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Abstract
This  study  presents  the  development  and  implementation  of  a  specialized  information  system 
designed to  support  medical  professionals  through an intelligent  assistant  powered by a  Large 
Language  Model  (LLM),  the  Retrieval-Augmented  Generation  (RAG)[1]  algorithm,  a  vector 
knowledge base, and a Convolutional Neural Network (CNN) based [2] image classification module.
The system functions as a doctor’s assistant within a secure chat interface between patient and  
physician.  A central  component is  the LLM, which generates proposed responses based on the  
results provided by the CNN Application Programming Interface (API) — a computer vision module 
that analyzes medical images submitted by the patient (e.g., skin or eye photos). These classification 
results are combined with data retrieved from a vectorized medical knowledge base [3] compiled 
from  open-source  data,  including  disease  information,  treatment  methodologies,  and  drug 
protocols.
The vector database (implemented using FAISS) enables efficient semantic search over a large body 
of structured knowledge. Through the RAG architecture, the generative model (GPT or Claude)  
retrieves  contextually  relevant  facts  prior  to  response  generation,  significantly  improving  the 
accuracy and reliability of the system’s medical suggestions.
On the client side, the system is built with Next.js, Redux, and Thunk, ensuring a responsive UI and 
efficient API communication. Authentication is handled via AWS Cognito, with S3 and DynamoDB 
used  for  media  and  structured  data  storage.  Event-driven  [4]  communication  is  supported  via 
Lambda  and  S3  events  mechanisms  [5],  while  Supabase  is  employed  to  manage  secure  chats 
between users.
The system has a clearly defined application: enhancing doctor-patient communication, supporting 
clinical  decision-making,  reducing  case  processing  time,  and  improving  the  overall  quality  of 
healthcare delivery.
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1. Introduction

In today's world, digital technologies play a key role in the transformation of the healthcare 
system  [6].  With  the  increasing  workload  of  doctors,  the  growing  volume  of  clinical 
information,  and the need for  prompt decision-making [7],  there is  a  need for  intelligent 
support  systems  that  can  automate  routine  processes  and  help  improve  the  quality  of 
healthcare. One of the promising areas of development of such systems [8] is the use of large 
language  models  (LLM)  in  combination  with  computer  vision  and  semantic  knowledge 
retrieval methods.

1.1. Problem Context

One of the key problems of modern medical practice is the excess of information that needs to  
be analyzed before making a clinical  decision.  Despite  the active development of  medical  
information systems,  doctors often face a lack of time to analyze the patient's  symptoms, 
images, and medical history in detail. In this regard, there is a need for assistive systems that 
can provide relevant hints based on data from other neural networks and knowledge bases.

In  addition  to  the  burden  on  medical  professionals,  the  problem  is  compounded  by 
patients. A significant part of the population [9] tends to postpone seeking medical care when 
symptoms are not perceived as critical. This is typical, in particular, for dermatological and 
ophthalmological pathologies [10], which are often considered minor or not requiring urgent 
intervention.  This  behavioral  model  leads  to  late  diagnosis,  disease  progression,  and 
complications that could have been avoided if detected in a timely manner. In this regard,  
there is a need to create accessible digital tools that can act as a primary filter or a means of  
preliminary assessment of the patient's condition, reducing the barrier between the patient 
and the healthcare system.

1.2. Motivation and Relevance

The relevance of this study lies in the development of a specialized information system - a 
doctor's  assistant  -  that  combines  the  capabilities  of  LLM,  a  vector  database  of  medical 
knowledge,  and  computer  vision  modules  (CNN  API).  This  system  allows  to  generate 
preliminary answers for a doctor within a chat with a patient, using the results of medical  
image classification and information from open medical sources. The implementation of this 
system is  aimed at  supporting the doctor's  clinical  thinking,  reducing cognitive load,  and 
improving the accuracy of decision-making.

The aim of the study is  to improve the efficiency of clinical  decision-making using an 
integrated  physician  assistant  system  built  based  on  large  language  models  and  neural 
networks for image analysis.

The  object  of  research  is  the  processes  of  information  support  for  a  doctor  during 
interaction with a patient in a digital environment.

The subject of the study is methods, models and tools for developing an assistive system 
based on LLM, semantic search and classification of medical images.

To achieve this goal, the following main tasks have been formulated:

 To review current scientific research in the field of medical LLM solutions, computer 
vision and vector knowledge bases.



 To investigate the possibilities of integrating the results of image classification (using 
CNNs)  into  language  models  using  the  Retrieval-Augmented  Generation  (RAG) 
approach.

 To  justify  the  choice  of  system  architecture  and  determine  the  most  effective 
components for building a doctor's assistant.

 To  develop  the  structure  of  the  software  system  of  the  doctor's  assistant  and 
implement its key functional elements.

 To test the developed system in a test environment and evaluate its effectiveness in 
supporting medical decisions.

Thus,  the  objective  of  this  study  includes  an  integrated  approach  to  the  design  and 
implementation  of  an  intelligent  physician  assistant  system  using  modern  advances  in 
artificial intelligence.  The developed system will  help improve the efficiency of healthcare 
professionals, allow for faster response to clinical cases, and provide a high level of patient 
care.

Thus, the results of this study are of great importance for the development of medical 
information technologies, as they demonstrate the possibilities of integrating LLM, computer 
vision, and open-source knowledge into the practice of a doctor.

2. Materials and Methods

The physician assistant system is built on a modular architecture that integrates computer 
vision, large language models (LLMs), and semantic search technologies within a cloud-native 
infrastructure.  The  foundation  of  the  system  is  the  intelligent  combination  of  visual 
classification  modules  and  medical  knowledge  retrieval,  enabling  data-driven  support  for 
clinical decision-making.

2.1. System Architecture

The physician assistant system is built on a modular architecture that integrates computer 
vision, large language models (LLMs), and semantic search technologies within a cloud-native 
infrastructure.  The  foundation  of  the  system  is  the  intelligent  combination  of  visual 
classification  modules  and  medical  knowledge  retrieval,  enabling  data-driven  support  for 
clinical decision-making.

The  primary  data  flow begins  with  the  user  uploading  an  image  (e.g.,  a  skin  or  eye 
condition),  which  is  then  processed  by  a  convolutional  neural  network  (CNN  API)  for 
classification. The resulting diagnostic prediction is forwarded to the language model, which 
also receives  contextual  patient  information and retrieves relevant  evidence from medical 
literature  using  semantic  search.  The  language  model,  enhanced  by  Retrieval-Augmented 
Generation (RAG), synthesizes this information to generate clinically relevant responses.

The cloud infrastructure, hosted on Amazon Web Services (AWS), ensures the scalability,  
reliability, and security of the system. Real-time interaction between doctors and patients is 
supported through a hybrid solution that combines AWS Cognito for secure authentication, 
Supabase [11] for live chat functionality, and AWS Lambda functions for S3 event processing 
(Fig. 1). 



Figure 1: Data Flow and Event Coordination in the Diagnostic Pipeline.

This  architecture  enables  rapid  information  flow,  supports  concurrent  sessions,  and 
maintains compliance with data protection protocols in healthcare applications.

2.2. Tools and Technologies Used

The  development  of  the  system involved  a  range  of  modern  cloud  and  AI  technologies, 
ensuring robustness and flexibility. Key tools and platforms include:



 AWS  Cognito  [12]  –  for  user  authentication  and  authorization,  ensuring  secure 
access to patient data.

 AWS DynamoDB  [13] – for storing structured data such as patient histories and 
classification results.

 AWS S3 [14] – used to store medical images securely and cost-effectively.
 AWS Lambda [15] – to handle serverless processing of asynchronous S3 events and 

classification results.
 Supabase  [11]  –  employed  for  real-time  chat  functionality  between  doctors  and 

patients. It is used in a focused manner solely for messaging, while authentication is  
governed by AWS Cognito-issued tokens.

 Large Language Model (LLM) – used for analyzing user input, providing diagnostic 
suggestions,  and  generating  natural-language  responses  tailored  to  the  clinical 
context.

 Semantic Search and Semantic Indexing Tools  [3] (e.g., FAISS, Weaviate) – for 
semantic  retrieval  of  medical  knowledge  to  supplement  the  LLM’s  generation 
capabilities.

These  components  are  orchestrated  to  ensure  high  performance,  scalability,  and  user 
experience in a demanding clinical environment.

2.3. Data Sources and Preprocessing

The information layer of the assistant system draws from two primary data streams:

1. Medical  Images:  Input  images  (e.g.,  dermatological  or  ophthalmological)  are 
classified using CNN-based [2] computer vision modules. The classification result is a 
probabilistic diagnosis used to enrich the textual analysis phase.

2. Open  Medical  Knowledge  Sources:  The  knowledge  base  includes  treatment 
protocols, clinical guidelines, and scientific articles. These are semantically indexed to 
support RAG-based querying.

To  ensure  the  reliability  and  relevance  of  system  outputs,  all  input  data  undergo 
preprocessing. This includes:

 Normalization of medical terminology for consistent interpretation.
 Removal of irrelevant or noisy data components.
 Semantic  filtering  of  documents  before  indexing  to  ensure  source  quality  and 

alignment with clinical use cases.

These  steps  enhance  the  model’s  ability  to  provide  context-aware,  accurate 
recommendations.

2.4. UI Design and User Flow

The user interface (UI) of the assistant system is designed for clarity, ease of use, and rapid 
data entry and feedback. It enables patients to interact via a simplified chat interface, upload 



images for evaluation, and receive preliminary assessments. Physicians access a more detailed 
dashboard to review patient  queries,  classification results,  and LLM-generated suggestions 
(Fig. 2 - 3). 

Figure 2: Patient chat interface with image upload feature.

Figure 3: Doctor chat interface with proposed LLM response.

Additionally, the system includes a mode that allows users to interact directly with the 
Large Language Model (LLM) for immediate responses and general guidance. However, to 
ensure  responsible  usage  and  avoid  misinterpretation  of  medical  information,  the  system 



prominently advises users that the LLM's feedback is not a substitute for professional medical 
advice and strongly recommends consulting a licensed physician before making any health-
related decisions (Fig. 4-5).

Figure  4: Direct  patient  interaction  interface  with  the  LLM,  including  image  upload 
functionality.

Figure 5: Direct patient interaction interface with the LLM, including LLM response.



2.5. Evaluation Metrics

The  quality  and  performance  of  the  physician  assistant  system  are  assessed  using  a 
combination of quantitative and qualitative metrics. These include:

 Accuracy of responses compared to expert medical recommendations.
 Protocol adherence,  i.e.,  the system’s ability to align its  suggestions with official 

clinical treatment protocols.
 Average response generation time, measuring the system’s efficiency.
 Perceived usefulness, as evaluated by medical professionals using a Likert scale to 

assess the relevance and clarity of the generated answer.

These  metrics  provide  a  holistic  view  of  the  assistant’s  effectiveness  in  real-world 
conditions. The evaluation framework supports iterative improvements by highlighting areas 
of strength and potential enhancement.

3. Implementation Details

The implementation of the intelligent physician assistant system was driven by the need to 
combine  reliability,  scalability,  and  usability  within  a  cloud-native  architecture.  A  hybrid 
design was chosen, integrating state-of-the-art AI technologies with practical development 
frameworks,  making  the  system  suitable  for  deployment  in  both  research  and  clinical 
environments.

The solution is designed around three primary layers: a responsive client-side interface, an 
event-driven  backend  logic  layer,  and  an  integration  layer  that  handles  communication 
between components  and external  services.  All  modules  are loosely coupled,  allowing for 
flexibility in system evolution and maintenance.

3.1. Frontend Implementation

The  client-facing  part  of  the  system  is  developed  using  Next.js,  with  state  management 
handled by Redux and Thunk for asynchronous operations. The patient interface includes:

 A secure login system (via AWS Cognito tokens).
 A chat window for patient-physician interaction.
 A medical image upload component.

Once a patient uploads an image, it is immediately reflected in the chat interface and stored 
securely  in  an  AWS  S3  bucket.  Real-time  updates  (e.g.,  "Image  successfully  uploaded", 
"Diagnosis  in  progress")  are  pushed  to  the  UI  via  WebSocket  connections  or  client-side 
polling.

Screenshots  of  these  UI  components  are  presented  in  Chapter  2  (Section  2.4), 
demonstrating  user  interactions  such  as  photo  submission  and  diagnosis  feedback 
visualization.



3.2. Backend and API Integration

The backend is implemented using AWS Lambda functions and custom API endpoints (via 
Next.js API routes) (Fig. 6) to handle logic such as:

 Receiving image upload events,
 Triggering diagnostic workflows (via Lambda and S3 event),
 Communicating with the CNN classification API,
 Passing classification results to the LLM.

Figure 6: Overall API connectivity.

The CNN API is invoked after image upload. It returns a JSON object containing diagnostic 
probabilities, which is structured as follows [16]:

Figure 7: Structure of the object returned by the CNN API.



This output is then passed to the LLM as part of the prompt, enabling a rich, contextual  
understanding of the case before generating a response.

Backend services are stateless and event-driven [4], ensuring scalability and fault tolerance 
under concurrent use.

3.3. Integration Layer and Cloud Infrastructure

The system architecture is  designed for  horizontal scalability and high availability.  Key 
infrastructure choices include:

 AWS S3: Stores user-submitted images and logs.
 AWS DynamoDB: Maintains structured metadata (e.g., diagnosis history).
 AWS Lambda: Handles asynchronous processing such as S3 events response triggers 

and semantic search lookups.
 Supabase:  Implements lightweight,  real-time chats using PostgreSQL and Realtime 

subscriptions.  It  is  isolated from authentication, which is managed solely via AWS 
Cognito.

To enrich generated answers, a FAISS-based vector knowledge base retrieves semantically 
relevant documents indexed from medical sources such as the Mayo Clinic and RxList. These 
documents are embedded into the prompt using the Retrieval-Augmented Generation (RAG) 
technique before reaching the LLM (Mistral 7B Instruct [4]).

The architecture's efficiency is visualized in Figures 1 and 2 of Chapter 4, which outline 
component interactions and diagnostic data flow.

4. Results and Evaluation

The physician assistant system was thoroughly evaluated in a controlled testing environment 
using  simulated  clinical  scenarios  to  assess  its  performance  across  multiple  critical 
dimensions.  These  included  diagnostic  accuracy,  adherence  to  clinical  practice  guidelines, 
response time, and subjective usefulness as perceived by medical professionals. The evaluation 
adopted a hybrid methodology that combined automated benchmarking tools with in-depth 
qualitative feedback from domain experts.

At the core of  the system lies a  Retrieval-Augmented Generation (RAG) pipeline, 
which significantly contributes to its robust performance (as depicted in Fig. 8). This pipeline 
orchestrates  various  services  and  components  to  deliver  context-aware,  accurate,  and 
explainable responses to clinicians. The pipeline operates through the following key stages:

 Triggering Event via Lambda (Step 1): The pipeline cycle is initiated when an AWS 
Lambda function is triggered — typically after a Convolutional Neural Network (CNN) 
model uploads diagnostic result files (e.g., JSON) into an Amazon S3 bucket.

 Retrieving CNN Results from S3 (Step 2): The backend service, implemented via 
FastAPI,  reads  the  diagnostic  outputs  from  S3.  These  outputs  contain  the  CNN's 
probabilistic assessments based on the uploaded patient images.

 Querying Weaviate Vector Database (Step 3): FastAPI then queries the Weaviate 
vector database with the top prediction result (diagnosis code or label). This database 



contains  embedded medical  knowledge  derived from curated  literature  (e.g.,  Mayo 
Clinic, RxList), indexed for semantic search.

 Fetching Relevant Contextual Documents (Step 4):  Weaviate returns the most 
relevant documents associated with the diagnosis, which will later inform the response 
generation process.

 Generating Natural Language Output via LLM (Steps 5 & 6): The top diagnosis 
and retrieved documents are passed to a fine-tuned large language model (Mistral 7B), 
which also incorporates user-specific metadata (e.g., age, gender, history) fetched from 
DynamoDB.  The  model  generates  a  detailed,  human-readable  diagnostic  summary 
tailored to the user's context.

 Storing Final Output (Step 7): The generated report is saved back into S3 to ensure 
persistent access, auditability, and easy delivery to clients or healthcare providers.

Throughout this process, the Retrieval-Augmented Generation (RAG) architecture plays a 
pivotal role in ensuring that the language model is not solely dependent on static knowledge 
acquired during pretraining. Instead, it is dynamically supported by an external, updatable 
knowledge base comprising clinically validated resources.  This architecture employs dense 
vector embeddings to match user queries – augmented by metadata and preliminary CNN 
results—with semantically similar passages from a curated corpus of  authoritative medical 
documents (e.g., Mayo Clinic, RxList, WHO guidelines). As a result, the model's generation is  
informed  by  the  most  relevant,  timely,  and  accurate  information  available,  leading  to 
significantly improved factual consistency and contextual alignment in its outputs.

By integrating a retrieval layer into the natural language generation pipeline, the system 
mitigates one of the major limitations of standard LLMs—namely, hallucination or fabrication 
of facts in domain-critical scenarios. This is particularly important in healthcare applications, 
where trust, safety, and traceability of information are paramount. The retrieved passages not 
only inform the model’s response but also provide a transparent reasoning trail that can be 
reviewed by clinicians or patients to verify the source and content of medical advice.

The  overall  architecture  is  modular  and  multi-agent  by  design,  combining  several 
specialized components—each optimized for a specific task within the diagnostic and advisory 
pipeline. First, image-based inputs are processed using custom-trained convolutional neural 
networks  (CNNs),  which  provide  high-accuracy  classification  and  probability  scores  for 
dermatological and ophthalmological conditions. These results are structured as JSON objects 
and stored in AWS S3 for subsequent consumption. Next, relevant patient data (such as age,  
symptoms, and pre-existing conditions) is merged with CNN output to construct a detailed 
query embedding. This is then passed to a vector search engine that retrieves contextually 
similar medical references, enabling the large language model (LLM) to generate explanations 
and recommendations grounded in real-world data.

In  summary,  this  seamless  integration  of  deep  learning  for  image  analysis,  semantic 
retrieval  for  contextual  grounding,  and  natural  language  generation  for  explanation  and 
communication represents a significant advancement in intelligent medical systems. It moves 
beyond  conventional  diagnostic  tools  by  creating  a  dynamic  feedback  loop  between 
perception  (CNN),  knowledge  (retrieval),  and  communication  (LLM),  leading  to  more 
informed  decision-making  and  more  confident,  well-informed  users—both  clinicians  and 



patients.  This  approach  lays  a  strong  foundation  for  the  next  generation  of  AI-powered 
healthcare platforms that prioritize transparency, safety, and human-centered design.

Figure 8: RAG pipeline.

4.1. Quantitative Performance Metrics

To assess the effectiveness of the system, four primary metrics were measured:

 Answer Accuracy: The degree to which system-generated diagnoses matched expert 
opinions.



 Protocol Conformity: The alignment of the LLM-generated recommendations with 
standard medical protocols.

 Response Time:  The  duration between the  user  request  and the  generation of  a 
complete AI-supported response.

 Perceived  Usefulness:  Physicians  rated  system  responses  using  a  5-point  Likert 
scale.

LLM + CNN +
vector
knowledge
base

87,20 82.5 2,10 4,30

LLM without
image
processing
module

79,40 71.2 1,80 3,70

LLM + CNN
(without
knowledge
base)

84,50 76 2 4

Model 
configuration

Accuracy 
(%)

Protocol 
Conformity 
(%)

Average response 
time (s)

Likert score 
(1 - 5)

Figure 9: Comparison of the effectiveness of different architectural solutions of the system.

These results highlight the value of a hybrid architecture: using both CNN-based image 
classification and vector-based retrieval  substantially improves both clinical  relevance and 
physician satisfaction.

4.2. Quantitative Performance Metrics

The vector knowledge base, implemented with FAISS, was evaluated using the Precision@3 
metric, focusing on semantic relevance of the top three retrieved documents.

Precision@k = 
|Relevantdocumentsamongtop−k|

k
 (1)

Precision@3 = 91% (on a test set of 10,000 queries). This means that in 91% of cases, at  
least one of the top three retrieved documents was judged clinically relevant and helpful by 
medical professionals.

Example Case

 Input: Rash photo from patient



 CNN Output: Psoriasis (65% confidence)
 Top-3 FAISS Hits:

a. “Psoriasis treatment algorithm – EADV 2023” (True)
b. “Psoriasis and immune disorders” (True)
c. “Topical medications for eczema” (False)

 LLM Response:
a. “Based on the provided image and personal medical information, the most 

likely  diagnosis  is  Psoriasis.  Recommended  treatments  include  topical 
corticosteroids and phototherapy…”

This illustrates the system’s capacity to deliver grounded, specific, and useful outputs.

4.3. Quantitative Performance Metrics

The system was evaluated by 10 practicing physicians (4 dermatologists, 3 ophthalmologists, 3 
general practitioners) over a two-week test period with 120+ simulated clinical cases.

Key Outcomes:

 Average case handling time was reduced by 26% compared to manual diagnosis.
 89% of system-generated responses were rated as "acceptable for clinical use."
 Average  expert  rating was  4.3  /  5,  indicating  strong  alignment  with  clinical 

expectations.

A two-stage validation method was used:

 Clinical Relevance Scoring (1–5): Based on how closely the system’s output aligned 
with expected medical judgment.

 Binary Acceptance (Yes/No): Whether the output could be trusted in a real clinical 
setting.

This dual approach helped confirm both the utility and reliability of the system.

4.4. Data Preprocessing Impact

Semantic  filtering  and preprocessing  of  input  data  (e.g.,  terminology normalization,  noise 
reduction) led to a 42% reduction in irrelevant or low-quality document retrieval compared 
to a baseline configuration without preprocessing (Fig. 10).

Example – Query Cleaning Before and After:

 Query: Skin rash → CNN output: eczema (0.58)
 Before Cleaning:

a. “Introduction to dermatological diseases.”
 After Cleaning:

a. “Eczema  is  a  chronic  inflammatory  skin  condition  characterized  by 
pruritus, erythema, and xerosis.”



Figure 10: Semantic Preprocessing Pipeline algorithm.

This  significantly  improved  the  contextual  quality  of  prompts  submitted  to  the  LLM, 
enhancing the overall diagnostic value of its outputs.

4.5. System Responsiveness and Stability

The platform was tested under simulated multi-user load to verify its responsiveness and fault 
tolerance. Performance metrics under peak load included:

 Average concurrent sessions: 50+з
 Uptime: 99.98% during testing
 Response deviation: <0.4s in 95% of requests

The serverless architecture, combined with asynchronous API orchestration, allowed the 
system to scale gracefully without service degradation.

5. Research results and their discussion

The development and evaluation of the intelligent physician assistant system revealed both 
significant  strengths  and  areas  requiring  further  improvement.  The  hybrid  architecture—



combining CNN-based image classification, LLM-driven response generation, and semantic 
retrieval via FAISS—demonstrated considerable effectiveness in supporting clinical decision-
making. However, as with any complex AI-driven system, the deployment of such technology 
in a real-world medical setting introduces both opportunities and challenges.

5.1. System Strengths

One of the most notable outcomes of the study was the high diagnostic accuracy of 87.2%,  
achieved  through  the  integration  of  convolutional  neural  networks  (CNNs)  for  image 
classification and Retrieval-Augmented Generation (RAG)-enhanced large language modeling. 
This result validates the hypothesis that a hybrid AI pipeline—leveraging both visual data and 
textual knowledge retrieval—can significantly outperform standalone models.  Compared to 
baselines such as LLM-only responses or CNNs without access to external knowledge, the 
integrated system consistently delivered more reliable and contextually informed diagnostic 
suggestions.

This accuracy gain was particularly pronounced in cases  involving visually ambiguous 
symptoms (e.g., overlapping features of eczema and psoriasis), where the CNN model alone 
offered limited diagnostic separation. In these cases, the system’s ability to fetch and integrate 
evidence from semantically indexed literature (via FAISS [3]) allowed the LLM to refine or 
qualify  its  diagnosis.  Such  fine-grained  reasoning  was  especially  valued  by  participating 
clinicians, who noted that the system was able to highlight differential diagnoses and cite 
relevant guidelines or research articles to support its claims.

Another critical benefit was a 26% reduction in average case handling time, which directly 
contributes to improved clinical efficiency. In busy outpatient settings or during telemedicine 
consultations, this reduction could translate into significantly increased patient throughput 
without compromising diagnostic quality. By automating the time-intensive steps of literature 
consultation and differential analysis, the system effectively reallocates clinician attention to 
higher-level tasks such as treatment planning and patient communication.

From a systems engineering standpoint, the adoption of AWS Lambda and other serverless 
infrastructure  components  provided  a  robust  foundation  for  real-time  diagnostics.  These 
services enabled the system to scale elastically with demand, maintaining low latency even 
during multi-user load testing. During simulated stress tests with over 50 concurrent sessions,  
system uptime remained at 99.98%, and median response times did not exceed 2 seconds—
demonstrating that the architecture can support realistic clinical traffic volumes. This makes 
the solution well-suited for deployment in resource-constrained or distributed environments, 
such as rural telehealth clinics, mobile diagnostic units, or emergency triage platforms.

The inclusion of semantic preprocessing and medical terminology normalization [1], [3] 
further strengthened the performance of the vector knowledge base. Without preprocessing, 
the model occasionally retrieved generalist or irrelevant sources. With semantic filtering in 
place,  the  retrieved  documents  became  more  diagnostically  precise  and  context-relevant, 
improving the grounding and clarity of generated responses.

Importantly, the system received strong subjective validation from clinical experts. Across 
over 120 test cases, physicians rated the system’s outputs highly on a 5-point Likert scale for  
clarity,  relevance,  and  clinical  usefulness.  In  89%  of  cases,  the  generated  responses  were 
considered suitable for real-world application, either as-is  or with minor revision. Experts 
particularly appreciated the explainability  of  CNN outputs,  including labeled classification 



scores,  and  the  fact  that  the  LLM-generated  answers  explicitly  referenced  supporting 
documents.  This  traceability  of  reasoning  is  essential  for  clinician  trust  in  AI-assisted 
decision-making.

Taken together, these results underscore the promise of hybrid AI architectures in real-
world medical settings. The system not only delivers accurate and efficient diagnoses but also  
adheres  to  clinical  expectations  around  transparency,  documentation,  and  patient  safety, 
making it a strong candidate for clinical integration and future expansion.

5.2. Limitations and Challenges

Despite these strengths, several limitations emerged:

 CNN  Model  Generalizability:  The  CNN  classifier  was  trained  on  a  specific  set  of 
dermatological  and  ophthalmological  images.  Its  performance  may  degrade  when 
confronted with rare pathologies or poor-quality input images (e.g.,  low resolution, 
poor lighting). A broader, more diverse training set will be required to ensure robust 
performance in real-world use.

 LLM Sensitivity to Prompt Structure: The accuracy and clarity of LLM responses were 
sometimes  sensitive  to  how  the  input  prompt  was  structured—especially  when 
multiple  data  sources  (image  results,  patient  metadata,  retrieved  documents)  were 
combined. A more refined prompt engineering strategy or multi-turn querying could 
enhance consistency.

 Interpretability:  Although  interpretability  tools  like  probability  scores  and  source 
document citations are used,  clinicians still  face a "black box" aspect in the LLM’s 
reasoning process. Integrating explainability methods such as SHAP [17] or LIME [18] 
for both the CNN and LLM components could improve trust and transparency.

 Real-Time Constraints: While average response times were acceptable (≈2.1s), spikes 
in latency occasionally occurred when external services (e.g.з, CNN API or semantic 
search) зexperienced delays. Advanced queuing or failover strategies may be needed in 
production environments.

 Privacy  and  Compliance:  Handling  medical  data  in  the  cloud  (even  with  secured 
services like AWS Cognito and S3) raises regulatory concerns. Future deployments 
must ensure full compliance with HIPAA, GDPR, and local data protection laws.

5.3. Comparison with Existing Systems

Compared to other RAG-based medical assistants or LLM-only chatbot solutions, this system 
offers a more comprehensive and structured approach:

 Unlike generic chatbots, it combines vision, knowledge retrieval, and reasoning in 
a clinically grounded workflow.

 Unlike  standalone  diagnostic  tools,  it  provides  contextual  guidance,  treatment 
suggestions, and literature support—all tailored to the patient's case.

 In  contrast  to  large  hospital-integrated  systems,  this  solution  is  lightweight, 
modular, and cloud-native, making it deployable even in smaller clinical settings.



However,  systems  like  MedPaLM,  Almanac,  or  MedRAG offer  more  sophisticated 
training  data  and  deeper  integration  into  medical  records  systems.  Closing  this  gap  will 
require better fine-tuning of models on real clinical corpora and broader integration into EHR 
systems.

5.4. Future Improvements

To address current limitations and enhance system capabilities, the following improvements 
are proposed:

 Fine-tune the LLM using localized or institution-specific datasets to better reflect 
regional clinical practice and terminology.

 Expand CNN training data with open medical datasets (e.g., Derm7pt, HAM10000, 
EyePACS) and augment it with synthetic images where needed.

 Implement  multimodal  inputs,  allowing  the  system  to  process  video,  voice 
descriptions, or sequential image uploads for progressive conditions.

 Introduce confidence-based response filtering,  where  the  system withholds  or 
flags uncertain results for human review.

 Build user-facing explainability tools, allowing physicians to visualize which parts 
of the image or text influenced the diagnosis most.

5.5. Broader Implications

This work contributes to the growing field of hybrid clinical decision support systems, where  
multiple AI modalities are integrated into a seamless workflow. By aligning image analysis, 
semantic search, and natural language understanding, the system helps reduce the cognitive 
burden on doctors while maintaining transparency and traceability.

The approach demonstrated here could be extended to other medical specialties—such as 
radiology, cardiology, or pathology—by changing the input modality and retraining the image 
model accordingly. In the long term, intelligent assistants of this kind could play a critical role  
in triage, patient self-assessment, and telehealth augmentation.

6. Conclusion and Future Work

This  study  presents  the  design,  implementation,  and  evaluation  of  a  hybrid  intelligent 
physician assistant system that integrates large language models (LLMs), convolutional neural 
networks (CNNs), and semantic vector search to support real-time clinical decision-making. 
The system was developed to address a growing need in modern healthcare: to reduce the 
cognitive burden on physicians, enhance diagnostic accuracy, and streamline workflows in 
increasingly data-intensive environments. By automating the preliminary analysis of patient-
submitted cases—such as textual symptom descriptions and medical imagery—the assistant 
provides  a  foundation  for  contextual,  evidence-based  medical  reasoning  in  both  general 
practice and specialty domains like dermatology and ophthalmology.

The architecture’s core innovation lies in its multi-modal,  retrieval-augmented decision 
engine, which enables the language model not only to interpret visual data through CNN 
outputs but  also to enhance its  responses by retrieving supporting documentation from a 



semantically indexed medical  knowledge base.  This RAG-driven framework empowers the 
model to go beyond surface-level answers and generate clinically grounded suggestions that 
mimic the analytical depth of a well-informed practitioner. As demonstrated in testing, the 
system achieved a diagnostic accuracy of 87.2%, maintained protocol conformity at 82.5%, and 
received an average Likert score of 4.3/5 from evaluating physicians—clear indicators of its 
technical and clinical validity.

Beyond  raw  performance,  the  system  exhibits  substantial  advantages  in  terms  of 
infrastructure and deployment practicality. Built on a serverless cloud architecture, leveraging 
AWS Lambda for task execution, Supabase for real-time messaging, and S3/DynamoDB for 
data storage, the platform ensures low-latency interactions, high uptime, and cost-efficient 
scalability.  These  characteristics  are  essential  for  systems  intended  for  live  medical  use, 
particularly in environments where resources,  bandwidth, or dedicated IT support may be 
limited.  During  multi-user  load  simulations,  the  system  sustained  over  50  concurrent 
diagnostic  sessions  with  minimal  performance  degradation—an  important  benchmark  for 
digital health technologies aiming to support distributed care delivery.

The  modularity  of  the  platform  is  a  key  enabler  of  its  long-term  adaptability.  Each 
component—image  classification,  semantic  retrieval,  LLM-based  synthesis,  and  the  user 
interface—is  encapsulated  and  versionable,  allowing  for  independent  updates  and  model 
upgrades  without  disrupting  the  broader  system.  This  design  choice  makes  the  assistant 
particularly  well-suited  for  progressive  integration  with  electronic  health  record  (EHR) 
systems,  other  neural  diagnostic  tools,  and future multimodal  inputs,  such as  voice-based 
symptoms or time-series biometric data. In this way, the system lays the technological and 
architectural groundwork for a scalable, extensible, and clinically responsible AI ecosystem.

Finally, the approach showcased in this research contributes to a broader paradigm shift in 
healthcare  AI—from  passive  tools  that  merely  store  and  display  information,  to  active 
cognitive  assistants  that  participate  in  clinical  reasoning.  The  fusion  of  LLMs,  image 
classifiers, and knowledge graphs enables a form of augmented intelligence, where human 
expertise is enhanced rather than replaced. As healthcare systems worldwide struggle with 
clinician burnout, rising patient loads, and diagnostic complexity, tools like the one developed 
here  can  help  reallocate  clinician effort  toward higher-order  decision-making  and patient 
engagement—without sacrificing accuracy, traceability, or control.

6.1. Future Work

Building on the current system, several avenues for improvement and expansion are planned:

1. Model Fine-Tuning and Localization. Future versions of the LLM will be fine-tuned on 
region-specific  clinical  data  to  enhance  cultural  and  linguistic  relevance.  This  will 
ensure better alignment with local treatment standards and patient communication 
styles.

2. Support for Multimodal Input. In addition to static images, the system will be extended 
to handle other data types such as audio descriptions, clinical notes, video recordings,  
and  biometric  signals.  This  will  broaden  its  diagnostic  capabilities  and  patient 
engagement.

3. Explainability  and  Trust.  Advanced  interpretability  modules  (e.g.,  SHAP  (SHapley 
Additive  exPlanations),  LIME  (Local  Interpretable  Model-Agnostic  Explanations), 



attention visualizations) will  be integrated to make the decision-making process of 
both CNN and LLM components more transparent to physicians.

4. Expanded Disease Coverage. The CNN classifier will be retrained with larger, more 
diverse datasets, extending support to rarer pathologies and comorbid conditions. This 
includes incorporating synthetic image generation to augment scarce data.

5. Integration  with  EHR Systems.  Planned  integration  with  electronic  health  records 
(EHRs) will enable personalized medicine by leveraging longitudinal patient data for 
deeper context-aware reasoning.

6. Clinical  Trials  and  Deployment  Pilots.  A  clinical  validation  phase  is  proposed, 
involving live testing in partnership with medical institutions to evaluate the system’s 
real-world usability, compliance, and effectiveness in active care settings.

6.2. Final Remarks

As artificial intelligence continues to evolve, its role in healthcare will increasingly shift from 
novelty to necessity. The hybrid assistant system presented in this work demonstrates the 
potential of AI to meaningfully augment—not replace—the judgment of skilled clinicians. By 
bridging  image  classification,  knowledge  retrieval,  and  natural  language  interaction  in  a 
coherent framework, this system exemplifies how next-generation decision support tools can 
be realized through collaborative, modular, and ethical AI development.

Declaration of Generative AI

During the preparation of this work, the author used ChatGPT-4 in order to:

 Check grammar and spelling
 Rephrase and expand technical content
 Assist in structuring sections such as methodology, evaluation, and conclusions

The author did not use any generative AI tools to create images or figures. All diagrams 
(including Figures such as the system architecture) were created manually by the author.

After using these tools, the author reviewed and edited all content as needed and takes full  
responsibility for the publication’s content.
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