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Abstract
This study addresses the importance of proper parameter configuration in search models and its impact 
on  processes  and  retrieval  results,  using  the  content-based  image  retrieval  model  called  the  
Multidimensional Cube as a case study. This model proposes a partitioning of the feature space to reduce 
the search space, using number of dimensions and number of segments on dimension as main parameters.  
The work analyzes these parameters and presents the experimental approach for configuring them. It also 
includes a series of experiments with the evaluation of  model construction time and retrieval  results 
under different configurations, comparing them with the outcomes obtained through brute-force search 
across the entire storage. The main conclusion is that incorrect parametric configuration, even of a highly 
efficient search model, can negate its advantages. The examined configuration enables a deeper analysis of 
the model, allowing for the identification of relationships and dependencies when applied to a specific 
task. It also helps to uncover subtle aspects of parameter usage that may not be explicitly documented by 
the model's creator or provider.
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1. Introduction

A  data  model  is  a  collection  of  conceptual  tools  for  describing  data,  data  relationships,  data 
semantics,  and  consistency  constraints  [1].  In  a  broader  sense,  a  data  model  is  a  conceptual 
abstraction over data structures and the methods that operate on the data within those structures. 
When it  comes  to  content-based  image  retrieval  (CBIR),  the  data  model  refers  to  an  abstract  
component of the search system that defines how it:  interprets a search query;  manages data:  
contains  methods  and  algorithms for  processing  data,  organizing  and searching it  in  the  data 
structures of feature database; and ranks results [2]. And a search system is one that provides a  
user interface for inputting queries and obtaining results, along with additional functionality such 
as filtering, pagination, and other interactive features.

That is, the key component in the image search process is precisely the search model, although 
it remains invisible to the end user. This model can be general-purpose, such as one that used by 
the Google search system, or specialized for use in advertising, scientific research, military affairs, 
medicine, and other fields. This means that the efficiency of the search and the satisfaction of the  
end user depend directly on the effectiveness of  the model.  Moreover,  the effectiveness of  the 
model depends on the correct configuration of its parameters [3].
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Parametric configuration of models is frequently encountered in real-world applications. For 
instance, in video surveillance and emergency systems, it is essential to correctly set parameters 
such as motion detector sensitivity, detection zones, minimum event duration, and system response 
time. Incorrect parameter values may result in missed critical incidents or false alarms that trigger  
emergency services unnecessarily. This type of configuration is also common in a wide range of 
services,  including recommendation systems, antivirus software,  voice recognition systems, and 
credit scoring in the banking sector [4, 5].

Similarly, in the field of CBIR, model parameters can significantly affect either search speed or 
result  quality.  This  may  have  negative  consequences  in  critical  domains  such  as  medical 
diagnostics or emergency recognition systems. Therefore, an important research problem arises – 
studying  the  parameters  of  CBIR  systems,  their  configurability,  and  their  impact  on  search 
outcomes [6]. 

The objective of this study is to explore this problem using the Multidimensional Cube model as  
a case study and experimental approach of the parametric configuration. To address this problem, 
the following tasks must be accomplished: define a parameter selecting approach, experimentally 
evaluate its effectiveness, and draw conclusions specific to the given model.

2. Related Works

CBIR models use calculated image descriptors in form of the vector of fractional numbers for the 
images from the main storage. The simplest CBIR search model is the brute-force model. It does not 
require additional configuration parameters, as it does not partition the feature space but instead 
exhaustively compares all descriptors upon receiving a query. While this approach ensures high 
retrieval accuracy, it is inefficient in terms of search speed. However, even this model, like any  
other, relies on a similarity metric for descriptor comparison, such as Euclidean distance, Squared 
Euclidean distance, Manhattan distance, Jaccard index, or Hamming distance [7].

Multidimensional  tree-based  models,  such  as  KD-Trees,  have  several  tunable  parameters, 
including the number of dimensions, splitting criterion, tree depth, the number of points per leaf 
node, stopping criteria, and whether or not backtracking to alternative branches is enabled. Such 
trees  may  also  be  self-balancing  –  dynamically  rebuilding  as  new  data  is  added,  or  grow 
incrementally without rebalancing [8].

Graph-based models, such as Hierarchical Navigable Small World, are defined by parameters 
such as the maximum number of connections per node, search breadth (during both indexing and 
querying),  and dimensionality.  Wider  search leads  to  more accurate  results,  but  also  increases 
search time [9].

In hash-based models, such as Locality-Sensitive Hashing, key parameters include the number 
of hash buckets and the number of hash functions per bucket. A higher number of buckets and 
functions typically improves accuracy, but also increases insertion and query time [10].

Clustering-based models, such as those using k-means, are primarily influenced by the number  
of clusters, the number of training rounds, and the stopping condition for element assignment.  
More clusters and iterations generally lead to higher clustering accuracy and lower density per 
cluster, but increase training time and the number of clusters to examine during retrieval [11].

Models  that  employ  Product  Quantization,  such  as  the  Inverted  Multi-Index,  require 
specification of the number of subspaces and the number of clusters within each subspace. These 
parameters affect memory consumption, clustering precision, search speed, and overall retrieval 
quality [12-14].

This analysis demonstrates that each CBIR model has its own parameter set, and the impact of 
these parameters on model behavior and final search performance is often underdocumented. As a 
result, suboptimal configuration may lead to inefficient use of otherwise effective retrieval models.



3. Case study

The Multidimensional Cube (MDC) is a high-performance and efficient CBIR model. It employs a 
reduction and partitioning approach to  the  multidimensional  feature  space  by dividing it  into 
clusters,  which  serve  as  cells  within  a  bounded  multidimensional  space.  Like  other  models 
discussed in this work,  MDC has its  own set of  parameters,  the influence of  which on search 
performance is the subject of investigation in this study [2].

The process of constructing the MDC is fairly standard for CBIR models and is schematically 
illustrated in Figure 1. Features are extracted from images, based on which a descriptor is formed.  
Important:  MDC  uses  already  prepared  and  provided  descriptions.  It  can  use  a  variety  of 
descriptors, but they must be homogeneous, contain the vector of fractional numbers and can be 
aggregated. Based on the total number of images in the source storage and the requirements, the 
number of MDC cells is determined, based on which the parameters for the number of dimensions 
and the number of segments are selected. Some of the processed descriptors are inserted into the 
MDC, its content is analyzed and, based on this, the cell boundaries are optimized. The MDC is 
cleared, the cell boundaries are rebuilt, and the MDC is filled with all descriptors. The structure is 
ready to accept search requests [2]. 

The search process, however, is unique and leverages the advantages of the MDC structure. It is  
also illustrated schematically  in Figure 1.  The same preprocessing steps are  performed for  the 
uploaded image as for images from the storage. Based on the processed descriptor, the cell in which 
similar (or the same) images are located is determined. For descriptors, their difference from the 
searched one is calculated. If necessary, the same search is performed for descriptors from cells 
adjacent to the current one. Search results are ordered based on similarity measures. Images are  
retrieved from the main storage using the found IDs and returned to the user [2].

Figure 1: The main flows of the MDC model: construction process (left) and search process (right)

As can be seen from the diagrams of the main processes, the parameters defined during the 
model preparation stage directly influence both the construction of the MDC and the execution of 
the search within it.

3.1. Main Parameters

The  main  parameters  of  the  MDC  model  are  the  number  of  MDC  cells  (c),  the  number  of 
dimensions (d),  and the number of  segments  (s).  The number of  cells  directly  depends on the 
expected number (en) of images to be retrieved in a single search iteration (search page) from the 



total number of images in the repository (D), and also on the specific task for which the MDC is 
applied. These parameters are related as follows:

c=sd , sp=D
c
,en≈ sp ,

(1)

where  c –  is  the  number  of  cells,  s –  is  the  number  of  segments,  d –  is  the  number  of 
dimensions, sp – is the real search page size, D – is the total number of images in the storage, en – 
is the expected search page size.

Thus, the parameters s and d are selected in such a way that the number of image descriptors 
within a single MDC cell  sp is close to the number  en that needs to be displayed on one search 
results page.

Another important parameter is applied to the model's storage system. Currently, the MDC can 
be stored in a relational database (RDB). In this configuration, the segment boundaries for each  
dimension are stored in separate tables, the descriptors are stored in another table, and the index  
vectors – corresponding to the segment numbers for each dimension – are stored in yet another 
table.  Therefore,  selecting the most efficient database management system (DBMS) is  a  critical 
component of the configuration [2].

3.2. Applying parameters

The main parameters are applied to the model construction process. Descriptors are often of high 
dimensionality and commonly have a length that is a power of two. During parameter selection, 
dimensionality  reduction  is  performed  –  typically  through  pairwise  aggregation  of  adjacent 
elements – until the target dimensionality d is achieved. Descriptor values are normalized within a 
specific range, and this range may change after aggregation. Next, the resulting range is divided 
into  s segments,  each defined by clear boundaries.  Each descriptor value is  then assigned to a  
segment with a specific index, thereby forming an index vector that determines the descriptor’s 
position in the multidimensional space.

An example of descriptor processing for parameters d = 4 and s = 4 is shown in Figure 2.

Figure  2: Processing of  the descriptor  vector  to achieve specific count of  the dimensions and 
segments and produce an index vector

An example of placing a processed descriptor into the multidimensional feature space and into 
the MDC is presented in Figure 3, for the configuration with parameters: d = 3, s = 3, and index 
vector [1, 3, 3].



Figure 3: Image descriptor in the bounded multidimensional space (left) and in the MDC cell with 
index [1, 3, 3]. Example of the search with wave around target cell.

The  initial  segment  boundaries  are  defined  uniformly  within  the  valid  value  range  after 
dimensionality  reduction.  However,  an  optimization  step  follows,  aiming  to  ensure  that  each 
segment in every dimension contains an equal number of values [2]. 

Approximately 20% of image descriptors from the storage are inserted into the MDC at this 
stage. The number of values per segment under uniform partitioning is calculated, and the segment 
boundaries are then shifted slightly, either increased or decreased, to achieve the desired number of 
values in each segment. This process is illustrated in more detail in Figure 4.

Figure 4: Cell boundaries optimization process

As a result, descriptors are efficiently distributed across the MDC cells, and the search process 
can  begin.  The  descriptor  vector  of  the  input  image  is  processed  in  the  same way as  during 
construction to determine the cell to which it would belong if it were added to the model. This 



query vector is then compared against all vectors located in the identified cell, using one of the  
available similarity metrics: Euclidean, Manhattan, or cosine distance. [2]

If fewer descriptors are found in the cell  than requested by the user  or the specific needed 
images were not found, a search wave is triggered. This involves generating indices of neighboring 
cells by incrementing or decrementing the vector values by an amount corresponding to the wave 
number: 1,  2,  3,  etc.  The search is then repeated in these neighboring cells.  Once the required 
number of descriptors is found, they are sorted by similarity and returned to the user. An example  
of the search wave mechanism is illustrated in Figure 3 (right). 

3.3. Parametric Configuration

The  essence  of  the  experimental  parametric  configuration  approach  lies  in  selecting  model 
parameters  for  given  input  conditions  and  evaluating  the  model’s  effectiveness  under  those 
parameters to identify patterns or correlations. In the case of the MDC model, the key parameters  
and  their  interrelationships  are  clearly  defined,  as  are  the  optimization  and  search  processes.  
However,  the influence of  these parameters  on the efficiency of  these processes  remains non-
obvious and requires experimental investigation.

The parametric configuration process can be visualized in the form of a table: the first columns 
contain the parameter values, the third shows the total number of cells, and the fourth displays the  
number of descriptors per cell. As mentioned earlier, d can only take values that are powers of two.  
An example of parameter selection for an MDC model intended to store 100 000 image descriptors, 
with a defined search page size of 10, is presented in Table 1. Only a fragment of the parameter 
selection table is presented. 

Table 1
Fragment of the MDC parameter selection, c = 100 000, en = 10

Number of the 
dimensions d

Number of the 
segments s

Number of the cells 
c

Estimated number of 
descriptors per cell sp

2 100 10 000 10

4 10 10 000 10

4 3 6 561 15

The  table  summarizes  the  best-performing  configurations  across  varying  dimensionalities. 
Further  experiments  may  help  establish  whether  increasing  the  number  of  dimensions  or  the 
number of segments per dimension leads to greater efficiency. This conclusion is based on the 
metric values obtained during the experiments. The specific evaluation metrics will be discussed in 
detail in the following sections.

The identification of the most suitable DBMS is also carried out experimentally, as numerous 
factors may influence the results  – including the operating system, software versions,  and the  
performance and architecture of the underlying hardware. In this context, candidate approaches 
are  compared based on the time required for  model  construction and search execution.  These 
aspects will also be addressed in more detail later.

4. Experiments and Discussions

To validate the impact of the discussed parametric configuration for the search model (MDC), this  
section presents the results of experiments on content-based image retrieval using descriptors. It  



includes relevant performance metrics, comparative analysis with existing search model, as well as 
conclusions and recommendations for the configuration of the model.

4.1. Software implementation and workstation

To conduct the experiments, the specialized application was developed. It was implemented in Java 
17 using the Spring Framework 6. It allows to upload descriptors to the application from a csv file.  
The experiment results can be downloaded as an Excel file.  The JDBC interface is used as the 
communication interface between the server and the database.

The  workstation  for  the  experiments  is  based  on  CPU  Intel  i5  8250U,  RAM  16Gb  DDR4 
2133MHz, SSD 512 Gb, GPU NVidia MX-150.

The Manhattan distance is used as a similarity measure for descriptors.

4.2. Initial Data

The COCO2017 dataset  [15],  which consists  of  123  403  images,  was  used for  the  experiment.  
Although this  dataset  is  relatively  small,  it  is  quite  sufficient  to  show all  the  implementation 
features and key estimates of the effectiveness of the proposed image search model. The images of 
the  COCO2017  dataset  are  very  diverse,  which  is  one  of  the  important  conditions  for  the 
independence of the experiment. The dataset was pre-processed by an independent service: image 
descriptors of the COCO2017 dataset were built and provided in the form of a csv file. They were 
imported into the storage of the developed search application.

All descriptors had a length of 32 values. Each value contained the frequency in 4 byte floating 
point format. Thus, the size of each descriptor was 128 bytes. For some images in the dataset,  
descriptors of shorter length were obtained. They were excluded from the experiments. There were 
122 628 descriptors left in the dataset (with a length of 32).

4.3. Metrics

Since  the  main goal  of  the  work is  to  evaluate  the impact  of  parameter  configuration on the 
performance of the search model, so the main metrics are labor intensity, search quality and search 
time. All other metrics are optional.

Labor Intensity (li) – is the number of descriptors that were examined during the search.
Search Quality (q) – is mainly determined by the order in which the images appear in the final  

sorted list L. Let us say in storage p1 images of the same type (we consider the original, its copies 
and transformations). max is the number of the last such image in a list L. Let us find the quantity 
p2 images  in  the  storage  that  do  not  belong to  the  group of  images  of  the  same type  under  
consideration, but whose serial numbers are in the final selection L are less than max. The presence 
of images with such numbers means that the images we are looking for are not a continuous list.  
Between them, there are atypical images, which is a sign of a decrease in search quality. Although, 
first of all, this shows the shortcomings of the selected descriptor type. This is analogous to the 
presence of  impurities  in the material.  In such a  situation,  let’s  evaluate the search quality as 
follows:

q=1−
( p 2)

( p1+ p 2)
,

(2)

where q – the quality of the search, p1 – the number of the images of the same type, p2 – the 
number of the images that do not belong to the group of images of the same type.

Search Time (t) – this indicator is more interesting for the final estimate of the effectiveness of 
the  software  and  hardware  implementation  in  the  complex.  When  it  is  difficult  to  evaluate 
individual solutions and hardware implementations. 

Count of Waves (cw) to find the last image from the group images of the same type in MDC. 



Percent (p) of the viewed descriptors from all descriptors in the storage.
Additional  metrics  are  important  for  estimation  intermediate  results,  the  effectiveness  of 

internal processes, and also for testing. 

4.4. Experiments plan

The experiment consists of four stages:

1. Selection of parameters and configuration of the model with varying settings.
2. Optimization of the model under different parameter configurations and comparison of the 

results.
3. Evaluation of the efficiency of various DBMSs for storing the MDC model, focusing on both 

model construction and search execution.
4. Using the best-performing DBMS from stage 3,  executing searches within MDC models 

configured with different  parameters  and comparing the  results.  A baseline  model  that 
performs a brute-force search over the entire dataset is also included in the comparison. To 
determine whether the results produced by a poorly configured model can be inferior to 
those  of  the  most  primitive  model.  This  baseline  was  implemented  using  the  same 
technologies as the MDC model.

For the stage 4: 100 images are randomly selected from the storage for search experiments. For  
each of them, 2 transformations are created (rotated by 180 degrees, scaled down by 2 times), then 
their descriptors are built and loaded into the storage. Two modes of the search are performed:  
search  until  find  only  original  file  (case  for  examining  only  target  cell)  and  search  until  find 
original  and  modified images  (case  for  applying  wave-search).  It  is  not  classical  top-N search 
because we want to evaluate metrics for the case when the user want to find all necessary images 
instead  of  first  N  images.  All  metrics  are  estimated  and  the  results  are  presented  in  average  
(arithmetic mean), minimum and maximum values.

4.5. Experiments plan

A total of 122 628 descriptors need to be placed in the model. The search page size is set to 10.  
Parameter selection for d and s is performed according to the rules described earlier, following the 
example shown in Table 1. A fragment of the parameter selection results is presented in Table 2. 

Table 2
Fragment of the MDC parameter selection, c = 122 628, en = 10

Number of the 
dimensions d

Number of the 
segments s

Number of the cells 
c

Estimated number of 
descriptors per cell sp

2 100 10 000 12.26

2 95 9 025 13.58

2 90 8 100 15.13

4 10 10 000 12.2

4 11 14 641 8.37

4 12 20 736 5.91

8 3 6 561 18.69



The full set of configurations is not shown, as many combinations yield only minor differences 
in results. Configurations with d = 2 are not considered suitable, as the impact of dimensionality 
reduction  may  be  too  significant  in  this  case.  Moreover,  the  concept  of  the  cube’s 
multidimensionality is effectively lost under such a low-dimensional setting. Configurations with 
the same value of d are also not selected for the experiment, in order to make the comparison more 
illustrative and the experiment more demonstrative.

The combination of the parameters d = 4, s = 10 and d = 8, s = 3 were selected. Hereafter, the 
configuration  with  parameters  d =  4,  s =  10  will  be  referred  to  as  Configuration  1  and  the 
configuration with parameters d = 8, s = 3 will be referred to as Configuration 2. Parameters d = 4, 
s = 10 are better align with the expected result; however, in addition to the initial evaluation, there 
are also secondary factors that will be examined during the model optimization and search stages 
(original with modifications search case). It is possible that a less favorable parameter combination 
at this stage may demonstrate more promising results in later evaluations.

For  these  selected  parameters  the  effectiveness  of  the  DBMSs  was  evaluated:  for  the 
Configuration 1 it is presented in Table 3,  for the Configuration 2 in Table 4. For comparative 
analysis of the DBMSs, the latest versions of the each of at the time of the experiments were used:  
PostgreSQL 15.2, MySQL 8.0.31, MS SQL Server 2022 16.0.4065, Oracle DB XE 21. Build time means  
spent time for constructing and optimizing of the MDC. Search time is time spent for one stage of  
the experiments, that will be described later.

Table 3
Execution time for operations, Configuration 1

DBMS name Build time (min) Search time (min)

MySQL 84.3 1.0

PostgreSQL 23.3 0.5

SQL Server 29.5 1.89

Oracle DB 30.3 0.6

Table 4
Execution time for operations, Configuration 2

DBMS name Build time (min) Search time (min)

MySQL 88.0 10.9

PostgreSQL 9.7 3.7

SQL Server 20.8 9.2

Oracle DB 31.4 20.1

The results were measured after a cold start to exclude the influence of caches formed inside the 
DBMS, and without any additional settings of the MDC. As a result, it was found that the optimal  
DBMS for further experiments was PostgreSQL 15.2 since it demonstrated the best results for filling 
and search for both MDC configurations. 



4.6. Optimizing MDC filling

Initially, the feature dimensions are divided into s segments evenly. With a uniform distribution, 
the  count  of  the  vector  values  for  each  segment  should  be  approximately  as  follows:  for  the 
Configuration 1 is 122 628 /10 = 12 262, for the Configuration 2 is 122 628/3 = 40 876.

Prior  to  optimization,  the  obtained  values  deviate  considerably  from  the  expected  targets. 
Figures 5 and 6 illustrate the actual distribution statistics for the Configuration 1 and Configuration 
2, respectively.

Figure 5: Statistics of dimension values distribution by segments for the Configuration 1

Figure 6: Statistics of dimension values distribution by segments for the Configuration 2

Subsequently, 20 000 image descriptors were extracted from the storage and loaded into the 
MDC.  Segment  boundary  optimization  was  then  performed  based  on  this  subset.  Once  the 
boundaries were determined, the remaining descriptors were loaded, and the value distribution 
statistics  were calculated in  the same manner.  Using only a  portion of  the data  for  boundary 
optimization significantly reduces the time required for this step.

Figures 7 and 8 illustrate the distribution statistics after the optimization for the Configuration 1 
and the Configuration 2, respectively.



Figure 7: Statistics of dimension values distribution by segments for the Configuration 1

Figure 8: Statistics of dimension values distribution by segments for the Configuration 2

In  both  configurations,  the  number  of  values  distributed  across  segments  is  close  to  the 
expected. This indicates that the model parameters have a limited impact on the outcomes achieved 
during the optimization process.

4.7. Search

After the optimizations, the MDC was filled with image descriptors of the considered COCO2017 
dataset for each configuration. 100 images from the dataset were randomly selected. The previously 
mentioned  modifications  were  built  for  them.  For  all  modifications  of  the  original  images, 
descriptors were built and added to the model. Next, a search was carried out for images (originals  
and modifications) of the selection under consideration. For all images in the selection, the measure 
of difference from the desired image is calculated.

The experimental results with the average (arithmetic mean), maximum and minimum values of 
the  metrics  under  consideration  for  searching  for  original  images  of  the  Configuration  1  are 



presented in Table 5, and for modified images in the Table 6, for the Configuration 2 in the Table 7  
and Table 8, respectively. These results are the average results of performing the 10 rounds of the  
experiment. 10 rounds are the one stage of the experiment.

Similar results for a brute-force search are presented in Table 9 and Table 10, respectively. Of 
course, count of waves metric is not calculated for this type of the search. Brute-force search model 
is located in the RAM memory instead of DB.

Table 5
Results of the search of the original images, Configuration 1

Labor intensity (c) 
[count of 

descriptors]

Quality (q) 
[measure 

from 0 to 1]

Count of 
waves (cw)

Percentage of 
all descriptors 

(p) [%]

Search time 
(min)

Min 1.1 1 0 0.001 0.012

Max 491.6 1 0 0.400 0.054

Average 60.27 1 0 0.049 0.019

Table 6
Results of the search of the original and modified images, Configuration 1

Labor intensity (c) 
[count of 

descriptors]

Quality (q) 
[measure 

from 0 to 1]

Count of 
waves (cw)

Percentage of 
all descriptors 

(p) [%]

Search time 
(min)

Min 3.6 0.067 0 0.003 0.012

Max 5 446.2 1 1 4.434 0.415

Average 783.65 0.970 0.36 0.638 0.063

Table 7
Results of the search of the original images, Configuration 2

Labor intensity (c) 
[count of 

descriptors]

Quality (q) 
[measure 

from 0 to 1]

Count of 
waves (cw)

Percentage of 
all descriptors 

(p) [%]

Search time 
(min)

Min 1.1 1 0 0.001 0.014

Max 1 541.5 1 0 1.255 0.102

Average 241.03 1 0 0.188 0.032



Table 8
Results of the search of the original and modified images, Configuration 2

Labor intensity (c) 
[count of 

descriptors]

Quality (q) 
[measure 

from 0 to 1]

Count of 
waves (cw)

Percentage of 
all descriptors 

(p) [%]

Search time 
(min)

Min 3 0.115 0 0.002 0.013

Max 49 728.6 1 1 40.486 1.903

Average 5 223.05 0.970 0.25 4.252 0.314

Table 9
Results of the search of the original images, brute-force

Labor intensity (c) 
[count of 

descriptors]

Quality (q) 
[measure from 0 to 1]

Percentage of all 
descriptors (p) [%]

Search time 
(min)

Min 1 223.3 1 0.996 0.002

Max 122 053.4 1 99.369 0.496

Average 61 028.36 1 49.686 0.155

Table 10
Results of the search of the original and modified images, brute-force

Labor intensity (c) 
[count of 

descriptors]

Quality (q) 
[measure from 0 to 1]

Percentage of all 
descriptors (p) [%]

Search time 
(min)

Min 28 016.7 0.085 22.810 0.066

Max 122 356 1 99.616 0.408

Average 93 525.48 0.966 76.143 0.246

4.8. Discussions

As part of the experiments, the impact of different experimentally selected MDC model parameters 
was evaluated with respect to the two main processes performed by the model: search speed and 
model construction speed.

The model construction time was better for Configuration 2 up to 30%.  Since the construction 
process also includes the optimization stage, the reported results apply to both processes. However,  
the choice of DBMS had a significant impact on performance. PostgreSQL outperformed MySQL by 
more than a factor of 10 in Configuration 2 and by up to 30% in other cases.  The quality of the 
optimization is similar for both configurations. So, the configuration and the DBMS choice have an 
impact on construction and optimization process.



A similar situation was observed during the search experiments phase. The retrieval quality for 
original images was equally high across all configurations. The reduction in the search quality of  
modified images is determined by the properties of the descriptor. We can see that for both search  
methods the corresponding average values are almost the same: MDC = 0.97 and brute-force = 
0.966.

For the brute-force search, the expected result was obtained when searching for original images 
– approximately half of the storage had to be scanned. When searching for modified versions of  
images, the number of scanned descriptors was significantly higher, reaching around 75% of the 
entire storage.

For original image retrieval, the average labor intensity in Configuration 2 was more than four 
times higher, as each cell contains a larger number of descriptors compared to Configuration 1. 
However, the absolute value remained below 1 000, whereas in the brute-force approach it reached 
approximately 61 000. In terms of search time, Configuration 2 performed about twice as slow as 
Configuration 1, yet it was still five times faster than the brute-force search. Count of the waves is 
equal to 0 for both configurations.

When  searching  for  both  original  and  modified  images,  the  average  search  time  in 
Configuration 2 was more than seven times higher than in Configuration 1. Although search waves 
were triggered less frequently (an average of 0.25 waves compared to 0.36 in Configuration 1), the 
cells  contained  a  greater  number  of  descriptors.  Still,  the  average  search  complexity  in 
Configuration 2 was 5 223, which is significantly lower than that of the brute-force approach (93 
525).  In terms of  search speed,  Configuration 1 demonstrated the best  results  (averaging 0.063 
seconds), while Configuration 2 performed worse than brute-force search (averaging 0.314 vs. 0.246 
seconds). This is attributed to the fact that, during wave-based searches, Configuration 2 requires  
communication with the database, whereas the brute-force model was fully loaded into RAM.

However,  special  attention  should  be  given  to  the  maximum  labor  intensity  observed  in 
Configuration 2. This value approached 50% of the entire dataset loaded into the MDC, prompting 
further analysis. A theoretical calculation was performed to estimate the number of descriptors  
examined during the search process and one search wave, resulting in the following formula:

ws=D
sd
×3d ,

(3)

where ws – denotes the number of descriptors checked during a single search wave, and D, s, d, 
correspond  to  the  total  number  of  descriptors  in  the  dataset,  the  number  of  segments  per 
dimension, and the number of dimensions, respectively, as defined in formula (1).

Thus, for Configuration 2, the maximum number of descriptors that must be examined during a 
search  wave  equals  the  size  of  the  entire  dataset,  which  is  unacceptable.  This  revealed  the 
significant impact of model parameters on the execution of wave-based search. Formula (3) should 
be  considered  one  of  the  key  factors  in  selecting  appropriate  parameters.  It  is  necessary  to 
introduce a threshold ratio between the number of descriptors retrieved in a single wave and the 
total number of descriptors in the dataset.

5. Conclusions

This study introduced an experimental parametric configuration approach for content-based image 
retrieval models, with the Multidimensional Cube model serving as the primary case study. The 
proposed method evaluates how variations in model parameters influence both construction and 
search performance, allowing for the identification of key dependencies between parameter choices 
and functional behavior.

Using a dataset of 122 628 common image descriptors, two configurations were compared, and 
multiple DBMS platforms were tested as storage backends. The experiments revealed that while the 
parameter configuration had minimal impact on model construction time,  the choice of DBMS 



could influence performance by up to 30%. In contrast, parameter selection significantly affected 
search efficiency – leading to differences of up to 7× in computational workload and up to 6× in  
search time.

A  formal  relationship  was  derived  linking  configuration  parameters  to  the  number  of 
descriptors retrieved per wave during the search. Thresholds were proposed for these values and 
incorporated into the official MDC configuration guidelines, thereby enhancing its practical utility.

The  proposed  approach  demonstrates  how  empirical  parameter  tuning  can  significantly 
improve CBIR model performance and may serve as a general framework for evaluating model 
suitability in domain-specific applications.

Further research will focus on detailed analysis of MDC’s operational phases, refinement of the 
configuration algorithm, and incorporation of adaptive constraints. Additionally, we plan to assess 
the applicability of MDC in the medical domain – specifically in diabetic patient monitoring – 
where  retrieval  accuracy  and  speed  are  critical  for  timely  intervention.  Proper  parametric 
configuration in such cases may have a direct impact on diagnostic quality and clinical outcomes.
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