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Abstract 
Obstacle avoidance is a critical capability for autonomous mobile robots, enabling safe operation in dynamic 
and unstructured environments. This paper proposes a novel approach based on the Artificial Potential 
Field (APF) method utilizing the Logistic function for obstacle avoidance problem. A complete mathematical 
formulation of the model is presented and analyzed. Validation was performed using a simulation 
framework built on ROS 2, the Gazebo simulator, and the TurtleBot3 Burger platform. Extensive simulations 
were conducted, including LiDAR-based environment sampling and visualizations of repulsive, attractive, 
and total potential field distributions. The results confirm the correctness of the method and demonstrate 
effective real-time navigation. RViz visualization further illustrated the robot's smooth trajectory and 
gradual heading changes across 28 navigation steps. Performance benchmarking in C++ showed that 
evaluating the logistic function incurs a computational cost approximately 28% higher than that of the 
Gauss function. However, this trade-off is justified by the logistic function’s improved smoothness and 
earlier obstacle response, which enhance the robot’s ability to anticipate and adjust to dynamic obstacles. 
Logistic function ensures smoother potential transitions and more stable path generation, making it well-
suited for scenarios requiring responsive yet fluid motion planning. 
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1. Introduction 

Mobile robots constitute a prominent area of research and development within the field of robotics. 
These systems are designed to navigate independently and make real-time, context-aware decisions 
based on continuous sensory input, enabling operation without human intervention. Their 
adaptability to dynamic and unstructured environments has led to widespread deployment across 
various domains. In the hospitality sector, service robots autonomously deliver food and beverages, 
while in industrial settings, mobile transport robots efficiently handle the movement of goods. A 
particularly impactful application is that of autonomous vehicles, which leverage advanced sensor 
technologies and computational algorithms to perceive their surroundings and navigate complex 
traffic environments without human control. These examples underscore the broad applicability and 
transformative potential of mobile robots in sectors such as logistics, hospitality, and transportation. 
As such, the development and optimization of these systems continue to be a central focus in robotics 
research, with ongoing efforts directed at improving their performance, autonomy, and adaptability. 

A core elements of autonomous mobile robot are software components responsible for path 
planning and obstacle avoidance. These components provide key functionalities such as autonomous 
parking, emergency maneuvers, and self-directed navigation. Path planning strategies are typically 
divided into two categories: local and global. Global path planning relies on information from 
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Geographic Information Systems (GIS) and global localization techniques, requiring the robot to 
store a detailed, large-scale map of its environment. This enables long-range navigation tasks, such 
as urban traversal. In contrast, local path planning operates using the robot’s relative position and 
real-time sensory input to perceive nearby obstacles. It is focused on short-range, reactive navigation 
in dynamic settings—such as avoiding pedestrians or maneuvering around moving vehicles. Local 
planning plays a crucial role in enabling safe, context-aware behavior in unpredictable and rapidly 
evolving environments. 

Numerous methods have been developed to address the complexities inherent in global and local 
path planning. Each method presents distinct advantages and limitations, and selecting an 
appropriate algorithm is critical to ensuring the efficiency, robustness, and safety of autonomous 
navigation. The existing literature offers several comprehensive surveys that examine these 
algorithms in detail, including their underlying principles, performance characteristics, and 
suitability for various application domains [1, 2, 3, 4]. 

Obstacle detection and avoidance are fundamental components of local path planning algorithms, 
serving a vital role in ensuring the safety of both autonomous systems and their surrounding 
environments. Over the past few decades, this area has received considerable attention in the 
research community, leading to the development of a diverse set of approaches, many of which have 
demonstrated effectiveness in real-world deployments. 

Effective collision avoidance requires that the robot is able to detect obstacles and dynamically 
replan its trajectory in real-time mode. Such responsiveness is critical for enabling safe and efficient 
navigation in complex and dynamically changing environments. 

Obstacle avoidance generally starts with the acquisition of sensory data, where onboard sensors 
like LiDAR, sonar, or cameras are used to identify potential obstacles. Upon identifying an obstacle, 
the system must rapidly compute an alternative trajectory that ensures safe traversal around the 
object. This trajectory must be generated with minimal computational latency to support real-time 
motion adjustments, thereby preventing collisions while preserving smooth navigation. 

The fundamental objective of obstacle avoidance is to enable the robot to reach a designated target 
location while continuously modifying its trajectory in response to obstacles encountered along the 
planned path. A schematic representation of the path planning and obstacle avoidance algorithm is 
presented in Fig. 1. 

 

Figure 1: Schematic representation of the obstacle avoidance problem. The original problem is 
divided into two subtasks: calculating a new collision-free trajectory and sending commands to the 
actuators to move the robot along the new trajectory. 

The process of obstacle detection and trajectory adjustment forms an iterative loop, wherein the 
robot continuously monitors its environment and performs real-time path modifications as needed. 



This cycle persists until the robot successfully reaches its target destination. The iterative nature of 
this procedure underscores the dynamic characteristics of autonomous navigation and highlights the 
essential role of reliable obstacle detection and path replanning mechanisms in ensuring the safe, 
efficient, and adaptive operation of mobile robotic systems. 

2. Literature Review 

2.1. Mathematical Model of Logistic APFM 

The Artificial Potential Field (APF) method is a widely recognized technique in robotics, particularly 
in the areas of trajectory planning and obstacle avoidance. Originally proposed by Khatib in 1984 [5], 
this method models the robot’s environment using virtual attractive and repulsive forces to perform 
navigation. 

In the APF method, a virtual potential field is defined such that the goal location produces an 
attractive force and obstacles produce repulsive forces. The autonomous agent is influenced by the 
resultant force obtained from the summation of these forces, guiding it toward the target while 
steering it away from collisions. This force-based navigation framework enables real-time path 
adjustment based on the robot’s interactions with its environment [5]. The mathematical 
formulations of the attractive, repulsive, and total potential fields are presented in equations (1)–(3). 
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(3) 

Despite its advantages, the traditional APFM is subject to several well-documented limitations. A 
primary concern is the occurrence of local minima—situations in which the robot becomes trapped 
at a location in the workspace which is not the target, due to the equilibrium of forces. This can 
prevent the robot from progressing toward its target. Furthermore, the classical APF approach may 
lead to unreachable goal configurations or the generation of suboptimal, inefficient trajectories, 
particularly in complex or cluttered environments [6]. 

To overcome the limitations of the classical Artificial Potential Field (APF) method, various 
enhanced approaches were proposed. One such modification, introduced in [7], incorporates 
probabilistic elements into the traditional framework. Known as the ODG-PF method, this approach 
was specifically designed to enhance obstacle detection and estimate the probability of collisions 
with detected obstacles. It introduces novel formulations for both fields, along with an improved 
strategy for determining movement direction. 

In [8], a more detailed review of the ODG-PF method was provided, along with proposals for 
future research areas in this domain. In particular, a mathematical model of the APFM was 
introduced, utilizing the Laplace function to represent the repulsive field. In [9] we performed 
computational evaluation of Laplace APFM modifications and in [10] we introduced and performed 
evaluation of Hyperbolic Secant APFM modification. 

In this paper, we propose the use of the Logistic function to model the repulsive force within the 
artificial potential field framework. 

𝑓௞(𝜃௜) =  𝐴௞ ∗ 𝑠𝑒𝑐ℎଶ(
𝜋(𝜃௞ − 𝜃௜)

2√3 ∗ 𝜎௞

) 
(4) 

 
Where 𝜃௞ corresponds to the central angle of the 𝑘௧௛ obstacle, 𝜎௞ is half of angle occupied by the 

𝑘௧௛ obstacle. 



In the context of a sensor with 1-degree angular resolution, each index can be interpreted as a 
discrete representation of an angle within the 0° to 360° range. For each of these angular positions, a 
corresponding logistic function is used to model the influence of a detected obstacle. These individual 
contributions collectively form the repulsive field—a continuous vector field which guides the robot 
away from obstacles. This formulation enables fine-grained, direction-sensitive obstacle avoidance 
based on high-resolution sensor data. 

A key parameter in this formulation is 𝐴௞ - the scaling coefficient, which is carefully tuned to 
ensure that the function adequately captures the spatial extent of each obstacle. Proper adjustment 
of this coefficient is essential for accurately modeling the distribution of repulsive forces in the 
vicinity of obstacles. Its value directly influences the sharpness and spatial spread of the repulsive 
field, thereby affecting the robot’s ability to react to nearby hazards and is obtained using 
equation (5).  

 𝐴௞ = �̅�௞ ∗ 𝑠𝑒𝑐ℎଶ(
𝜋

2√3
) (5) 

Where �̅�௞ =  𝑑௠௔௫ −  𝑑௞ , 𝑑௠௔௫ is sensor range distance. 
To account for the influence of several obstacles, the overall repulsive field is computed as the 

superposition of the individual repulsive fields generated by each obstacle. Consequently, the 
repulsive potential is expressed as a function of the angular variable, reflecting the cumulative effect 
of obstacle-induced forces across all sensed directions. 
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The subsequent stage involves the computation of the attractive field, as defined in equation (7). 

This field models the virtual force that attracts the robot toward the target direction of motion. When 
combined with the repulsive field, the attractive component contributes to the overall potential. The 
calculated trajectory shows a balance between avoiding obstacles and motion toward the goal, 
enabling the robot to navigate safely while continuously progressing toward the target location. 

𝑓௔௧௧(𝜃௜) =  𝛾|𝜃௚௢௔௟ − 𝜃௜| (7) 

𝑓௧௢௧௔௟(𝜃௜) =  𝑓௔௧௧(𝜃௜) +  𝑓௥௘௣(𝜃௜) (8) 

𝜃ௗ௜௥ =  𝑎𝑟𝑔𝑚𝑖𝑛(𝑓௧௢௧௔௟) (9) 

Parameter  𝛾 is selected experimentally and is set to 1.5. Equation (8) represents total field 
produced by the system, and the safe direction of robot movement is determined using (9). 

2.2. Evaluation Framework 

A plethora of software frameworks—commonly referred to as middleware—has been developed to 
support modularity and flexibility in robotic systems, enabling the integration of different hardware 
platforms and distributed processing capabilities [11]. 

Among these, the Robot Operating System, became de facto a standard, accelerating research and 
development efforts by offering reusable components, standardized communication, and extensive 
tooling [12]. However, ROS 1 was initially designed with a focus on research rather than commercial 
deployment, resulting in limited support for hard real-time capabilities, fault tolerance, network 
optimization, and robust security [13, 14]. 

Dozens of studies demonstrated critical vulnerabilities in ROS-based systems. For instance, 
publicly accessible ROS nodes have been shown to be susceptible to unauthorized access, and formal 
assessments have revealed multiple security weaknesses across the ROS communication 
architecture. Furthermore, the centralized ROS Master design introduces a single point of failure, 
limiting the system's scalability in multi-robot and heterogeneous environments [14]. As a result, 



many production-grade applications built upon ROS 1 required extensive customizations—such as 
real-time kernel patches, network encapsulation, or additional process isolation layers—to achieve 
the robustness needed for industrial deployment [13]. 

Recognizing these limitations, the robotics community initiated the development of next gen ROS 
framework – ROS 2. Built from the ground up, ROS 2 addresses critical requirements for modern 
robotic systems. The adoption of the Robot Operating System (ROS), and particularly its modern 
iteration ROS 2, offers numerous advantages for the developers in robotic domain. ROS 2 accelerates 
the engineering process by providing a comprehensive ecosystem of open-source algorithms, 
libraries and tools. Also, it supports the seamless integration of heterogeneous subsystems and 
promotes interoperability among software components—capabilities that are essential for building 
reliable, modular, and scalable robotic platforms. Moreover, the active global ROS community 
contributes continuous innovation, validation, and technical support across a wide array of robotic 
applications. 

The integration of ROS 2 as a unified middleware framework also facilitates the transition from 
simulation to real-world deployment (sim-to-real), enabling researchers to evaluate and refine their 
solutions under realistic conditions beyond controlled laboratory settings. In this work, the proposed 
Logistic Artificial Potential Field Method (APFM) was implemented as a reusable C++ library, 
allowing for flexible integration into larger robotic software architectures. This modular 
implementation supports direct incorporation into the ROS 2 ecosystem, thereby enhancing the 
portability and extensibility of this approach. 

To order to perform simulation, the Gazebo simulator was selected due to its optimal integration 
capabilities with ROS 2. Gazebo offers high-fidelity dynamic modeling, accurate sensor emulation, 
and native compatibility with the ROS ecosystem, making it a widely adopted platform for simulating 
robotic systems. As the reference simulator for ROS-based development, Gazebo enables physically 
realistic representations of robotic behavior, including multi-body dynamics, contact interactions, 
and the generation of sensor data such as depth images, LiDAR scans, and inertial measurements. 

The Gazebo–ROS 2 interface facilitates seamless bi-directional communication through dedicated 
plugins, enabling synchronized control loops and consistent timing between simulated environments 
and real-world implementations. This integration supports rigorous validation of algorithms in 
simulation before physical deployment, thereby significantly reducing development time and risk. 

Moreover, Gazebo's ability to model complex scenarios—including multi-robot systems and 
dynamic, unstructured environments—combined with ROS 2’s distributed architecture, provides a 
scalable and flexible framework for advanced robotic research and system-level verification. A more 
comprehensive review of Gazebo and alternative simulation platforms is provided in [9]. 

For the experimental platform, a ROS-compatible wheeled mobile robot was required. After 
evaluating available options, the TurtleBot series was selected due to its widespread use in academic 
research. As reported in [9], TurtleBot platforms appear in approximately 20% of publications related 
to mobile robot research, highlighting their suitability for scientific applications. Notably, TurtleBot3 
offers native integration with ROS 2 and Gazebo, along with comprehensive documentation, 
simulation models, and readily available software packages. 

TurtleBot3 was chosen for its modular design, affordability, and active community support. It 
features scalable hardware and a suite of essential sensors—including LiDAR, IMU, and wheel 
encoders—making it well-suited for implementing and testing autonomous navigation algorithms. 
Its compatibility with ROS 2 enables efficient development and validation of the proposed obstacle 
avoidance method in a realistic yet controlled environment. 
 



3. Computational Evaluation 

3.1. Simulation in Gazebo 

To evaluate the proposed mathematical model of the Logistic Artificial Potential Field Method 
(APFM), we conducted simulations in a virtual environment containing obstacles, as illustrated in 
Fig. 2. The key parameters and their corresponding values required for the Logistic APFM are 
summarized in Table 1. The workspace shown on Fig. 2 depicts configuration employed in the 
Gazebo simulation environment to evaluate the proposed obstacle avoidance method. The 
experimental setup includes a TurtleBot3 Burger robot positioned in the middle of a room, depicted 
as a small cylinder marked with a white dot. The robot’s physical parameters—including dimensions, 
mass, and sensor specifications—were sourced from the TurtleBot3 website and accurately modeled 
within the simulation to ensure realistic behavior. The environment consists of walls enclosing the 
workspace and multiple obstacles of varying geometries (cylindrical and rectangular), creating a 
complex and dynamic scenario for testing obstacle avoidance performance. Blue lines emanating out 
of the robot represent 1D LiDAR scan rays, with the sensor configured at a 1° angular resolution to 
achieve high precision. In this paper, LiDAR scan completes a full 360° rotation, delivering a 
comprehensive snapshot of the workspace. 

 

Figure 2: Workplace configuration in Gazebo simulator. 

In Table 1 summarizes the key parameters and their corresponding values required for the 
Logistic APFM. 

Table 1 
Parameters and corresponding values of the Logistic APFM 

Parameter Value 
Threshold distance 1 m 

Robot diameter 0.2 m 
LiDAR max range 
LiDAR resolution 

6 m 
-179…180, step 

1° 
Gamma 

Goal direction 
Robot linear speed 

1.5 
0° 

0.1 m/s 



 
Under the specified configuration and parameter values, the robot navigates forward toward the 

target wall while dynamically avoiding collisions with obstacles in its path. The core obstacle 
avoidance behavior is governed by the Logistic APFM model, which calculates repulsive forces from 
nearby obstacles while maintaining attraction toward the goal position. Fig. 3 shows a complete 
single step of the algorithm is presented in the pseudocode. 

 

Figure 3: Pseudocode of a Robot Navigation Algorithm used in this study. 

The following section examines in detail the first three steps of the proposed algorithm. At time 
𝑡ଵ, the robot is situated at the geometric center of the room, as depicted in Fig. 2. Fig. 4 depicts 1D 
LiDAR data sample corresponding to this position. 

 

Figure 4: The 1D LiDAR sample at the initial step. The solid line represents data a single complete 
LiDAR scan. The dashed curve depicts the threshold distance; objects detected closer than this 
threshold are classified as obstacles. The picture in the top-right corner demonstrates the current 
robot position in the simulator. 



Entities detected at distances shorter than a predefined threshold are classified as obstacles. 
Analyzing the LiDAR scan we observe two distinct, continuous regions with distance measurements 
below this threshold, located approximately within the angular intervals of [−170°, −100°] and [+10°, 
+45°]. Based on this observation, the APFM is expected to identify two obstacles within the specified 
angular sectors. The obstacles detected by the APFM, highlighted in red, correspond closely with the 
angular positions inferred from the LiDAR data, thereby confirming the accuracy of the obstacle 
detection process. 

Plot of the repulsive, attractive, and total forces calculated by APFM at time step 𝑡ଵ are presented 
on Fig. 5. The x-axis represents the angular direction relative to the robot’s forward orientation, 
ranging from −179° to 180°. The y-axis denotes the magnitude of the corresponding force 
components. 

The blue curve (repulsive force) exhibits two prominent peaks, indicating obstacles exerting 
significant influence on the robot's path planning. Those peaks correspond to the LiDAR data 
presented on Fig. 4. The attractive force (black dashed line) increases linearly with angle, steering 
the robot toward the goal direction. The total force (green curve), obtained by vector summation of 
the attractive and repulsive components, reaches a minimum at approximately −18°, which is 
identified as the safe angle for navigation at this time step. This minimum represents the direction 
in which the net potential field guides the robot, effectively balancing obstacle avoidance and goal-
seeking behavior. 

 

Figure 5: Repulsive, attractive, and total forces computed at the specified timestamp 𝑡ଵ. 

As outlined in the navigation algorithm illustrated above, the robot first performs a rotational 
maneuver toward the computed safe direction. This reorientation allows the robot to avoid the 
obstacles identified in its immediate surroundings. Following this adjustment, the robot proceeds by 
moving forward for a fixed duration of one second, thereby making incremental progress toward the 
goal. Upon completing this forward motion, the robot executes a corrective rotation to realign its 
heading, allowing it to resume its intended trajectory. This sequence of operations is executed 
iteratively and continues systematically until the robot either successfully reaches the designated 
target position. 

Under the current experimental setup, the robot successfully navigated the workspace and 
reached the designated target in 28 discrete steps. To further evaluate the reliability of the proposed 
method, a detailed analysis of two additional representative iterations is presented. The first case 
focuses on an intermediate location along the trajectory, corresponding to timestamp 𝑡ଵ଺. The second 



case examines the robot’s final step to the target, recorded at timestamp 𝑡ଶ଼, where the goal is near 
the wall. 

For both time steps, a comprehensive assessment of the potential field forces—repulsive, 
attractive, and resultant total—acting on the robot will be conducted. Additionally, the complete 
navigation trajectory, visualized using the RViz tool, will be analyzed to evaluate the smoothness 
and consistency of the obstacle avoidance behavior throughout the execution of the algorithm. 

Analysis of the data presented in Fig. 6 reveals a single continuous region below the threshold 
line, spanning approximately the angular interval of [−110°, −45°]. Based on this observation, the 
Artificial Potential Field Method (APFM) is expected to identify a single obstacle within this angular 
sector. Moreover, the location of the obstacle in the simulation environment corresponds closely to 
the angular position inferred from the LiDAR scan, confirming the consistency of the detection 
process. 

 

Figure 6: The 1D LiDAR sample at the 𝑡ଵ଺ step. The solid line represents data a single complete 
LiDAR scan. The dashed curve depicts the threshold distance; objects detected closer than this 
threshold are classified as obstacles. The picture in the top-right corner demonstrates the current 
robot position in the simulator. 

It is also noteworthy that the detected obstacle is located close to the robot, at an approximately 
0.4m near the side of the robot. This results in a broader influence on the obstacle enlargement 
process, leading to the wide peak in the repulsive force generated by this obstacle. Such a peak 
significantly affects the total force distribution and, consequently, the robot’s navigational decisions. 

Fig. 7 presents the force profiles at a later time instance. In this case, the repulsive force has a 
single pronounced peak centered around −89°, indicating an isolated obstacle in that direction. The 
attractive force retains its characteristic V-shaped profile, with its minimum at 0°, corresponding to 
the goal direction. The total force also reaches its minimum at 0°, indicating that no significant 
obstacle obstructs the direct path. Consequently, the robot can proceed straight toward the target 
without needing to adjust its heading. This scenario illustrates the APFM’s ability to sustain goal-
directed motion when the environment allows. 



 

Figure 7: Repulsive, attractive, and total forces computed at the specified timestamp 𝑡ଵ଺. 

The LiDAR sample obtained at the robot's final step, at the location near the wall is shown on 
Fig. 8. 

 

Figure 8: The 1D LiDAR sample at the 𝑡ଶ଼ step. The solid line represents data a single complete 
LiDAR scan. The dashed curve depicts the threshold distance; objects detected closer than this 
threshold are classified as obstacles. The picture in the top-right corner demonstrates the current 
robot position in the simulator. 

An analysis of the data presented in Fig. 8, reveals the presence of two continuous regions located 
below the threshold line, approximately within the angular ranges of [-10°, 60°] and [90°, 170°]. 
Subsequently, it is expected that the APFM should detect two obstacles. The first detected obstacle 
is a wall, as indicated by the geometric shape observed in the LiDAR sample. Specifically, the obstacle 
displays a smooth, circular-like shape—a signature feature typically associated with walls due to their 
uniform and continuous surfaces. 



The second region suggests the existence of another distinct obstacle, whose angular location 
suggests it is positioned behind the robot. This conclusion is supported by the simulation 
environment visualization in the top-right corner of Figure 8. 

Fig. 9 illustrates the force field structure at a subsequent stage. The repulsive force exhibits two 
prominent peaks near 0° and 150°, indicating multiple obstacles along the forward path. The 
attractive force maintains its canonical V-shaped profile, while the total force shows a minimum 
shifted to approximately −36°. 

 

Figure 9: Repulsive, attractive, and total forces computed at the specified timestamp 𝑡ଶ଼. 

This deviation indicates that the robot must adjust its heading by -36° to safely circumvent the 
obstacles. The resulting total force distribution underscores the dynamic balance between avoiding 
obstacles and moving toward the target, enabling robust and adaptive navigation. However, since 
the robot has already reached its target location, the computed safe direction is disregarded. This 
behavior reflects the algorithm’s design principle of prioritizing target completion over continued 
navigation adjustments based on force computations once the goal has been attained. 

Figure 10 displays the robot's navigation trajectory, as visualized in RViz, providing a spatial 
overview of the path taken during execution. 

The RViz visualization demonstrates the operational efficacy of the implemented navigation 
system by highlighting three key elements of the obstacle avoidance process. Green vectors indicate 
real-time directional corrections where the calculated safe navigation angle deviates from the target 
trajectory due to detected obstacles, reflecting the system’s dynamic response to environmental 
constraints. Red markers represent LiDAR-measured obstacle positions, forming a point cloud that 
quantifies the robot’s perceptual field and correlates with the repulsive potential field generated by 
our APF implementation. The traversed path shows smooth deviations when encountering obstacles, 
confirming the proper application of repulsive forces. This visualization provides empirical 
validation of the algorithm’s ability to maintain forward progress while executing collision-free path 
modifications.  



 

Figure 10: Traversed path visualization in RViz. 

The results affirm the real-world applicability of the Logistic APFM modification in dynamic 
environments. Notably, this modification produced the smoothest path compared to three other 
variants. 

3.2. Computational Efficiency 

The computational performance of Hyperbolic Secant and Gaussian repulsive force models was 
evaluated through systematic benchmarking under controlled virtualized conditions. The host 
system featured an AMD Ryzen 7 3700X desktop processor (8C/16T) with 32GB DDR4-3200 MHz 
RAM and Samsung 970 EVO Plus 500 GB NVMe SSD, running Ubuntu 24.04.1 x64, using gcc 13.3.0. 

Since the C++ standard library does not natively support the sech (𝑥) function, two 
implementations of were used: one based on the equation (10) and another faster one based on the 
equation (11). 

𝑠𝑒𝑐ℎ(𝑥) =  
1

cosh (𝑥)
 

(10) 

𝑠𝑒𝑐ℎ(𝑥) =
2

𝑒௫ + 𝑒ି௫
, 𝑤𝑖𝑡ℎ 𝑒ି௫ =

1
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(11) 

 
Each benchmark run consisted of 1,000 iterations, with 10 million evaluations per iteration to 

ensure consistent timing resolution. The logistic function was calculated with 𝜎 = 1, µ = 0. 
Execution times for each variant are presented in Table 2. 

Table 2 
Computational performance comparison (10଻ evaluations over 10ଷ runs) 

Function Median time (s) StdDev (s) 
Gauss 0.05429 0.00035 

Logistic (equation 10) 0.08429 0.00045 
Logistic (equation 11) 0.06962 0.00028 

 
Results show that the Gaussian calculation is the fastest baseline. The standard Logistic (equation 

10) is about 55% slower than the Gaussian, while the Logistic (equation 11) implementation reduces 



this overhead to approximately 28% slower. These findings highlight the performance trade-offs 
when choosing between accuracy and computational efficiency in logistic function evaluations.  
 

Conclusion 

The Logistic APFM represents a notable advancement in obstacle avoidance algorithms, offering 
distinct benefits in path planning quality. The inherent characteristics of the logistic function—
particularly its smooth gradient transitions and broader, more gradual peaks compared to other 
evaluated modifications—enable more natural and fluid navigation behavior. This results in visibly 
smoother trajectories with fewer abrupt corrections, especially in environments featuring sharp-
edged obstacles or complex geometries. The method’s increased sensitivity to nearby obstacles 
facilitates earlier and more gradual course adjustments, effectively reducing unnecessary path 
oscillations. These improvements stem directly from the mathematical formulation, without reliance 
on additional systems or sensors. While the approach demonstrates limitations in computational 
efficiency, it consistently yields the smoothest path among the tested variants, making it well-suited 
for low-speed robotic platforms. 
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