
Computational evaluation of logistic potential fields in
real-time obstacle navigation⋆

Ihor Berizka1,†, Ivan Karbovnyk1,∗,†

1 Ivan Franko Lviv National University, Faculty of Electronics and Computer Technologies, Department of Radiophysics and
Computer Technologies, Tarnavskoho 107 79017 Lviv, Ukraine

Abstract
Obstacle avoidance is a critical capability for autonomous mobile robots, enabling safe operation in dynamic
and unstructured environments. This paper proposes a novel approach based on the Artificial Potential
Field (APF) method utilizing the Logistic function for obstacle avoidance problem. A complete mathematical
formulation of the model is presented and analyzed. Validation was performed using a simulation
framework built on ROS 2, the Gazebo simulator, and the TurtleBot3 Burger platform. Extensive simulations
were conducted, including LiDAR-based environment sampling and visualizations of repulsive, attractive,
and total potential field distributions. The results confirm the correctness of the method and demonstrate
effective real-time navigation. RViz visualization further illustrated the robot's smooth trajectory and
gradual heading changes across 28 navigation steps. Performance benchmarking in C++ showed that
evaluating the logistic function incurs a computational cost approximately 28% higher than that of the
Gauss function. However, this trade-off is justified by the logistic function’s improved smoothness and
earlier obstacle response, which enhance the robot’s ability to anticipate and adjust to dynamic obstacles.
Logistic function ensures smoother potential transitions and more stable path generation, making it well-
suited for scenarios requiring responsive yet fluid motion planning.

Keywords
artificial potential field method, cyber-physical system, edge computing, information technologies, IoT

concepts, obstacle avoidance, robotics1

1. Introduction

Mobile robots constitute a prominent area of research and development within the field of robotics.
These systems are designed to navigate independently and make real-time, context-aware decisions
based on continuous sensory input, enabling operation without human intervention. Their
adaptability to dynamic and unstructured environments has led to widespread deployment across
various domains. In the hospitality sector, service robots autonomously deliver food and beverages,
while in industrial settings, mobile transport robots efficiently handle the movement of goods. A
particularly impactful application is that of autonomous vehicles, which leverage advanced sensor
technologies and computational algorithms to perceive their surroundings and navigate complex
traffic environments without human control. These examples underscore the broad applicability and
transformative potential of mobile robots in sectors such as logistics, hospitality, and transportation.
As such, the development and optimization of these systems continue to be a central focus in robotics
research, with ongoing efforts directed at improving their performance, autonomy, and adaptability.

A core elements of autonomous mobile robot are software components responsible for path
planning and obstacle avoidance. These components provide key functionalities such as autonomous
parking, emergency maneuvers, and self-directed navigation. Path planning strategies are typically
divided into two categories: local and global. Global path planning relies on information from

MoDaST 2025: Modern Data Science Technologies Doctoral Consortium, June, 15, 2025, Lviv, Ukraine
1∗ Corresponding author.
† These authors contributed equally.

 ihor.berizka@lnu.edu.ua (I. Berizka); ivan.karbovnyk@lnu.edu.ua (I. Karbovnyk)
 0009-0007-1111-1493 (I. Berizka); 0000-0000-0000-0000 (I. Karbovnyk); 0000-0002-3697-4902

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

Geographic Information Systems (GIS) and global localization techniques, requiring the robot to
store a detailed, large-scale map of its environment. This enables long-range navigation tasks, such
as urban traversal. In contrast, local path planning operates using the robot’s relative position and
real-time sensory input to perceive nearby obstacles. It is focused on short-range, reactive navigation
in dynamic settings—such as avoiding pedestrians or maneuvering around moving vehicles. Local
planning plays a crucial role in enabling safe, context-aware behavior in unpredictable and rapidly
evolving environments.

Numerous methods have been developed to address the complexities inherent in global and local
path planning. Each method presents distinct advantages and limitations, and selecting an
appropriate algorithm is critical to ensuring the efficiency, robustness, and safety of autonomous
navigation. The existing literature offers several comprehensive surveys that examine these
algorithms in detail, including their underlying principles, performance characteristics, and
suitability for various application domains [1, 2, 3, 4].

Obstacle detection and avoidance are fundamental components of local path planning algorithms,
serving a vital role in ensuring the safety of both autonomous systems and their surrounding
environments. Over the past few decades, this area has received considerable attention in the
research community, leading to the development of a diverse set of approaches, many of which have
demonstrated effectiveness in real-world deployments.

Effective collision avoidance requires that the robot is able to detect obstacles and dynamically
replan its trajectory in real-time mode. Such responsiveness is critical for enabling safe and efficient
navigation in complex and dynamically changing environments.

Obstacle avoidance generally starts with the acquisition of sensory data, where onboard sensors
like LiDAR, sonar, or cameras are used to identify potential obstacles. Upon identifying an obstacle,
the system must rapidly compute an alternative trajectory that ensures safe traversal around the
object. This trajectory must be generated with minimal computational latency to support real-time
motion adjustments, thereby preventing collisions while preserving smooth navigation.

The fundamental objective of obstacle avoidance is to enable the robot to reach a designated target
location while continuously modifying its trajectory in response to obstacles encountered along the
planned path. A schematic representation of the path planning and obstacle avoidance algorithm is
presented in Fig. 1.

Figure 1: Schematic representation of the obstacle avoidance problem. The original problem is
divided into two subtasks: calculating a new collision-free trajectory and sending commands to the
actuators to move the robot along the new trajectory.

The process of obstacle detection and trajectory adjustment forms an iterative loop, wherein the
robot continuously monitors its environment and performs real-time path modifications as needed.

This cycle persists until the robot successfully reaches its target destination. The iterative nature of
this procedure underscores the dynamic characteristics of autonomous navigation and highlights the
essential role of reliable obstacle detection and path replanning mechanisms in ensuring the safe,
efficient, and adaptive operation of mobile robotic systems.

2. Literature Review

2.1. Mathematical Model of Logistic APFM

The Artificial Potential Field (APF) method is a widely recognized technique in robotics, particularly
in the areas of trajectory planning and obstacle avoidance. Originally proposed by Khatib in 1984 [5],
this method models the robot’s environment using virtual attractive and repulsive forces to perform
navigation.

In the APF method, a virtual potential field is defined such that the goal location produces an
attractive force and obstacles produce repulsive forces. The autonomous agent is influenced by the
resultant force obtained from the summation of these forces, guiding it toward the target while
steering it away from collisions. This force-based navigation framework enables real-time path
adjustment based on the robot’s interactions with its environment [5]. The mathematical
formulations of the attractive, repulsive, and total potential fields are presented in equations (1)–(3).

𝒇௧௢௧௔௟ = 𝒇௔௧௧ + 𝒇௥௘௣ (1)

 𝒇௔௧௧ = 𝑘௔௧௧ ∗ (
𝒓௚௢௔௟ − 𝒓

|𝒓௚௢௔௟ − 𝒓|
) (2)

𝒇௥௘௣ = ൝
−𝑘௥௘௣ ∗ ෍ ൬

1

𝑑௜
−

1

𝑑௠௔௫
൰ ∗ 𝒔௜, 𝑖𝑓 𝑑௜ < 𝑑௠௔௫

௡

௜ୀଵ

0

(3)

Despite its advantages, the traditional APFM is subject to several well-documented limitations. A
primary concern is the occurrence of local minima—situations in which the robot becomes trapped
at a location in the workspace which is not the target, due to the equilibrium of forces. This can
prevent the robot from progressing toward its target. Furthermore, the classical APF approach may
lead to unreachable goal configurations or the generation of suboptimal, inefficient trajectories,
particularly in complex or cluttered environments [6].

To overcome the limitations of the classical Artificial Potential Field (APF) method, various
enhanced approaches were proposed. One such modification, introduced in [7], incorporates
probabilistic elements into the traditional framework. Known as the ODG-PF method, this approach
was specifically designed to enhance obstacle detection and estimate the probability of collisions
with detected obstacles. It introduces novel formulations for both fields, along with an improved
strategy for determining movement direction.

In [8], a more detailed review of the ODG-PF method was provided, along with proposals for
future research areas in this domain. In particular, a mathematical model of the APFM was
introduced, utilizing the Laplace function to represent the repulsive field. In [9] we performed
computational evaluation of Laplace APFM modifications and in [10] we introduced and performed
evaluation of Hyperbolic Secant APFM modification.

In this paper, we propose the use of the Logistic function to model the repulsive force within the
artificial potential field framework.

𝑓௞(𝜃௜) = 𝐴௞ ∗ 𝑠𝑒𝑐ℎଶ(
𝜋(𝜃௞ − 𝜃௜)

2√3 ∗ 𝜎௞

)
(4)

Where 𝜃௞ corresponds to the central angle of the 𝑘௧௛ obstacle, 𝜎௞ is half of angle occupied by the

𝑘௧௛ obstacle.

In the context of a sensor with 1-degree angular resolution, each index can be interpreted as a
discrete representation of an angle within the 0° to 360° range. For each of these angular positions, a
corresponding logistic function is used to model the influence of a detected obstacle. These individual
contributions collectively form the repulsive field—a continuous vector field which guides the robot
away from obstacles. This formulation enables fine-grained, direction-sensitive obstacle avoidance
based on high-resolution sensor data.

A key parameter in this formulation is 𝐴௞ - the scaling coefficient, which is carefully tuned to
ensure that the function adequately captures the spatial extent of each obstacle. Proper adjustment
of this coefficient is essential for accurately modeling the distribution of repulsive forces in the
vicinity of obstacles. Its value directly influences the sharpness and spatial spread of the repulsive
field, thereby affecting the robot’s ability to react to nearby hazards and is obtained using
equation (5).

 𝐴௞ = �̅�௞ ∗ 𝑠𝑒𝑐ℎଶ(
𝜋

2√3
) (5)

Where �̅�௞ = 𝑑௠௔௫ − 𝑑௞ , 𝑑௠௔௫ is sensor range distance.
To account for the influence of several obstacles, the overall repulsive field is computed as the

superposition of the individual repulsive fields generated by each obstacle. Consequently, the
repulsive potential is expressed as a function of the angular variable, reflecting the cumulative effect
of obstacle-induced forces across all sensed directions.

𝑓௥௘௣(𝜃௜) = ෍ 𝐴௞ ∗ 𝑠𝑒𝑐ℎଶ(
𝜋(𝜃௞ − 𝜃௜)

2√3 ∗ 𝜎௞

)
௡

௞ୀଵ

(6)

The subsequent stage involves the computation of the attractive field, as defined in equation (7).

This field models the virtual force that attracts the robot toward the target direction of motion. When
combined with the repulsive field, the attractive component contributes to the overall potential. The
calculated trajectory shows a balance between avoiding obstacles and motion toward the goal,
enabling the robot to navigate safely while continuously progressing toward the target location.

𝑓௔௧௧(𝜃௜) = 𝛾|𝜃௚௢௔௟ − 𝜃௜| (7)

𝑓௧௢௧௔௟(𝜃௜) = 𝑓௔௧௧(𝜃௜) + 𝑓௥௘௣(𝜃௜) (8)

𝜃ௗ௜௥ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓௧௢௧௔௟) (9)

Parameter 𝛾 is selected experimentally and is set to 1.5. Equation (8) represents total field
produced by the system, and the safe direction of robot movement is determined using (9).

2.2. Evaluation Framework

A plethora of software frameworks—commonly referred to as middleware—has been developed to
support modularity and flexibility in robotic systems, enabling the integration of different hardware
platforms and distributed processing capabilities [11].

Among these, the Robot Operating System, became de facto a standard, accelerating research and
development efforts by offering reusable components, standardized communication, and extensive
tooling [12]. However, ROS 1 was initially designed with a focus on research rather than commercial
deployment, resulting in limited support for hard real-time capabilities, fault tolerance, network
optimization, and robust security [13, 14].

Dozens of studies demonstrated critical vulnerabilities in ROS-based systems. For instance,
publicly accessible ROS nodes have been shown to be susceptible to unauthorized access, and formal
assessments have revealed multiple security weaknesses across the ROS communication
architecture. Furthermore, the centralized ROS Master design introduces a single point of failure,
limiting the system's scalability in multi-robot and heterogeneous environments [14]. As a result,

many production-grade applications built upon ROS 1 required extensive customizations—such as
real-time kernel patches, network encapsulation, or additional process isolation layers—to achieve
the robustness needed for industrial deployment [13].

Recognizing these limitations, the robotics community initiated the development of next gen ROS
framework – ROS 2. Built from the ground up, ROS 2 addresses critical requirements for modern
robotic systems. The adoption of the Robot Operating System (ROS), and particularly its modern
iteration ROS 2, offers numerous advantages for the developers in robotic domain. ROS 2 accelerates
the engineering process by providing a comprehensive ecosystem of open-source algorithms,
libraries and tools. Also, it supports the seamless integration of heterogeneous subsystems and
promotes interoperability among software components—capabilities that are essential for building
reliable, modular, and scalable robotic platforms. Moreover, the active global ROS community
contributes continuous innovation, validation, and technical support across a wide array of robotic
applications.

The integration of ROS 2 as a unified middleware framework also facilitates the transition from
simulation to real-world deployment (sim-to-real), enabling researchers to evaluate and refine their
solutions under realistic conditions beyond controlled laboratory settings. In this work, the proposed
Logistic Artificial Potential Field Method (APFM) was implemented as a reusable C++ library,
allowing for flexible integration into larger robotic software architectures. This modular
implementation supports direct incorporation into the ROS 2 ecosystem, thereby enhancing the
portability and extensibility of this approach.

To order to perform simulation, the Gazebo simulator was selected due to its optimal integration
capabilities with ROS 2. Gazebo offers high-fidelity dynamic modeling, accurate sensor emulation,
and native compatibility with the ROS ecosystem, making it a widely adopted platform for simulating
robotic systems. As the reference simulator for ROS-based development, Gazebo enables physically
realistic representations of robotic behavior, including multi-body dynamics, contact interactions,
and the generation of sensor data such as depth images, LiDAR scans, and inertial measurements.

The Gazebo–ROS 2 interface facilitates seamless bi-directional communication through dedicated
plugins, enabling synchronized control loops and consistent timing between simulated environments
and real-world implementations. This integration supports rigorous validation of algorithms in
simulation before physical deployment, thereby significantly reducing development time and risk.

Moreover, Gazebo's ability to model complex scenarios—including multi-robot systems and
dynamic, unstructured environments—combined with ROS 2’s distributed architecture, provides a
scalable and flexible framework for advanced robotic research and system-level verification. A more
comprehensive review of Gazebo and alternative simulation platforms is provided in [9].

For the experimental platform, a ROS-compatible wheeled mobile robot was required. After
evaluating available options, the TurtleBot series was selected due to its widespread use in academic
research. As reported in [9], TurtleBot platforms appear in approximately 20% of publications related
to mobile robot research, highlighting their suitability for scientific applications. Notably, TurtleBot3
offers native integration with ROS 2 and Gazebo, along with comprehensive documentation,
simulation models, and readily available software packages.

TurtleBot3 was chosen for its modular design, affordability, and active community support. It
features scalable hardware and a suite of essential sensors—including LiDAR, IMU, and wheel
encoders—making it well-suited for implementing and testing autonomous navigation algorithms.
Its compatibility with ROS 2 enables efficient development and validation of the proposed obstacle
avoidance method in a realistic yet controlled environment.

3. Computational Evaluation

3.1. Simulation in Gazebo

To evaluate the proposed mathematical model of the Logistic Artificial Potential Field Method
(APFM), we conducted simulations in a virtual environment containing obstacles, as illustrated in
Fig. 2. The key parameters and their corresponding values required for the Logistic APFM are
summarized in Table 1. The workspace shown on Fig. 2 depicts configuration employed in the
Gazebo simulation environment to evaluate the proposed obstacle avoidance method. The
experimental setup includes a TurtleBot3 Burger robot positioned in the middle of a room, depicted
as a small cylinder marked with a white dot. The robot’s physical parameters—including dimensions,
mass, and sensor specifications—were sourced from the TurtleBot3 website and accurately modeled
within the simulation to ensure realistic behavior. The environment consists of walls enclosing the
workspace and multiple obstacles of varying geometries (cylindrical and rectangular), creating a
complex and dynamic scenario for testing obstacle avoidance performance. Blue lines emanating out
of the robot represent 1D LiDAR scan rays, with the sensor configured at a 1° angular resolution to
achieve high precision. In this paper, LiDAR scan completes a full 360° rotation, delivering a
comprehensive snapshot of the workspace.

Figure 2: Workplace configuration in Gazebo simulator.

In Table 1 summarizes the key parameters and their corresponding values required for the
Logistic APFM.

Table 1
Parameters and corresponding values of the Logistic APFM

Parameter Value
Threshold distance 1 m

Robot diameter 0.2 m
LiDAR max range
LiDAR resolution

6 m
-179…180, step

1°
Gamma

Goal direction
Robot linear speed

1.5
0°

0.1 m/s

Under the specified configuration and parameter values, the robot navigates forward toward the

target wall while dynamically avoiding collisions with obstacles in its path. The core obstacle
avoidance behavior is governed by the Logistic APFM model, which calculates repulsive forces from
nearby obstacles while maintaining attraction toward the goal position. Fig. 3 shows a complete
single step of the algorithm is presented in the pseudocode.

Figure 3: Pseudocode of a Robot Navigation Algorithm used in this study.

The following section examines in detail the first three steps of the proposed algorithm. At time
𝑡ଵ, the robot is situated at the geometric center of the room, as depicted in Fig. 2. Fig. 4 depicts 1D
LiDAR data sample corresponding to this position.

Figure 4: The 1D LiDAR sample at the initial step. The solid line represents data a single complete
LiDAR scan. The dashed curve depicts the threshold distance; objects detected closer than this
threshold are classified as obstacles. The picture in the top-right corner demonstrates the current
robot position in the simulator.

Entities detected at distances shorter than a predefined threshold are classified as obstacles.
Analyzing the LiDAR scan we observe two distinct, continuous regions with distance measurements
below this threshold, located approximately within the angular intervals of [−170°, −100°] and [+10°,
+45°]. Based on this observation, the APFM is expected to identify two obstacles within the specified
angular sectors. The obstacles detected by the APFM, highlighted in red, correspond closely with the
angular positions inferred from the LiDAR data, thereby confirming the accuracy of the obstacle
detection process.

Plot of the repulsive, attractive, and total forces calculated by APFM at time step 𝑡ଵ are presented
on Fig. 5. The x-axis represents the angular direction relative to the robot’s forward orientation,
ranging from −179° to 180°. The y-axis denotes the magnitude of the corresponding force
components.

The blue curve (repulsive force) exhibits two prominent peaks, indicating obstacles exerting
significant influence on the robot's path planning. Those peaks correspond to the LiDAR data
presented on Fig. 4. The attractive force (black dashed line) increases linearly with angle, steering
the robot toward the goal direction. The total force (green curve), obtained by vector summation of
the attractive and repulsive components, reaches a minimum at approximately −18°, which is
identified as the safe angle for navigation at this time step. This minimum represents the direction
in which the net potential field guides the robot, effectively balancing obstacle avoidance and goal-
seeking behavior.

Figure 5: Repulsive, attractive, and total forces computed at the specified timestamp 𝑡ଵ.

As outlined in the navigation algorithm illustrated above, the robot first performs a rotational
maneuver toward the computed safe direction. This reorientation allows the robot to avoid the
obstacles identified in its immediate surroundings. Following this adjustment, the robot proceeds by
moving forward for a fixed duration of one second, thereby making incremental progress toward the
goal. Upon completing this forward motion, the robot executes a corrective rotation to realign its
heading, allowing it to resume its intended trajectory. This sequence of operations is executed
iteratively and continues systematically until the robot either successfully reaches the designated
target position.

Under the current experimental setup, the robot successfully navigated the workspace and
reached the designated target in 28 discrete steps. To further evaluate the reliability of the proposed
method, a detailed analysis of two additional representative iterations is presented. The first case
focuses on an intermediate location along the trajectory, corresponding to timestamp 𝑡ଵ଺. The second

case examines the robot’s final step to the target, recorded at timestamp 𝑡ଶ଼, where the goal is near
the wall.

For both time steps, a comprehensive assessment of the potential field forces—repulsive,
attractive, and resultant total—acting on the robot will be conducted. Additionally, the complete
navigation trajectory, visualized using the RViz tool, will be analyzed to evaluate the smoothness
and consistency of the obstacle avoidance behavior throughout the execution of the algorithm.

Analysis of the data presented in Fig. 6 reveals a single continuous region below the threshold
line, spanning approximately the angular interval of [−110°, −45°]. Based on this observation, the
Artificial Potential Field Method (APFM) is expected to identify a single obstacle within this angular
sector. Moreover, the location of the obstacle in the simulation environment corresponds closely to
the angular position inferred from the LiDAR scan, confirming the consistency of the detection
process.

Figure 6: The 1D LiDAR sample at the 𝑡ଵ଺ step. The solid line represents data a single complete
LiDAR scan. The dashed curve depicts the threshold distance; objects detected closer than this
threshold are classified as obstacles. The picture in the top-right corner demonstrates the current
robot position in the simulator.

It is also noteworthy that the detected obstacle is located close to the robot, at an approximately
0.4m near the side of the robot. This results in a broader influence on the obstacle enlargement
process, leading to the wide peak in the repulsive force generated by this obstacle. Such a peak
significantly affects the total force distribution and, consequently, the robot’s navigational decisions.

Fig. 7 presents the force profiles at a later time instance. In this case, the repulsive force has a
single pronounced peak centered around −89°, indicating an isolated obstacle in that direction. The
attractive force retains its characteristic V-shaped profile, with its minimum at 0°, corresponding to
the goal direction. The total force also reaches its minimum at 0°, indicating that no significant
obstacle obstructs the direct path. Consequently, the robot can proceed straight toward the target
without needing to adjust its heading. This scenario illustrates the APFM’s ability to sustain goal-
directed motion when the environment allows.

Figure 7: Repulsive, attractive, and total forces computed at the specified timestamp 𝑡ଵ଺.

The LiDAR sample obtained at the robot's final step, at the location near the wall is shown on
Fig. 8.

Figure 8: The 1D LiDAR sample at the 𝑡ଶ଼ step. The solid line represents data a single complete
LiDAR scan. The dashed curve depicts the threshold distance; objects detected closer than this
threshold are classified as obstacles. The picture in the top-right corner demonstrates the current
robot position in the simulator.

An analysis of the data presented in Fig. 8, reveals the presence of two continuous regions located
below the threshold line, approximately within the angular ranges of [-10°, 60°] and [90°, 170°].
Subsequently, it is expected that the APFM should detect two obstacles. The first detected obstacle
is a wall, as indicated by the geometric shape observed in the LiDAR sample. Specifically, the obstacle
displays a smooth, circular-like shape—a signature feature typically associated with walls due to their
uniform and continuous surfaces.

The second region suggests the existence of another distinct obstacle, whose angular location
suggests it is positioned behind the robot. This conclusion is supported by the simulation
environment visualization in the top-right corner of Figure 8.

Fig. 9 illustrates the force field structure at a subsequent stage. The repulsive force exhibits two
prominent peaks near 0° and 150°, indicating multiple obstacles along the forward path. The
attractive force maintains its canonical V-shaped profile, while the total force shows a minimum
shifted to approximately −36°.

Figure 9: Repulsive, attractive, and total forces computed at the specified timestamp 𝑡ଶ଼.

This deviation indicates that the robot must adjust its heading by -36° to safely circumvent the
obstacles. The resulting total force distribution underscores the dynamic balance between avoiding
obstacles and moving toward the target, enabling robust and adaptive navigation. However, since
the robot has already reached its target location, the computed safe direction is disregarded. This
behavior reflects the algorithm’s design principle of prioritizing target completion over continued
navigation adjustments based on force computations once the goal has been attained.

Figure 10 displays the robot's navigation trajectory, as visualized in RViz, providing a spatial
overview of the path taken during execution.

The RViz visualization demonstrates the operational efficacy of the implemented navigation
system by highlighting three key elements of the obstacle avoidance process. Green vectors indicate
real-time directional corrections where the calculated safe navigation angle deviates from the target
trajectory due to detected obstacles, reflecting the system’s dynamic response to environmental
constraints. Red markers represent LiDAR-measured obstacle positions, forming a point cloud that
quantifies the robot’s perceptual field and correlates with the repulsive potential field generated by
our APF implementation. The traversed path shows smooth deviations when encountering obstacles,
confirming the proper application of repulsive forces. This visualization provides empirical
validation of the algorithm’s ability to maintain forward progress while executing collision-free path
modifications.

Figure 10: Traversed path visualization in RViz.

The results affirm the real-world applicability of the Logistic APFM modification in dynamic
environments. Notably, this modification produced the smoothest path compared to three other
variants.

3.2. Computational Efficiency

The computational performance of Hyperbolic Secant and Gaussian repulsive force models was
evaluated through systematic benchmarking under controlled virtualized conditions. The host
system featured an AMD Ryzen 7 3700X desktop processor (8C/16T) with 32GB DDR4-3200 MHz
RAM and Samsung 970 EVO Plus 500 GB NVMe SSD, running Ubuntu 24.04.1 x64, using gcc 13.3.0.

Since the C++ standard library does not natively support the sech (𝑥) function, two
implementations of were used: one based on the equation (10) and another faster one based on the
equation (11).

𝑠𝑒𝑐ℎ(𝑥) =
1

cosh (𝑥)

(10)

𝑠𝑒𝑐ℎ(𝑥) =
2

𝑒௫ + 𝑒ି௫
, 𝑤𝑖𝑡ℎ 𝑒ି௫ =

1

𝑒௫

(11)

Each benchmark run consisted of 1,000 iterations, with 10 million evaluations per iteration to

ensure consistent timing resolution. The logistic function was calculated with 𝜎 = 1, µ = 0.
Execution times for each variant are presented in Table 2.

Table 2
Computational performance comparison (10଻ evaluations over 10ଷ runs)

Function Median time (s) StdDev (s)
Gauss 0.05429 0.00035

Logistic (equation 10) 0.08429 0.00045
Logistic (equation 11) 0.06962 0.00028

Results show that the Gaussian calculation is the fastest baseline. The standard Logistic (equation

10) is about 55% slower than the Gaussian, while the Logistic (equation 11) implementation reduces

this overhead to approximately 28% slower. These findings highlight the performance trade-offs
when choosing between accuracy and computational efficiency in logistic function evaluations.

Conclusion

The Logistic APFM represents a notable advancement in obstacle avoidance algorithms, offering
distinct benefits in path planning quality. The inherent characteristics of the logistic function—
particularly its smooth gradient transitions and broader, more gradual peaks compared to other
evaluated modifications—enable more natural and fluid navigation behavior. This results in visibly
smoother trajectories with fewer abrupt corrections, especially in environments featuring sharp-
edged obstacles or complex geometries. The method’s increased sensitivity to nearby obstacles
facilitates earlier and more gradual course adjustments, effectively reducing unnecessary path
oscillations. These improvements stem directly from the mathematical formulation, without reliance
on additional systems or sensors. While the approach demonstrates limitations in computational
efficiency, it consistently yields the smoothest path among the tested variants, making it well-suited
for low-speed robotic platforms.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] Debnath, D., Vanegas, F., Sandino, J., Hawary, A. F., & Gonzalez, F. (2024). A Re-view of UAV
Path-Planning Algorithms and Obstacle Avoidance Methods for Re-mote Sensing Applications.
Remote Sensing, 16(21), 4019. https://doi.org/10.3390/rs16214019.

[2] Berizka I, Path planning and obstacle avoidance methods for autonomous mobile robots, ISSN
2224-087X. Electronics and information technologies. 2024. Issue 28. P. 123–142,
https://doi.org/10.30970/eli.28.11.

[3] Katona, K.; Neamah, H.A.; Korondi, P. Obstacle Avoidance and Path Planning Methods for
Autonomous Navigation of Mobile Robot. Sensors 2024, 24, 3573.
https://doi.org/10.3390/s24113573.

[4] Merei, A., Mcheick, H., Ghaddar, A., & Rebaine, D. (2025). A Survey on Obstacle Detection and
Avoidance Methods for UAVs. Drones, 9(3), 203.

[5] Khatib O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International
Journal of Robotics Research. 1986;5(1):90-98. https://doi.org/10.1177/027836498600500106.

[6] Xiaojing Fan, Yinjing Guo, Hui Liu, Bowen Wei, Wenhong Lyu. (2020 Apr). Improved Artificial
Potential Field Method Applied for AUV Path Planning. Mathematical Problems in Engineering.
Mathematical Problems in Engineering. [Online]. Available:
https://doi.org/10.1155/2020/6523158.

[7] Jang-Ho Cho, Dong-Sung Pae, Myo-Taeg Lim, Tae-Koo Kang. (2018 Aug). A Real-Time Obstacle
Avoidance Method for Autonomous Vehicles Using an Obstacle-Dependent Gaussian Potential
Field. Journal of Advanced Transportation. [Online]. Available:
https://doi.org/10.1155/2018/5041401J.

[8] Berizka, I. and Karbovnyk, I. 2024. MATHEMATICAL MODEL OF MODIFIED REAL-TIME
OBSTACLE AVOIDANCE METHOD BASED ON LAPLACE ARTIFICIAL POTENTIAL FIELD.
Applied Problems of Computer Science, Security and Mathematics. 3 (Sep. 2024), 12–22,
https://apcssm.vnu.edu.ua/index.php/Journalone/article/view/123

[9] Berizka I, Karbovnyk I, Computational Evaluation of Laplace Artificial Potential Field Methods
for Real-Time Obstacle Avoidance in Gazebo, ISSN: 2524-0382 (print), 2707-0069 (online). 2025.

Advances in Cyber-Physical Systems (ACPS). Volume 10, Number 1. P. 1-9,
https://doi.org/10.23939/acps2025.01.001 .

[10] I. Berizka, I. Karbovnyk, “Simulation-Based Evaluation of Hyperbolic Secant Potential Field for
Real-Time Obstacle Avoidance”, to be published in Ukrainian Journal of Information
Technology, accepted for publication, June 2025.

[11] Elkady, Ayssam, Sobh, Tarek, Robotics Middleware: A Comprehensive Literature Survey and
Attribute-Based Bibliography, Journal of Robotics, 2012, 959013, 15 pages, 2012.
https://doi.org/10.1155/2012/959013 .

[12] Pablo Estefo, Jocelyn Simmonds, Romain Robbes, Johan Fabry, The Robot Operating System:
Package reuse and community dynamics, Journal of Systems and Software, Volume 151, 2019,
Pages 226-242, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2019.02.024 .

[13] Mayoral-Vilches, V., Pinzger, M., Rass, S., Dieber, B., & Gil-Uriarte, E. (2020). Can ros be used
securely in industry? red teaming ros-industrial. arXiv preprint arXiv:2009.08211.

[14] DeMarinis, N., Tellex, S., Kemerlis, V. P., Konidaris, G., & Fonseca, R. (2019, May). Scanning the
internet for ros: A view of security in robotics research. In 2019 International Conference on
Robotics and Automation (ICRA) (pp. 8514-8521). IEEE.

