth coordinates. 



The analysis confirms that YOLO models are generally effective for license plate detection under 
standard conditions. However, challenging factors such as angled views, insufficient lighting, and 
non-standard plate placement can impact prediction accuracy, indicating potential directions for 
further model optimization. 

Table 3 
Coordinates of predicted and actual bounding boxes for license plates in challenging images 

 

Figure 
Model 

7.a 7.b 7.c 
X₀ Y₀ W H X₀ Y₀ W H X₀ Y₀ W H 

YOLOv5 239 115 57 58 139 234 58 14 72 306 85 20 
YOLOv6 239 114 58 58 139 234 58 14 72 306 84 20 
YOLOv8 239 115 59 58 138 234 58 14 72 307 84 20 
YOLOv9 239 114 58 61 139 234 58 14 71 306 84 20 
YOLOv10 239 114 58 57 139 234 58 15 72 307 85 19 
YOLOv11 242 112 62 59 139 235 57 13 71 306 83 18 
Ground truth 239 115 59 59 139 235 60 15 72 308 84 20 

 

8. Conclusions 

This study presents a comparative analysis of the effectiveness of various generations of YOLO 
models (YOLOv5, YOLOv6, YOLOv8, YOLOv9, YOLOv10, and YOLOv11) for the task of detecting 
Ukrainian vehicle license plates. The evaluation was based on key metrics: precision, recall, mean 
average precision (mAP) at different Intersection over Union (IoU) thresholds, and image processing 
speed. Based on the results, YOLOv9 was identified as the most effective model, providing an optimal 
balance between accuracy and speed. 

Testing the models on images with different formats of Ukrainian license plates (green for electric 
vehicles, Cyrillic, and American-style) as well as under challenging conditions (angled view, poor 
lighting, and non-standard placement) demonstrated the overall robustness of YOLO models. 
However, YOLOv11 showed the lowest stability among all tested models, particularly in cases 
involving difficult angles and non-standard plate positioning. 

Therefore, YOLOv9 is recommended as the optimal architecture for real-world applications of 
automated Ukrainian license plate detection due to its high accuracy, speed, and reliability. Future 
research may focus on improving model performance under more complex conditions and 
integrating the models into practical monitoring and video surveillance systems. 
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