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Abstract
This paper is devoted to a formalized approach to modeling an AI-driven adaptive learning platform 
specifically  designed  for  students  with  special  educational  needs.  The  developed  platform integrates 
generative  artificial  intelligence,  reinforcement  learning  algorithms  to  dynamically  personalize 
educational trajectories. The model leverages psychophysiological diagnostic data, contextual parameters, 
and real-time performance feedback to continuously adapt instructional content and methodologies. This 
research demonstrates the potential of integrating adaptive learning methodologies with generative AI,  
marking a significant advancement in personalized education systems and offering valuable implications 
for inclusive educational and AI-driven applications.
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1. Introduction

The need for equitable, high-quality education has spurred the rise of digital platforms that use 
generative AI to create, personalize, and refine learning experiences. This technological shift aligns 
with global initiatives to promote social inclusion and to comply with international standards on 
accessibility  and  equal  rights  in  education  [1, 2].  The  exigency  of  addressing  diverse  learners 
requirements  –  spanning  cognitive  and  sensory  supports  to  highly  adaptive  instructional 
methodologies  –  drives  the  need  for  robust,  meticulously  modeled  information  systems.  Such 
systems must merge pedagogical  frameworks,  real-time data-driven adaptation algorithms, and 
universal-design principles to construct flexible, learner-centred digital ecosystems [3, 4]. 

From a systems-engineering perspective, designing an educational platform for learners with 
special educational needs involves managing multiple layers of complexity. Equally, the intangible 
facets of user interaction require precise calibration of cognitive load, individualized navigation 
flows, and real-time adaptation of multimodal content. 

These demands necessitate sophisticated architectural modelling – incorporating micro-service 
orchestration and privacy-preserving analytics – to mitigate risks of performance bottlenecks, data 
breaches, or diminished learner engagement [5]. 

Personalized instructional materials – such as speech-recognition transcriptions, text-to-speech 
renderings, sign-language avatars, and alternative input modalities – must be seamlessly integrated 
through modular interfaces that support future feature extensions. Large-scale machine-learning 
models further enhance the platform’s capacity to tailor lessons, trigger proactive interventions, 
and monitor progress in real-time. 

Yet this reliance on data-intensive operations obliges stringent safeguards for sensitive user 
profiles, including differential-privacy techniques strategies.
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⋆MoDaST 2025: Modern Data Science Technologies Doctoral Consortium, June, 15, 2025, Lviv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 ihor.m.chushchak@lpnu.ua (I. Chushchak); vasyl.a.andrunyk @lpnu.ua (V. Andrunyk);

 0009-0005-1112-971X (I. Chushchak); 0000-0003-0697-7384 (V. Andrunyk);
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0001-6417-3689
https://orcid.org/0009-0002-6669-0369
mailto:t.princesales@utwente.nl


2. Literature Review

The  issue  of  implementing  adaptive  learning  in  the  context  of  contemporary  technological 
advancement  has  garnered  considerable  attention  from  scholars  who  have  explored  various 
dimensions of this phenomenon. Aulakh et al. [7] examined the integration of digital technologies 
during  the  COVID-19  pandemic,  emphasizing  the  critical  role  of  adaptability  in  processing 
extensive datasets. 

Researchers  at  [8,  9]  analyzed the potential  of  modern educational  technologies  to  support 
individuals  with  mild  intellectual  disabilities,  thereby  highlighting  inclusive  instructional 
strategies. 

Peng et al. [10] supported the development of smart learning environments that leverage the 
full potential of digital educational platforms. 

The issue of learning personalization was systematically addressed by Hocine and Sehaba [11], 
who reviewed the functionality of personalized online education systems tailored for learners with 
cognitive impairments. 

Hussein and Al-Chalabi  [12]  proposed the use of  specialized pedagogical  agents  capable of  
enhancing students’ experiences within adaptive learning frameworks. In the post-pandemic era,  
the  scholarly  discourse  has  increasingly  emphasized  the  necessity  of  personalization  and  the 
continuous evolution of digital tools in education. This trajectory reflects a broader trend within  
modern pedagogical thought, which seeks to accommodate the specificities of learners across all  
educational stages. Moreover, the design and refinement of digital online learning ecosystems have 
emerged as a distinct field of inquiry. 

Beem et al. [13], for instance, investigated the contextual application of design methodologies 
within African educational systems, which significantly contributed to the discourse on inclusive 
education. 

De Medio et al. [14] explored the capabilities of the Moodle platform in structuring courses for 
inclusive pedagogy. 

Empirical  studies  by  Hubalovsky  et  al.  [15]  demonstrated  the  efficacy  of  adaptive  online 
learning environments in equipping secondary school students with essential competencies. 

Labonté  and  Smith  [16]  conducted  a  comparative  empirical  analysis,  highlighting  the 
advantages of adaptive digital learning in secondary education, particularly in inclusive settings. 

Conversely,  Khamparia et  al  [17]  illuminated  persistent  challenges  associated  with  digital 
educational  environments;  although their  study predates  recent  advancements,  the issues they 
identified remain pertinent today. 

Efforts to address these limitations were undertaken by Persico et al. [18], who adapted the 
technology  acceptance  model  to  uncover  determinants  that  hinder  the  diffusion  of  emerging 
technologies in inclusive education. 

Pratama [19] further developed hypotheses around the adoption of such technologies, using 
Google Classroom as a case study. 

Eljak et al. [20] carried out a systematic review exploring the potential applications of cloud 
computing  technologies  within  e-learning  platforms.  The  adoption  of  diverse  learning 
management systems serves as a cornerstone for cultivating an inclusive e-learning environment. 

Platforms such as Moodle, Canvas, and Google Classroom offer a wide array of functionalities 
that  enable  the  personalization  of  educational  pathways  by  tailoring  assignments  to  learners’ 
specific needs, generating adaptive assessments, and delivering prompt feedback. 

Equally critical are adaptive learning solutions – examples include Knewton, DreamBox, and 
Smart Sparrow – which rapidly evaluate student responses and dynamically adjust subsequent 
tasks to match their demonstrated knowledge level or particular requirements. Interactive learning 
tools  further  enhance  inclusivity  by  facilitating  the  creation  of  engaging,  multimedia-rich 
instructional content, though their effectiveness hinges on instructors’ ability to calibrate difficulty 
appropriately. Moreover, sustaining robust communication channels – through virtual classrooms, 
online  discussion  forums,  and  one-on-one  consultations  –  is  indispensable  to  ensuring  social 
presence  and  fostering  a  supportive  educational  climate;  without  sufficient  opportunities  for 
meaningful  interaction,  the  efficacy  of  an  e-learning  platform  is  fundamentally  undermined. 



Assistive  learning  technologies  have  become  vital  for  ensuring  an  inclusive  e-learning 
environment. 

Tools such as Read&Write support students with reading, writing, and learning difficulties by 
offering text-to-speech capabilities, built-in dictionaries, and translation features. 

Likewise,  Kurzweil 3000  aids  learners  with  dyslexia  or  other  reading  challenges,  providing 
high-quality speech synthesis alongside text highlighting, annotation, and resource-management 
functions.  

Dragon NaturallySpeaking leverages advanced speech recognition to let users dictate content 
and  control  their  computers  via  voice  commands  [21].  For  students  with  visual  impairments,  
screen readers like JAWS, NVDA, and VoiceOver convert on-screen text to spoken word, whereas 
learners  with  hearing  impairments  can  use  audio-amplification  software  or  live  captioning. 
Although  these  studies  provide  a  generalized  foundation,  they  fall  short  in  addressing  the 
requirements of education, especially concerning the reconfiguration of digital technologies. This 
gap underscores the necessity of systematizing the instruments that facilitate adaptive learning, a 
challenge to which the study aspires to respond.

3. Formal Problem Statement

To model the recommendation system within an inclusive learning platform for students with 
special educational needs, we introduce the following fundamental sets and data spaces:

1. Set of Participants – P={p1 , p2 ,… , pW }, where W  is the total number of participants in the 

learning process.
2. Space of Initial Educational Goals – E={ei , j , k , i∈I , j∈J , k∈K }, where: 𝑖 is the index of a 

subject domain (e.g., mathematics, arts, life skills), 𝑗 is the sequential identifier or level of a specific 
educational  goal,  𝑘 indicates  the  modality  or  form  of  instruction  (e.g.,  face-to-face,  distance 
learning, multimedia).

3.  Space of Diagnostic Data –  X={x p
(d ) , p∈P ,d∈D },  where each  𝑑 d represents a type of 

diagnostic test – psychophysiological or cognitive. This space captures student evaluations that 
inform system about individual learning needs.

4.  Space  of  Personalized  Requirements  –  ψ : X→P (R ),  where  𝜓 is  a  function  that  maps 

diagnostic  data  in  𝑋 to  a  set  of  personalized  requirements  P(R).  In  other  words,  for  each 

participant  𝑝 ∈  𝑃,  𝜓 produces a specific set of educational accommodations and supports (e.g., 
assistive technology).

5.  Space of  Contextual  Parameters –  C={c p , p∈P },  which includes environmental  factors, 

instructor characteristics, and social-psychological contexts. For instance, c p may describe whether 
learning is happening at home or in a resource room, as well as any relevant psycho-emotional 
conditions.

6. Space of Dynamic Feedback Data –  D={d p (t ) , p∈P , t∈T }, where  t  is a time parameter, 

and  d p(t ) represents the current learning outcomes or performance metrics for participant  p at 
time t . These data inform continuous adjustments of the platform’s recommendations.

7. Set of AI-Agent Functional Capabilities – A={a1 , a2 , , , .anA
}, where each ai is an adaptive 

learning algorithm or personalized feedback service provided by the AI assistant. This includes 
capabilities such as real-time curriculum adaptation, automated generation of simplified content,  
and  assistive  media  synthesis  (e.g.,  visual  or  auditory  supports  based  on  learner  preference).  
Notably, we deploy a generative transformer-based model, similar in architecture to GPT-4.

Each participant p∈P begins with an initial subset of educational goals e p⊂E, which must be 

aligned to the c p∈C . We introduce a context-adaptation function:

χ :E×C→E ' , (1)

where  E' is  the  refined set  of  educational  goals,  adapted  to  the  specific  conditions  of  the 
learning environment and individual student characteristics.



Drawing on the adapted goals, personal requirements, and the feedback data, we define the 
support module mp for participant p at time t  through:

mp=f (X (e p , c p) ,ψ (x p) , A ,d p (t ) , t ) , (2)

where X (e p , c p), denotes the adapted subset of educational goals for participant p as produced 

by function χ ; ψ (x p) yields the personalized requirements aligned to the participant’s diagnostic 

results;  A is the set of AI functionalities available to recommend or enact instructional strategies  
(e.g.,  GPT-based  assistants,  real-time  language  translation);  d p (t ) represents  current  feedback 

metrics on performance and learning effectiveness; t  is the time parameter, enabling the model to 

consider recency of data and stage of the learning process.The function f (·) tackles a multi-criteria 

optimization problem: it aims to choose an optimal combination of technological tools from 𝐿 and 
AI services from 𝐴 that best match each participant’s context, abilities, and goals. 

Through repeated evaluation of  mp over time, the system continuously refines the learner’s 
educational  pathway  –  updating  recommended  tools,  reconfiguring  lesson  sequences,  and 
generating personalized interventions.

We define the system state S at time t  as:

S (t )=(X ,C , E ' , D (t )) , (3)

encompassing:  the  accumulated  diagnostic  information  X ,  the  contextual  parameters,  the 

adapted educational goals  E', the dynamic feedback  D (t ), capturing performance at time  t . We 

formulate the decision process as a mapping  π  from the current system state  S (t ) to an action 

a∈A . Formally, let:

π :S→A , (4)

At  each  discrete  time  step  t ,  the  policy  π  prescribes  an  action  a=π (S (t )) based  on  the 

observable state S (t ). In our application, such actions include: (1) deploying a GPT-based assistant 
to simplify textual materials or (2) generating high-priority alerts if learner engagement metrics 
drop  below  a  defined  threshold.  To  enable  policy  improvement  over  time,  we  embed  this 
framework within a reinforcement learning paradigm. We introduce a scalar reward function,

R :S×A→R , (5)

that assesses the immediate outcome of executing action  a∈A  in state  S.  The reward may 
encode  various  performance  indicators,  such  as  test  score  increments,  engagement  levels,  or 
psychosocial  benefits. The  goal  is  to  find  an  optimal  policy  π  that  maximizes  the  expected 
cumulative discounted reward over possible trajectories:

π=argmax
π

⁡Eτ ~ π[∑
t=0

∞

γ t R (S (t ) , π (S (t )))], (6)

where  τ  represents  state  –  action  trajectories  generated  by  following  π  and  γ∈(0,1) is  a 

discount factor that reduces the impact of future rewards relative to immediate ones. 
In  practice,  π  is  modeled  as  a  parameterized  generative  policy  network  –  a  lightweight 

feedforward neural architecture with a stochastic output layer that produces distributions over 
actionable AI strategies, including generative content creation. 

Over multiple iterations, the system converges to a policy that adaptively refines the learning 
experience for each individual, bridging diagnostic information and performance data to deliver 



targeted interventions. To operationalise this optimisation in practice, we treat π as a parameterised 
stochastic policy – typically a feed-forward network that maps the observable state vector to a 
probability distribution over the available AI-agent actions.

At every step platform collects a roll-out of interactions, computes the empirical return:

Gt=∑k≥t
γ k−t R (S (k ) , A (k )) , (7)

and updates the policy parameters with a clipped policy-gradient rule. 
The  critic  network  is  trained  in  parallel  to  minimise  the  temporal-difference  error 

δ t=Gt−V (S (t )), providing a low-variance baseline for the actor.

4. Results

Figure 1 shows the Use Case diagram, which delineates the spectrum of user-system interaction 
scenarios  by  formally  capturing  the  permissible  sequences  of  actions  within  the  operational  
boundaries.

Figure 1: Use Case Diagram

The presented diagram illustrates a multifaceted interaction among various key stakeholders 
and processes  involved in supporting a learner  with special  educational  needs in an inclusive 
environment. 

On  one  side,  the  analyst,  the  administration  of  the  Inclusive  Resource  Center,  and  IRC 
specialists  initiate  and  coordinate  the  analysis  of  psychophysiological  indicators,  establishing 
individual characteristics and an appropriate learning format. On the other side, parents and the 
learner with special needs collaborate with the specialists during the pedagogical diagnostics stage 
and  the  accumulation  of  learning  outcomes.  Based  on  the  gathered  data,  an  individualized 
educational plan is formed, incorporating both corrective elements and personalized educational 
goals. 

Figure 2 shows UML Activity diagram, which traces the iterative AI-driven adaptive-learning 
workflow for a student with special needs – charting parallel preparatory steps, lesson-time digital 
support,  post-lesson assessment, data aggregation, and continuous algorithm refinement within 
the educational ecosystem.



Figure 2: Structural learning model of a student with special educational needs

The cycle starts with the student’s psychophysiological  assessment,  whose results feed two 
parallel tasks: stakeholder surveys and creation of a digital profile. Using both, the platform tunes 
an adaptive AI agent, generates first-step recommendations and updates the student’s learning 
path. 

Digital support is then activated for the lesson; test and formative-assessment data collected 
during  the  session  immediately  refine  that  path.  After  each  lesson  the  system  checks  how 
communication, social and academic skills have changed and stores the findings in an analytical 
repository. During the analysis of the educational process for individuals with special educational 
needs, a series of fundamental functional stages were identified, each exhibiting features such as 
adherence to a rigorously structured sequence of phases and the necessity for the synchronous 
execution of specific educational tasks within defined stages. To formalize these requirements, the 
formalism of Petri nets will be used as a high-level mathematical abstraction. 

Based on the formalized description of inclusive learning processes, we proceed to construct a  
model of the inclusive educational process using Petri nets as an analytical framework. Within this  
model, the net is presented as both a graphical and analytical structure, formed by finite sets of 
positions  (P)  and  transitions  (T),  alongside  corresponding  IO  functions.  The  semantics  of 
transitions within the net encapsulate events that signify the fulfillment of specific instructional 
objectives, whereas places are interpreted as prerequisite conditions necessary for the occurrence 
of such events. 

Figure 3 presents the Petri net C = (P, T, I, O), which models the learning process for individuals 
with special educational needs, where the set of transitions T = {t1 , t2 ,… , t12} and set of positions 

P {p1 , p2 ,… , p15}.



Figure 3: Petri Net as a Model of the Learning Process for Individuals with Special Educational 

Needs

We shall  define the  positions  (also  referred to as  places)  of  the  Petri  net  along with  their 
corresponding semantic interpretations and present them systematically in Table 1. In the context 
of this interpretation, each position in the net represents a specific condition or state that must be 
fulfilled prior to the execution or occurrence of a particular event, which is modeled as a transition.

Table 1
Positions of Petri net

Position Interpretation of the position
p0 Necessity for the development of an AI-assisted 

educational complex for students with special 
educational needs

p1 Identification data of the individual
p2 Diagnostic conclusions from the psycho-medical-

pedagogical consultation and expert assessments
p3 Results of the parents’ survey
p4 Results of the individual’s self-assessment
p5 Educational and corrective objectives
p6 Documented special educational needs
p7 Formalized educational objective
p8 Database of AI-platform components
p9 Data repository of psychophysiological diagnostic 

results
p10 Characteristics of the components of the AI-based 

learning complex
p11 Project of the AI-assisted learning complex for students 

with special educational needs
p12 Results of the implementation of the AI-assisted learning 

complex
p13 Psychophysiological characteristics of the student 

(updated data on current state and corrective needs)
p14 Academic achievement results (final grades, performance 

analysis)
p15 Readiness for the subsequent operation of the system

Transitions within the Petri  net,  which by their nature represent events,  are interpreted as 
processes. Table 2 presents the transitions of the Petri net.

Table 2
Transitions of the Petri net

Transition Interpretation of the transition
t1 Initiate the operation of the AI-based recommendation 



system: initial configuration and data initialization
t2 Process of comprehensive assessment of 

psychophysiological development
t3 Process of systematic analysis of the results from the 

comprehensive psychophysiological evaluation
t 4 Process of formulating recommendations aimed at 

optimizing the learning format
t5 Initiate interaction with data repositories and databases 

related to students’ learning outcomes and 
psychophysiological profiles

t6 Develop software solutions in compliance with inclusive 
standards and accessibility requirements

t7 Define the characteristics of the components of the AI-
based learning complex

t8 Integrate all characteristics and formulate 
recommendations for the structure of the AI-assisted 

learning complex
t9 Transfer (implementation) of the AI-complex project 

into the real educational process
t10 Analyze and update the repository of 

psychophysiological diagnostic data
t11 Analyze and update the database of academic results
t12 Analyze and update the data of the AI-based learning 

complex

The  consolidated  performance  dashboard  distils  seven  orthogonal  indicators  into  a  single 
comparative lens, revealing how the AI-driven adaptive platform reshapes the learning ecology 
relative to a conventional, accessibility-augmented LMS; all quantitative presented in Table 3.

Table 3

Consolidated performance (traditional vs AI-based) (author's research)

Operational Factor Traditional 
LMS

AI-adaptive 
platform

Performance
factor

Mean post-test score (%) 71% 80% AI dynamically adapts 
content to individual 

knowledge gaps, 
optimizing 

comprehension and 
retention.

Course-completion 
(retention) rate

70 % 90 % Adaptive learning 
pathways and continuous 

feedback keep students 
motivated and aligned 
with achievable goals.

Daily on-task engagement 
(minutes)

32 41 Personalized prompts and 
interactive content.

WCAG 2.1-AA compliance (% 
criteria met)

72 % 97% AI systems automatically 
adjust UI/UX for 

accessibility based on 
user real-time needs.

Drop-out rate 12% 4% Early risk detection and 
proactive support from 

AI agents reduce 
disengagement.

Content-update latency days) 14 2 AI integrates real-time 



feedback for rapid 
updates.

Personalisation index (0 – 1 
scale)

0 0.85 AI models continuously 
tailor learning paths 

using psychometric and 
behavioral data, unlike 

static LMS flows.

Comparsion in table 3 shows that the AI-adaptive learning platform surpasses a conventional 
LMS on every monitored axis.  Average post-test achievement rises from seventy-one to eighty 
percent,  indicating  a  relative  gain  of  roughly  thirteen percent  in  overall  mastery.  Completion 
improves even more sharply, with nine learners in ten finishing the course versus seven in ten 
under  the  traditional  system,  a  twenty-percentage-point  uplift  that  directly  reduces  wasted 
enrolments. Day-to-day engagement deepens as well: students spend forty-one minutes per day 
actively working in the adaptive environment, nine minutes – or about twenty-eight percent – 
longer than their peers on the legacy platform, a signal of heightened motivation and sustained 
attention. Finally, the personalisation index jumps from zero to 0.85, confirming that more than 
four out of five learning sessions are now automatically tailored to each student’s profile.

To quantify how real-time personalisation drive final achievement on the AI-based platform, an 
multiple-linear-regression model was estimated:

Y i=β0+β1X1 i+β2 X 2 i+β3 X 3 i+ε i , (8)

where Y i – post-intervention test score of learner i,  X1 i – pre-intervention score (percentage), 

X 2 i –  AI-adaptability  index  recorded  for  the  learner  (0 – 1),  X 3 i –  average  daily  on-task 
engagement (minutes), ε i – random error term.

Multiple-linear-regression results for post-intervention performance are presented in Table 4.

Table 4
Multiple-linear-regression results for post-intervention performance

Predictor 
Variable

Coefficient Standard Error t-value p-value

Intercept (β0) 9.80 1.96 5.00 < 0.001

Pre-test score
 (β1)

0.62 0.07 8.86 < 0.001

AI-adaptability 
(β2)

11.5 3.1 3.71 < 0.001

Engagement 
minutes (β3)

0.21 0.08 2.63 0.009

The regression results show that every additional percentage point earned on the pre-test is 
associated with a 0.62-point rise on the post-test, confirming prior knowledge as a basic driver of 
later  success,  yet  the  dominant  influence  comes  from  adaptive  personalisation:  moving  the 
AI-adaptability index from 0 to 1 predicts an average gain of 11.5 – by far the largest single effect  
in the model.

5. Conclusions



In  conclusion,  this  study  demonstrates  that  the  development  of  an  inclusive  educational 
information  system  powered  by  an  integrated  AI  assistant  represents  a  critical  advancement 
toward ensuring equitable access to high-quality education for learners with special educational 
needs. 

The proposed framework systematically merges regulatory compliance, adaptive pedagogical 
methodologies,  and  state-of-the-art  technological  components  –  including  generative  AI, 
reinforcement learning, cloud-based infrastructure, and privacy-preserving analytics. The formal 
model  articulates  how  personalized  educational  pathways  can  be  dynamically  generated  and 
continuously refined through diagnostic data, contextual adaptation, and real-time performance 
feedback. By embedding this logic within a reinforcement learning paradigm, the system not only 
responds to immediate learner needs but evolves intelligently over time,  aligning instructional 
strategies with individual variables. 

In  result,  this  work  offers  a  scalable  and  resilient  blueprint  for  future  digital  learning 
ecosystems that aspire to combine inclusivity and personalization.

Declaration on Generative AI

During the preparation of this work, the authors used GPT-4 in order to perform grammar and 
spelling checks. After using this tool, the authors reviewed and edited the content as needed and 
take full responsibility for the publication’s content.
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