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Abstract 
The article examines a microcontroller-based climate control system development approaches utilizing 
neural  network  technologies.  Modern  methods  of  automated  climate  parameter  control  are  analyzed, 
including classical algorithms, fuzzy logic, and artificial neural networks. The possibilities of adapting neural 
network approaches to real-time temperature, humidity, and airflow speed prediction and regulation are  
explored.  The  main advantages  of  intelligent  systems over  traditional  control  methods are  identified, 
including  improved  prediction  accuracy,  adaptability,  and  reduced  energy  consumption.  A  system’s 
structural model is proposed that incorporates a data collection subsystem, a neural network analysis  
module, and an adaptive climate control mechanism. A system prototype was implemented and tested in the 
MATLAB  environment.  Simulation  results  confirmed  the  effectiveness  of  the  developed  approach, 
particularly  the  ability  to  accurately  determine  user  comfort  levels  based  on  the  PMV  index  and 
automatically  regulate  the microclimate.  The conducted analysis  demonstrates  the feasibility  of  using 
artificial neural networks for automated climate control in residential, office, and industrial spaces.
Future research will focus on improving machine learning algorithms, integrating with IoT systems, and 
expanding the functional capabilities of the developed system.

Keywords 1

intelligent control system, neural networks, microcontroller, microclimate, automated control

1. Introduction

Modern  trends  in  climate  control  automation  are  increasingly  focused  on  the  use  of  artificial 
intelligence and neural network technologies [1, 2]. An optimal indoor microclimate directly affects 
comfort,  employee  productivity,  and  overall  business  efficiency.  A high-quality  climate  control 
system enhances work performance and reduces staff fatigue, which is a crucial factor for business  
success. Additionally, proper climate regulation positively impacts the equipment and materials’  
condition, which is particularly relevant for enterprises with high technological requirements [3].

Traditional climate control systems are based on mechanical or programmable solutions that 
regulate temperature and humidity in indoor environments [4]. However, with the advent of new 
technologies, it is now possible to develop adaptive systems that analyze data in real time and adjust 
microclimate parameters according to user needs and environmental changes. By leveraging machine 
learning algorithms, these systems can predict temperature and humidity fluctuations, considering 
seasonal variations, light levels, and even individual user preferences [5].

The need for  intelligent climate control  systems arises  from increasing demands for  energy 
efficiency, comfort, and automation. The implementation of neural network algorithms enables the 
development  of  smart  climate  control  systems  capable  of  autonomously  adapting  to  external 
conditions and indoor characteristics [6]. These technologies unlock new possibilities for integration 
with modern IoT devices [7], optimizing energy consumption, and enhancing the overall efficiency of 
climate solutions [8, 9]. This paves the way for the development of innovative systems that not only 
improve  quality  of  life  but  also  contribute  to  sustainable  development  and  lower  building 
maintenance costs. Moreover, such solutions can play a key role in the implementation of the "smart 
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city"  concept  [10],  ensuring the interaction of  climate control  systems with the overall  energy 
infrastructure, thereby reducing carbon emissions and promoting more rational resource utilization.

1.1. Analysis of recent researches and publications

In recent years, the issue of automated climate control has attracted significant attention from the 
scientific  community  due  to  the  advancement  of  microcontroller  technologies  and  artificial 
intelligence. The implementation of neural network approaches enables the creation of adaptive 
systems that optimize microclimate parameters based on changes in the external environment and 
individual user needs [11, 12].

As the conducted analysis has shown, current research in this field can be divided into several 
directions: the use of classical control algorithms, the application of fuzzy logic, and the integration of 
neural networks for decision-making and climate parameter prediction.

One of the classical approaches is the use of PID (Proportional-Integral-Derivative) controllers, 
which stabilize temperature and humidity in controlled environments. In [13], the authors examine 
the efficiency of PID controllers in HVAC (Heating, Ventilation, and Air Conditioning) systems but 
highlight their insufficient adaptability to dynamic external conditions.

Another research direction involves the use of fuzzy logic for climate control systems. Studies [14, 
15] propose an adaptive temperature regulation method based on fuzzy logic models that consider 
user behavioral characteristics.  This approach improves system efficiency by analyzing multiple 
factors but requires careful tuning of fuzzy logic rules.

Recently, increased attention has been given to the use of artificial neural networks in climate 
control systems. In [16], a model utilizing convolutional neural networks is presented, which analyzes 
historical temperature and humidity data to predict future changes and adjust system parameters 
accordingly. Studies [17, 18] demonstrate the effectiveness of recurrent neural networks (LSTM) in 
forecasting  climate  parameter  changes  in  indoor  environments  and  automatically  adjusting  air 
conditioning system operation.

A particularly promising direction is  the combination of  deep learning with the Internet  of 
Things (IoT) for distributed monitoring of microclimate conditions. In [19, 20], the authors introduce 
an intelligent control system that uses IoT sensors and neural network algorithms to reduce energy  
consumption and enhance indoor comfort. This system can autonomously learn from collected data 
and adapt its algorithms to specific operational conditions.

Thus, an analysis of existing research demonstrates that classical approaches to climate control are 
gradually being replaced by intelligent methods, particularly those based on neural networks. The 
implementation  of  such  solutions  enhances  the  efficiency  of  climate  systems,  ensures  their 
adaptability, and reduces energy consumption. The further advancements of this field are associated 
with the improvement of machine learning algorithms and the expansion of neural network model  
integration into microcontroller platforms.

1.1.2. Analysis of known software/hardware solutions

The analysis of existing software and hardware solutions for climate control management shows that 
the main approaches are divided into two groups. The first consists of traditional automated control  
systems based on classical regulation algorithms, while the second includes solutions that utilize 
machine learning and neural networks.

When considering the first approach [21, 22], traditional automatic climate control systems are 
typically  based  on  proportional-integral-derivative  (PID)  controllers.  These  controllers  ensure 
environmental stability but have limited adaptability to changing conditions. Such systems are most 
commonly  used  in  industrial  and  commercial  facilities,  where  maintaining  stable  operating 
parameters is crucial.

The  second  approach involves  the  use  of  artificial  intelligence  methods,  particularly  neural 
networks, for forecasting and adaptive regulation of climate parameters [23, 24]. Recent studies 



demonstrate the effectiveness of such systems, as they can learn from historical data, predict climate 
parameter changes, and adjust equipment operation modes accordingly.

Among the most well-known solutions in this field, the following can be highlighted:
Nest Learning Thermostat – an intelligent thermostat that uses machine learning algorithms to 

automatically adjust temperature settings based on user habits [25]. It analyzes resident behavior,  
creates  an  optimal  heating/cooling  schedule,  and  helps  save  energy.  Strengths:  high  level  of 
automation  and  integration  with  the  Google  Home  ecosystem.  Weaknesses:  high  cost  and 
dependence on an internet connection.

Ecobee SmartThermostat – a climate control system that uses temperature and humidity sensors to 
optimize  energy  consumption  and enhance  comfort  [26].  It  supports  voice  control  via  built-in 
Amazon Alexa and is compatible with Apple HomeKit. Advantages: flexible settings and integration 
with other smart devices. Drawbacks: complex initial setup and high price.

Honeywell Home T9 – a solution that utilizes artificial intelligence to manage temperature in 
different rooms using external sensors [27]. It provides support for various temperature zones, thus 
increasing heating and cooling efficiency. Key benefits: high climate control accuracy and support for 
voice commands. Disadvantages: limited compatibility with some smart home ecosystems.

Tado Smart Thermostat – an innovative system that uses user geolocation to control indoor 
climate [28]. It automatically decreases the temperature when residents leave the house and increases 
it  before  they return.  Strengths:  efficient  energy savings  and  ease  of  use.  Weaknesses:  limited 
compatibility with certain heating systems.

Daikin  Intelligent  Thermostat –  a  climate  control  system from Daikin  that  utilizes  artificial 
intelligence algorithms to analyze external and internal conditions, predict climate changes, and 
adapt  equipment  operation  [29].  Benefits:  high  forecasting  accuracy  and  efficient  climate 
management. Drawbacks: high cost and integration complexity with other systems.

As  the  analysis  shows,  modern  software  and  hardware  solutions  for  climate  control  are 
incorporating artificial intelligence and neural network technologies at a growing rate. This enhances 
system efficiency, reduces energy consumption costs, and ensures greater user comfort. However,  
each solution has its limitations, which should be considered during development.

1.2. The main tasks of the research and their significance

The objective of this study is to develop a microcontroller-based climate control system utilizing 
neural  network  technologies.  The  research  aims  to  create  an  intelligent  system  that  ensures 
automated monitoring of climate parameters, their analysis, and adaptive regulation to maintain a 
comfortable indoor environment. The proposed system should account for dynamic environmental 
changes and room characteristics to maximize energy efficiency and user convenience.

To achieve this goal, it is necessary to analyze existing climate control approaches, including 
classical regulators, fuzzy logic, and neural networks, to identify their advantages and limitations. An 
important  stage  involves  developing  the  system's  structural  model.  This  model  includes  the 
architecture  of  hardware  and software  components,  as  well  as  UML diagrams to  illustrate  the 
interaction logic between elements. Based on the obtained results, a data acquisition subsystem must 
be  implemented,  working  with  temperature,  humidity,  and  airflow velocity  sensors  to  provide 
continuous real-time climate parameter monitoring.

The next task is to create and train an artificial neural network that will utilize the collected data to 
predict climate changes and make automated decisions for parameter regulation. To evaluate the 
effectiveness of the proposed approach, system modeling and testing will be conducted in the Matlab 
environment,  allowing  an  assessment  of  its  adaptability  to  changes  and  energy  consumption 
optimization.

The research results  address  a  relevant  scientific and practical  problem—developing energy-
efficient systems that automatically adapt to operational conditions. The proposed approaches and 
the developed system will contribute to improving climate change prediction accuracy, reducing 
electricity costs, and ensuring comfortable conditions for users. 



2. Major research results

People constantly face the task of maintaining comfortable microclimatic conditions. The human 
brain analyzes information about temperature, humidity, and airflow speed and makes appropriate 
decisions  for  regulation.  In  modern  technological  systems,  this  process  is  automated  using 
microcontrollers  and neural  network algorithms.  To implement a microcontroller-based climate 
control system utilizing neural network technologies, several key stages must be implemented:

 First  stage – System initialization.  This includes configuring the microcontroller,  timers, 
communication interfaces with sensors, and the communication module.

 Second stage – Data collection.  The system receives temperature,  humidity,  and airflow 
readings from sensors and performs initial processing.

 Third  stage  –  Data  transmission.  The  collected  information  is  sent  for  processing  via 
communication modules.

 Fourth stage – Data processing using a neural network. Based on the received parameters, the 
level of thermal comfort is determined.

 Fifth  stage  –  Decision-making.  If  the  parameters  exceed  acceptable  limits,  the  system 
automatically adjusts the operation of climate control devices.

 Sixth stage – System adaptation. The neural network analyzes the obtained results, adjusts its 
parameters, and improves climate control algorithms.

One of the key stages in system development is the application of an object-oriented approach,  
which allows logically structuring the entire system into a unified model. Utilizing this approach 
system can be divided into separate classes and objects, each with its own attributes and methods,  
facilitating complexity management during software design and implementation.  Thanks to the 
object-oriented approach, the development process becomes more understandable, and its outcome is 
more flexible and scalable [30]. The use of UML diagrams to visualize the system's structure and 
processes enhances understanding of interactions between its components [31]. The use case diagram 
shown in Figure 1 illustrates the relationships between actors and use cases. 

Figure 1: Use-case diagram.



An office worker can input personal climate preferences and monitor the current microclimate 
status.  The administrator  has  additional  capabilities,  including configuring the  neural  network, 
adjusting system parameters, and remotely monitoring its status. The sensor system is responsible for 
collecting the data necessary for making management decisions.

This diagram demonstrates how the system interacts with different users and helps identify the 
main use cases for each, which is crucial for defining further software and hardware requirements.

The class diagram, shown in Figure 2, illustrates the system's structure at the class level, including 
their attributes, methods, and relationships. It helps clearly define the types of objects that exist 
within the system, their properties, and how they interact with each other. 

Figure 2: Class diagram.

The class diagram represents the architecture of the climate control system, which consists of 
several key components.

Neural Network is responsible for calculating the comfort index, computing errors, and adjusting 
expected parameters. It also sends control signals.

UserData stores  the  user's  expected  parameters  and  their  identifier,  allowing  for  parameter 
modifications.

Microcontroller serves as the central component of the system. It processes data received via the  
I2C bus, adjusts control parameters, executes necessary changes, collects data from sensors, transmits 
them to the server, and generates alerts when needed.

Sensors measure environmental parameters such as airspeed, humidity, temperature, and carbon 
content.

Control Object is responsible for modifying control parameters based on the received data.
The sequence diagram (Figure 3) is a crucial element for visualizing how different objects interact 

within the system. This diagram illustrates the data lifecycle and the message exchange processes 
between objects, providing a clear understanding of the interaction order.

In the case of this system, the sequence diagram shows how sensors data is transmitted to the  
microcontroller, where it is processed by the neural network. The results are compared with the 
expected values, and based on the comparison outcome, a control signal is generated to adjust the  
climate  control  devices.  This  allows for  a  precise identification of  when and how the system's 
operation will be corrected.

A key element of the system is the neural network. It is trained using an error backpropagation 
algorithm.  This  allows  for  efficient  adjustment  of  the  network's  weight  coefficients,  reducing 
prediction error and ensuring high accuracy of regulation. The advantage of this approach is the 
reduction  in  computational  costs  compared  to  deep  neural  networks,  making  it  suitable  for 
implementation in microcontroller systems [32, 33].



Figure 3: Sequence diagram.

To form the input data, the Predicted Mean Vote (PMV) index is used, which is one of the most 
effective for determining thermal comfort. The PMV is calculated using Fanger’s equation, which 
allows for the assessment of comfort conditions based on the individual’s parameters [34].  The 
average value of the sample is shown on a seven-point scale of thermal sensation, as shown in Table1.

Table 1
Description of the PMV model

Index -3 -2 -1 0 +1 +2 +3

Fuzzy 
characteristic

Very 
cold

Cold Slightly 
cold

Comfortable Slightly 
warm

Warm Very 
warm

An additional parameter is the use of the Predicted Percentage of Dissatisfied (PPD) index, which 
reflects the number of  people who may experience discomfort  under certain conditions,  and is 
described by the following equation [35]:

PPD=100−95 e(−(0.03353PMV 4+0.2179PMV 2 ) ) (1)
Next,  this  data  is  fed into  the neural  network,  which uses  it  to  adapt  the operation of  the  

microclimate control system. According to the relationship presented in Figure 4, the correlation 
between the PMV and PPD indices allows for the assessment of how comfortable the conditions are 
for the workers.

If the PMV equals zero, it means that the conditions are thermally neutral. Ideal comfort conditions 
for most people are defined by PMV values ranging from -0.5 to +0.5. This combination of parameters 
ensures that the workers satisfaction level will be at least 80%. Thus, the application of a neural  
network for microclimate control allows for precise control over environmental parameters, taking 
into account the individual needs of users and ensuring a high level of comfort in the workplace.



Figure 4: The relationship between the values of the PMV and PPD indices.

One effective approach to implementing predictive control is  the use of  a Neural Predictive 
Controller (NPC) [36]. This approach enables the forecasting of the system's state based on empirical, 
neural network built models. The proposed control strategy takes into account the interrelationships 
between microclimate parameters, allows adaptive adjustments of the system settings according to 
operating conditions, and optimizes the control trajectory within allowable states. Figure 5 shows the 
control configuration diagram.

Figure 5: Control configuration diagram using the NPC controller.

The operation of the controller is determined by the empirical model of the controlled process,  
which is based on previous values of state variables. The control strategy is chosen to account for the 
relationships between the parameters describing the state of the control object, the limitations of  
control devices,  and the ability to select  the best trajectory for state changes within the set of  
allowable values.

An important element of the system’s development is the implementation of the information 
collection subsystem, which performs the client part function of the microcontroller-based climate 
control system and is based on the ATMEL ATMEGA series microcontroller [37, 38]. Microcontrollers 
in this series are single-chip computing devices that allow for signal processing from various sensors, 
ensuring  efficient  control  of  electronic  systems.  For  the  implementation  of  the  data  collection 
subsystem in this study, the AVR ATMega32 microcontroller was chosen. It has several advantages, 
including high performance, low power consumption, and a wide range of built-in functions. The 
microcontroller in a PDIP package has 40 pins, which are shown in Figure 6.



Figure 6: Pinout of the ATMega32 microcontroller in the PDIP package.

In particular, the microcontroller includes 32 KB of flash memory, 2 KB of SRAM, an 8-channel 10-
bit ADC, support for serial interfaces (USART, SPI, I2C), as well as power-saving mechanisms. The 
Harvard architecture ensures high data processing speed, which is crucial for working with real-time 
climate parameters.

To collect the necessary information about the environmental state, the developed system uses the 
following sensors:

 Temperature  and  humidity  sensor  SHT21  –  a  high-precision  digital  sensor  that 
simultaneously measures two parameters. The SHT21 sensor has output signals in I2C, PWM, 
and SDM formats. Its power consumption is 1.5 µW, making it very energy-efficient. It can  
measure relative humidity in the range of 0 to 100% and operate in a temperature range of -40 
to 125°C. The sensor’s response time is 8 seconds, and its measurement accuracy is up to 2%.  
The sensor's dimensions are a QFN package of 3x3 mm [39].

 Air velocity  sensor  PAV3005D – a  highly sensitive  sensor  based on MEMS technology, 
providing air velocity measurements in the range of 0-7 m/s. The use of the I2C digital 
interface allows for efficient integration of this sensor into the system's overall architecture 
[40].

To transmit the collected data to the system’s server, a module SIM900D [41] (Figure 7) is used.

Figure 7: GSM module board (SIM900D).



This module enables wireless data exchange through mobile networks using the GPRS standard. 
The interaction between the ATMega32 microcontroller and the SIM900D is carried out via the 
USART serial interface, allowing for the transmission of collected climate parameters for further 
processing.

To simulate the operation of the data collection subsystem, the Proteus software platform [42] was 
used, which allows for testing electrical circuits and verifying the correctness of software operation 
without  the  need  to  create  a  physical  prototype.  Proteus  VSM Simulation  provides  a  realistic 
emulation  of  the  interaction  between  the  microcontroller,  sensors,  and  communication  tools, 
enabling  optimization  of  the  system's  operation  at  the  design  stage.  Thus,  the  developed  data 
collection subsystem ensures efficient reception, preliminary processing, and transmission of climate 
parameters.  This is  crucial  for  the subsequent operation of  neural  network-based data analysis  
algorithms in the microclimate control system.

The next step was modeling the main stages of system operation using the algebraic algorithms 
apparatus [43].The first stage of the implementation of the algorithms algebra is the description of 
unit terms and the synthesis of sequences [43], which is given below.

Formed uniterms: I(s) – uniterm of system initialization; C(d) - is the data collection from sensors 
uniterm; T(d) - is the unitterm of data transmission via GSM module; N(d) - is the uniterm of data  
processing by neural network; D - is the uniterm for decision-making and climate regulation; F - is the 
uniterm of network feedback and adaptation; E – a uniterm of cycle completion and re-reading; u1 – a 
uniterm of cycle completion or continuation; u2 – a uniterm of check if PMV is within limits [-2, +2];. 
As a result the following sequences and eliminations were synthesized:

S1 - the sequence of system initialization and completion of the work cycle:

S2 – the sequence of a full cycle of operation when the condition u1 is satisfied:

S3 – the sequence of a full cycle of operation when the condition u1 is not satisfied:

L1 – the elimination of check if PMV is within limits [-2, +2]:

L2 – the elimination of cycle completion or continuation:

After substituting the corresponding sequences into the elimination, we obtain the following 
formulas:



As a result of using the properties of the algebra of algorithms [43], we subtract the common unit 
terms by the sign of the elimination operation and obtain the following formula of the algebra of  
algorithms:

According to the presented model, the first stage is the initialization of the system, which includes 
setting the clock frequency of the ATMega32 microcontroller to 8 MHz, configuring the timers for 
processing delays and interrupts,  setting up the I2C interface [44] for communication with the 
sensors, and initializing USART for communication with the GSM module. To do this in the Proteus 
program, the properties window needs to be opened and the "Timers" section selected. Any AVR 
microcontroller contains several built-in timers (Figure 8).

Figure 8: Timer configuration.

Timer 0 will be used to generate delays, while Timer 2 will interrupt every 10 milliseconds and will 
be used for reading data from the sensor and displaying the results. Unlike Timer 0, Timer 2 will  
trigger an interrupt.

Configuration of Timers 0 and 2:



// Timer/Counter 0 initialization
TCCR0=(0<<CS02) | (1<<CS01) | (1<<CS00);
// Timer/Counter 2 initialization
ASSR=0<<AS2;
TCCR2=(0<<PWM2)  |  (0<<COM21)  |  (0<<COM20)  |  (0<<CTC2)  |  (1<<CS22)  |  (1<<CS21)  | 

(1<<CS20); TCNT2=0xB2; OCR2=0x00;
In the interrupt mask register of the timer, only the TOIE2 bit is initialized with a value of 1,  

meaning the interrupt for Timer 2 is enabled.
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=(0<<OCIE2) |  (1<<TOIE2) |  (0<<TICIE1) |  (0<<OCIE1A) |  (0<<OCIE1B) |  (0<<TOIE1) | 

(0<<TOIE0);
To  enable  the  use  of  USART,  you  need  to  go  to  the  corresponding  section  and  check  the 

"Transmitter" and "Receiver" checkboxes, as well as enable the Rx interrupt. Since the digital signal  
from the sensor is transmitted via the I2C protocol, it is necessary to configure the controller to work 
with the sensor in the "Bit-Banged I2C Bus Interface" section. For this, set the 4th pin of port C as the 
SDA bit and the 5th pin as SCL. Then, the value obtained from the sensor should be converted 
according to the expression (2) to receive the number in degrees Celsius. 

T=−46.85+
175.72∗ST

216
                  (2)

Interrupt handling program listing
        i2c_start(),
        i2c_write(0x80),                    
        i2c_write(0xF3),              
        timerDelayMs(85);                       
        i2c_start(),
        i2c_write(0x81),                       
        tt = i2c_read(1),           
        tt1 = i2c_read(1), 
        i2c_read(0),                       
        i2c_stop(), 
        tmp = tt*256+tt1;                      
        T = (tmp*0.00268127)-46.85;  
        i2c_write(0xFE);
        i2c_start();
        i2c_write(0x80);                    
        i2c_write(0xF5);                  
        timerDelayMs(29);                     
        i2c_start();
        i2c_write(0x81);                      
        hh = i2c_read(1);           
        hh1 = i2c_read(1); 
        i2c_read(0);           
        i2c_stop();                           
        hum = hh*1024+hh1;
        H = hum*0.0019073486-6;

In the given listing, T represents the temperature value, and H represents the relative humidity 
value. Similarly, the air velocity value is calculated, but taking into account the specifics of the output 
signal from the PAV3005D sensor [40]. The output signal can range from 409 to 3686 units. The 
approximation graph is shown in Figure 10.



Figure 9: Output data from the PAV3005D sensor.

Reading control commands via USART is implemented as follow
      char * pch = strtok(rx_buffer,",");  
      while (pch != NULL){
        i++;
        if(i==2) {
            NumberSMS = atoi(pch); 
            for(z=0;cmd6[z]!='';z++){ 
                while(!(UCSRA&(1<<UDRE))){};
                UDR = cmd6[z];
            } 
            UDR = rx_buffer[i];   
            UDR = ('\r');
       } 
  pch = strtok(NULL, " ");
}
Sending the data read from the sensors via the GSM module is described in the following listing:
void Send(unsigned char Message[]){
for(n=0;n=2';n++){       
    for(z=0; cmd[z]!='';z++){ 
          while(!(UCSRA&(1<<UDRE))){};
          UDR = cmd [z];
      }
      UDR = ('\r');
  }
for(z=0;Message[z]!='';z++){ 
    while(!(UCSRA&(1<<UDRE))){};
    UDR = Message[z];
} 
while(!(UCSRA&(1<<UDRE))){};
UDR = (26);
}

In the Labcenter Electronics Proteus simulation environment, a schematic of the data monitoring 
subsystem was developed. For this, a transformer-based power supply block with a 5V output was 
designed. The core of the circuit is the ATMega32 microcontroller, which is connected to the SHT21 
sensor and the SIM900D GSM module. An LCD display is used for the digital indication of the 
measurement results. Monitoring the threshold values of the parameters is carried out with the help 
of LEDs (green for humidity and red for temperature). The result of the microcontroller system 
simulation with the temperature and humidity sensor is shown in Figure 10.



Figure 10: Simulation of the program operation in the Proteus environment.

Using simulation, a dataset for training the neural network was generated. Let's pay attention to  
the control subsystem for which the data has already been obtained. The constraints of the control 
system are the use of the PMV index only within the range of -2 to +2. Additionally, the parameters  
must comply with the ISO 7730 standard [45]: the temperature should be between +10°C and +30°C,  
humidity between 30% and 70%, and CO₂ concentration should not exceed 1400 ppm. For training the 
neural network, a test sample from the monitoring system is used, as well as expert assessments from 
office workers to determine the PMV index.

According to Fanger [46], the thermal comfort equation is as follows (3):

PMV=(0.303 e−0.036M+0.028 ) {M−W−3.05∗10−3∗[5733−6.99 (M−W )−Pa ]
−0.42 [ (M−W )−58.15 ]−1.7∗10−5M (5867−Pa )−0.0014M∗(34−t a )

−3.96∗10−8 f cl [ (t cl+273 )4−(t r+273 )4 ]−f clhc( t cl−ta )} (3)

The metabolic rate coefficient M for a relaxed state of a person is  58.15 W/m². The activity 
coefficient W for office work can be approximated as zero. The clothing insulation coefficient Icl, with 
a value of 0, represents a person without clothes, while a value of 1 represents comfortable conditions 
for a person in business attire. The average normalized value of this parameter is 0.078. This value will 
be used for calculating fcl – the comfort area coefficient (4):

f cl={1.00+1.29 I cl , I cl≤0,0781.05+0.645 I cl , I cl>0,078
(4)

In formula (3), the index Pa represents the partial pressure of water vapor, which is calculated 
using formula (5):

Pa=
RH∗Ps
100

, (5)

where: 

Ps=e
−16.6536− 4030.183

t a+235 (6)

The parameter tcl – the surrounding temperature is calculated using formula (7):

t cl=35.7−0.0275 (M−W )−I cl {(M−W )−3.05 [5.73−0.007 (M−W )−Pa ]
−0.42 [ (M−W )−58.15 ]−0.0173M (5.87−Pa )−0.0014M (34−ta ) } (7)



The convective heat transfer hc is determined by formula (8):

hc={2.38( t cl−ta )0.25 ,2.38( t cl−ta )0.25>12.1√V a12.1√V a ,2.38( t cl−ta )0.25<12.1√V a
   (8)

Since the PMV value is determined by four parameters, the input layer consists of four neurons: 
the average external temperature, the indoor air temperature, the indoor humidity, and the indoor air 
flow speed. The output layer has only one value, the PMV, so the number of neurons in the output  
layer  is  one.  Therefore,  the input layer has a  4-dimensional  size,  and the output layer is  one-
dimensional.

The PMV index is a complex nonlinear relationship, and the initial weights of the neurons play a 
crucial role in the training process. They affect the algorithm convergence, the training time, and the 
likelihood of reaching a local minimum. To avoid the stabilization of the output value at the beginning 
of the training, the initial weights are randomly generated in the range: [-2 / q, 2 / q].

Analysis of the obtained results.
To create the control system model, the Deep Learning Toolbox package was used, specifically the 

Neural Network Predictive Controller module. This module consists of a neural network (NN) block 
and an optimization block. The diagram of the module is shown in Figure 11.

Figure 11: The diagram of the Neural Network Predictive Controller (NNPC) module.

According to the obtained mathematical model, a control scheme was created, which is shown in 
Figure 12. The mathematical model of the microprocessor subsystem is used as the object of the 
mathematical model (Plant). First, we input the initial value and the learning efficiency of the weight 
coefficient for each layer. Then, we define the input vector and the system's output, and compute the 
error E(k). Next step is calculating the input and output of the neurons in each layer of the neural  
network, with the output layer being the computed PMV index. Finally, we compute the controller's 
output and conduct training through the neural networks, performing online adjustment of the 
weight coefficient to achieve adaptive control of the PMV parameters. We set k = k + 1 and repeat the 
entire process from the first step.

Figure 12: The control system diagram in the MATLAB environment.



The result of the network training is shown in Figure 13. To implement the adaptability of the  
system, it is necessary to modify the optimal values, which is done through the system performance 
assessments by office workers.

Figure 13: The training result.

As seen from the graphs (Fig. 13), the desired error value of 10-4 was achieved after 2149 iterations. 
The training, testing, and validation graphs are shown in Figure 14.

Figure 14: The network training graphs.

To verify the system's functionality, we will run the created model and display the graphs of 
measured and controlled parameters, as well as the PMV index (Fig. 15).

Figure 15: Network operation graphs.



In Figure 14, the graphs of PMV, relative humidity, outdoor and indoor temperatures, and airspeed 
are  shown,  respectively.  As  we  can  see,  the  comfort  index  for  employees  is  maintained  at 
approximately 0.21. Given the above we can conclude that the office climate control neural network, 
which stabilizes the climatic parameters at the level determined by the mathematical model while 
considering the PMV index, is ready.

Conclusion

As a result of the conducted research, a microcontroller-based climate control system that uses neural 
network  technologies  was  developed.  Modern  methods  of  regulating  climatic  parameters  were 
analyzed, including classic control algorithms, fuzzy logic, and neural networks. The study showed 
that traditional methods, such as PID controllers, have limitations in flexibility when adapting to 
dynamic environmental changes, while the use of neural network algorithms significantly improves 
the system's efficiency.

The  developed  system ensures  automated  monitoring  of  microclimate  parameters  and  their 
adaptive regulation based on data obtained from temperature, humidity, and airspeed sensors. The 
use of artificial neural networks in decision-making allows the system to predict changes in climatic 
conditions and adjust the operation of climate devices accordingly. An analysis of the relationship 
between the PMV index and user comfort levels also enabled the optimization of control algorithms.

The creation of UML diagrams for object-oriented system design allowed for a clear definition of 
its functional capabilities and interactions between components. The proposed control model was 
implemented as a prototype, which was tested in the MATLAB environment. The testing results  
confirmed the effectiveness of the approach: the system ensures the maintenance of microclimate 
parameters within comfortable limits with minimal energy consumption. It was also confirmed that 
the application of neural network technologies improves the accuracy of climate control parameters 
and automates the regulation process without the need for constant user intervention.

Further research will focus on improving machine learning algorithms, expanding the capabilities 
of adaptive control, and integrating with modern IoT solutions to enhance automation and optimize 
energy consumption. Methods for improving the accuracy of climate change prediction are planned 
as well. Those will use deep neural networks and will help refine the system's learning model.

Declaration on Generative AI

During the preparation of this work, X-GPT-4 and Gramby were used for grammar and spelling 
verification. After utilizing these tools/services, the content was reviewed and edited accordingly. The 
authors take full responsibility for the content of the publication.
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