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Abstract
The paper presents a model for the helicopter turboshaঃ engine gas temperature sensor thermocouple
dynamics  modeling  based  on a  heat  transfer  physical  model  combination,  a  recurrent  LSTM neural
network with an attention mechanism, and an adaptive Kalman फ़lter. The thermocouple discrete model is
obtained that takes  into  account the heat  capacity  and thermal  resistance,  using the  expansion of  a
nonlinear  dependence  in  the  operating  point  vicinity  through  a  Taylor  series.  A  modiफ़ed  LSTM
architecture  is  developed that accepts  engine parameters  as  input,  transformed through an attention
mechanism to extract relevant features. The neural network output is corrected by an adaptive Kalman
फ़lter,  which is  able to adjust  the  noise  variance at  each step and also suppresses  out-of-band signal
components  using  a  bandpass  फ़lter.  A  computational  experiment  showed  that  the  reconstructed
temperature in front of  the compressor turbine curve accurately  reproduces the reference signal:  the
values do not deviate by more than 2...3 K, and the absolute error is kept within ± 1 K in the vast majority
of  points.  To  evaluate  the  training  characteristics,  two  integral  indicators  were  used:  the  eॠciency
coeॠcient  Keࡰ and the quality coeॠcient  Kquality, which, in comparison with classical LSTM, GRU, and
RNN,  showed  the  adaptability  and  convergence  best  balance  (Keࡰ up  to  0.991,  Kquality up  to  0.989).
Additional  analysis  on  the  accuracy,  precision,  recall,  and  F1-score  metrics  conफ़rmed  the  model's
superiority (up to 0.993, 0.988, 0.986, and 0.987, respectively).
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1. Introduction

In modern helicopter  turboshaঃ engines (TE),  accurate  gas temperature measurement is  a key
factor in ensuring optimal operation, reducing component wear, and increasing overall य़ight safety
[1–3]. Thermocouples have traditionally been used as the main sensing element [4, 5] for such
measurements, but with rapid load changes and pressure य़uctuations, classical signal processing
algorithms [6, 7] exhibit signiफ़cant delays and errors. This is especially critical in helicopter य़ight
conditions  [8,  9],  where the  speed and  accuracy of  the  engine control  systems eॠciency  and
overheating protection data are directly aढ़ected.

The research relevance is due to increased requirements for aviation equipment eॠciency and
environmental friendliness, as well as the need for helicopter resource capabilities to expand in
severe and changeable weather conditions [10]. The intelligent adaptive thermocouple model's use
will reduce the risk of thermal damage to turbine blades, optimize fuel consumption, and reduce
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accidents associated with the temperature conditions incorrect diagnostics. The intelligent adaptive
thermocouple model integration into on-board monitoring systems creates the prerequisites for the
predictive maintenance development and the operating helicopter TE process further automation
[11, 12]. 

In  this  research,  an  intelligent  adaptive  thermocouple  model  is  built  on  modern  machine
learning methods [13, 14] and digital फ़ltering [15, 16], which allows the temperature estimation
parameters  automatic  adjustment in real  time.  Due to  self-adjustment to  the  gas  य़ow current
dynamic  characteristics,  including  pressure  pulsations,  variations  in  fuel  composition,  and
temperature gradients in the channel [17], the developed model can signiफ़cantly reduce constant
and  dynamic  measurement  errors.  As  a  result,  the  response  speed  during  transient  engine
operation modes increases, and the thermal state control system improves stability.

2. Related works

Modern research in the helicopter TE gas temperature parameters measuring फ़eld emphasizes the
data coming from thermocouples accuracy and critical importance [4, 5, 10]. Under the pressure
pulsations, vibrations, and high temperatures inय़uence, traditional signal processing methods, such
as uncontrolled noise फ़ltering [15, 16, 18] or static calibration tables [6, 7], demonstrate signiफ़cant
errors and delays in response time. The elimination of these errors is relevant in transient engine
operating modes, when timely adjustments are important to prevent overheating and component
wear.

Machine learning methods, in particular neural networks [19–23] and Kalman फ़lters [24–27],
are  increasingly  used  to  improve  the  measurements  accuracy  and  eॠciency.  Thus,  in  [19],  a
multilayer neural network with a closed dynamic compensation loop was proposed, which, aঃer
280  training  epochs,  achieved  a  99.5%  accuracy  when  integrating  thermocouple  signals,
signiफ़cantly surpassing classical median-recursive [28] and recursive फ़lters [29] in the फ़rst and
second kinds of reducing errors. Similarly, the radial-basis neural networks used in combination
with a multidimensional Kalman फ़lter made it possible to ensure the accuracy of the identifying
helicopter TE parameters at a 99.75% level [24].

Along with neural networks, hybrid approaches to digital फ़ltering are also being developed [30–
32].  Adaptive  फ़lters  based on classical  median and averaging algorithms,  in combination with
digital  फ़ltering  algorithms  with  a  variable  sliding  window function,  demonstrate  better  noise
suppression  characteristics  without  signiफ़cant  dynamic  response  loss  [33].  However,  their
eॠciency decreases with strong nonlinearities and sharp transient processes under conditions that
stimulate the search for new फ़ltering structures and self-tuning algorithms in real time.

Despite  the  successes  achieved,  there  are  still  unanswered  questions  that  require  further
development of intelligent adaptive models. Balancing the onboard computers computing resources
and the  model  complexity  remains  a  problem,  since  many methods  require  GPU acceleration,
which is not available in aircraঃ controllers. At the same time, the algorithm's stability in extreme
weather conditions and sensor degradation in the फ़eld has not been tested extensively enough.
Also, preventing issues of overफ़tting with limited training datasets and ensuring the model's ability
to train online on य़ying platforms are open.

Thus, there is an urgent need to develop an intelligent adaptive thermocouple model that would
combine deep learning methods (e.g., recurrent neural networks with attention mechanisms) and
digital  फ़lters  (adaptive Kalman फ़lter  with  frequency domain फ़ltering),  taking into  account the
avionics real limitations. The developed model should provide dynamic compensation and self-
tuning  for  changing  engine  operating  modes,  minimize  response  delays,  and  maintain  high
measurement accuracy even with insuॠcient training data and limited processing resources.



3. Materials and methods

3.1. The thermocouple dynamic model development

Based on [4,  5],  the  thermocouple  is  modeled as  a  single-circuit  heat-capacitive  element  with
thermal capacitance C and thermal resistance R relative to the gas as:

C ∙
d T C (t )

dt
+
T C (t )−TG (t )

R
=0 , (1)

where TС(t) is the thermocouple junction temperature,  TG is the helicopter TE gas in front of the
turbine compressor true value.

For the explicit Euler scheme further application (1) is rewritten as:

dT C (t )

dt
=

1
τ
∙(TC (t )−TG (t )) , (2)

where τ = C · R.
Discretization (2) with a step Δt using the explicit Euler scheme has the form:

TC [k+1 ]=TC [k ]+∆ t ∙(−1
τ

∙ (TC [k ]−TG [k ])). (3)

To account for small temperature deviations around the operating point T0, when high accuracy
does not require taking into account all  higher orders of nonlinearity, the  TC dependence local
approximation using a polynomial is  used.  Assuming that  f(TC) = exp(−a ·  TC),  for an arbitrary
smooth function  f(TC) around the operating point  T0, its Taylor series consists of the following
components:

f (TC )=∑
n=0

∞ f (n )
(T 0)

n!
∙ (TC−T 0)

n
=f (T 0)+ f

'
(T 0) ∙ ∆T+

f ' ' (T 0)

2!
∙ (∆T )

2
+
f ' ' ' (T 0)

3 !
∙ (∆T )

3
+…, (4)

where ΔT = TС − T0.
In (4),  the zero-order term  a0 =  f(T0) is  a constant “oढ़set”  component that sets the baseline

response level of the thermocouple. The फ़rst-order linear term a1 · ΔT =  f'(T0) · (TC −  T0) gives a
proportional dependence of the output signal on the temperature deviation, which characterizes

the sensor sensitivity. The second-order quadratic term  a2 ∙ (∆T )
2
=
f ' ' (T 0)

2!
∙ (TC−T 0)

2 reय़ects the

response curvature,  since  a large ∣ΔT∣  value this term begins to introduce corrections that  are
asymmetric in magnitude,  aढ़ecting distortions during rapid temperature changes.  Higher order

terms (n ≥ 3)  an ∙ (∆T )
n
=
f ' ' (T 0)

n!
∙ (TC−T 0)

n with each increase in  n their contribution at small ΔT

decreases as  O(ΔTn),  but can become signiफ़cant under extreme conditions.  The remainder term
estimation (Lagrange form) allows us to strictly estimate how much we are mistaken by truncating
the series to the N-th order:

RN=
f (N+1) (ξ )

(N+1)!
∙∆T N+1 , ξ∈ (T 0 ,TC ) . (5)



Denoting the increment as ΔT =  TC −  T0 and the series coeॠcients as  a1 =  f′(T0),  a2=
f ' ' (T 0)

2!
,

a3=
f ' ' ' (T 0)

3 !
,… the linear term contribution to the total change f(TC) − f(T0) is equal to a1 · ΔT, and

this approximation “quality” is estimated by the relative contribution as:

η1=
|a1 ∙ ∆T|

∑
n=1

∞

|an ∙ ∆T
n|
≈

|a1 ∙ ∆T|

|a1 ∙ ∆T|+|a2 ∙ ∆T
2|
=

|f ' (T 0) ∙ ∆T|

|f ' (T 0) ∙ ∆T|+|f
' '
(T 0)

2!
∙ (∆T )

2|
.

(6)

For small ΔT the second approximation gives

η1≈
1

1+| f ' ' (T 0)

2 ∙ f ' (T 0)|∙ ∆T
,

(7)

which clearly shows how the linear term relative “strength” decreases with increasing ∣ΔT∣ and the
second derivative.

Similarly, taking  a1 =  f′(T0),  a2=
f ' ' (T 0)

2!
,  a3=

f ' ' ' (T 0)

3 !
,…, the quadratic term contribution to the

total change f(TC) − f(T0) is equal to a2 · ΔT2, and its relative “strength” is estimated as the फ़rst two
terms sum fraction:

η2=
|a2 ∙ ∆T

2|

∑
n=1

∞

|an ∙ ∆T
n|
≈

|a2 ∙ ∆T
2|

|a1 ∙ ∆T|+|a2 ∙ ∆T
2|
=

|f
' '
(T 0)

2 |∙|∆T|2

|f ' (T 0) ∙ ∆T|+|f
' '
(T 0)

2 |∙|∆T|2
=

1

2 ∙|f ' (T 0)|

|f ' ' (T 0)|∙|∆T|
+1

. (8)

From (8) it can be seen that when

|∆T|≫
2 ∙|f ' (T 0)|

|f ' ' (T 0)|
(9)

the  quadratic  term begins to  dominate  (η2 → 1),  and for small ∣ΔT∣  its  inय़uence is  negligible
(η2 → 0).

For n ≥ 3, the contribution of each n-th term an ∙ ∆T
n
=
f (n)

(T 0)

n!
∙ (TC−T 0)

n to the total change Δf

can be estimated through this term relative “strength” as:

ηn=
|an ∙ ∆T

n|

∑
m=1

∞

|am ∙ ∆T
m|
≈

|f
(n)
(T 0)

n! |∙|∆T|n

∑
m=1

∞

|f
(m)
(T 0)

m! |∙|∆T|m
, (10)

where N ≥ n. For the ∣ΔT∣ small values, the फ़rst (linear) and second (quadratic) terms will be the
main ones, and for n ≥ 3, ηn = O(∣ΔT∣n−1) order their relative contribution decreases rapidly.

For  the  remainder  term rigorous  estimate  aঃer  truncating  the series  to  order  N,  using  the
Lagrange form (5), an upper estimate is obtained in the form:

|RN|≤
max

u∈ [T 0 ,TC ]
f (N+1) (u )

(N+1) !
∙|∆T|

n+1
. (11)

From (11) it is clear that for ∣ΔT∣ < 1 the RN value and all higher terms decrease as O(∣ΔT∣n+1), and
it is suॠcient to take N = 2 or N = 3 to ensure the given accuracy.



Thus, when expanding the thermocouple response function in a Taylor series, the zeroth order
n = 0 speciफ़es a constant “biased” component, the फ़rst order  n = 1 ensures proportional (linear)
following of the output signal to the temperature deviation, the second order  n = 2 introduces a
correction for the response curvature and thus takes into account average nonlinear eढ़ects, and
the higher-order terms n ≥ 3 describe more subtle, high-order nonlinearities, signiफ़cant mainly for
extreme variations in ΔT. In practice, for the helicopter TE gas temperature range, it is usually
suॠcient to truncate the series at n = 2 or n = 3, since the remainder term RN becomes negligibly
small.

3.2. Development of a recurrent neural network with attention mechanisms and a 
Kalman ਌ilter

It is assumed that at each k-th step the vector acts at the neural network input:

xk=[TC [k ] ,uk ] , (12)

where uk are additional parameters (य़ow rate, pressure, etc. [34]).
In this  research,  the developed recurrent  neural  network with attention mechanisms and a

Kalman फ़lter basis is the LSTM network (Figure 1), whose use is justiफ़ed by the high accuracy (99%
and higher) in solving applied problems of monitoring helicopter TE [19, 25, 35].

Figure 1: The developed model structural diagram with LSTM network, attention mechanism and
adaptive Kalman फ़lter. (author's development).

It is assumed that hk∈ Rn is a hidden state, ck is the LSTM network cell state. Then:

ik=σ (W i ∙ xk+U i ∙ hk−1+bi) ,  f k=σ (W f ∙ xk+U f ∙ hk−1+b f ) , ok=σ (W o ∙ xk+U o ∙ hk−1+bo) ,

~ck=tanh (W c ∙ xk+U c ∙ hk−1+bc ) , ck=f k⊙ ck−1+ik⊙
~ck , hk=ok⊙ tanh (ck ) .

(13)

To focus on the most “important” past states {h1, …, hk−1}, an attention mechanism is introduced,
presented in the context:



ek , j=vT ∙ tanh (W 1 ∙ hk+W 2 ∙ h j) ,  α k , j=
exp (ek , j)

∑
m=1

k−1

exp (ek , j)

, ck
att
=∑

j=1

k−1

α k , j ∙ h j . (14)

Then the “enriched” hidden state is deफ़ned as:

   ~hk=tanh (W h [hk ; ck
att ]) . (15)

Taking into account the above, the gas temperature prediction is determined as:

T̂G [k ]=ωo
T ∙
~
hk+bo . (16)

The adaptive Kalman फ़lter combines the neural network output and the thermocouple dynamic

model  in the  linear  state  system form  sk=[TC [k ] , ṪC [k ] ]
T
 and measurements  zk=T̂G [k ],  which

allows the temperature estimate recursive prediction and correction. Then the prediction is carried
out according to the expression:

sk|k−1=F ∙ sk−1|k−1 , Pk|k−1=F ∙ Pk−1|k−1 ∙ F
T
+Qk , (17)

where F=(
1 ∆ t

0 1−
∆ t
τ ), and the correction is according to the expression:

K k=Pk|k−1 ∙ H
T ∙(H ∙ Pk|k−1 ∙ H

T
+Rk)

−1
, sk|k=sk−1|k−1+K k ∙ ( zk−H ∙ sk|k−1) ,

Pk|k=( I−K k ∙ H ) ∙ Pk|k−1 , H=[1 0 ] , 
(18)

where  Rk is  the  measurement  noise  estimate,  adaptively  adjusted,  according  to  the  residuals
recurrent estimate:

Rk=λ ∙ Rk−1+(1−λ ) ∙ ( zk−H ∙ sk|k−1)
2 , (19)

where 0 < λ < 1. 
Taking  into  account  the  helicopter  avionics  limitations  (passing  low-frequency  thermal

oscillations, damping high-frequency noise), to isolate in the thermocouple signal the frequency
range  corresponding  to  the  gas  temperature  change  actual  dynamics  (from  ω1 to  ω2),  and  to
suppress noise components outside this interval, a bandpass फ़lter is used, whose transfer function
is described by the expression:

H ( j ∙ω)=

1
ω0

∙ j ∙ω

1+ j ∙
ω
ω0

∙exp (− j ∙ω ∙ τ d ) , (20)

where  ω0 is the cutoढ़ frequency (~ 0.1…10 Hz depending on the gas dynamics),  τd is the signal
transmission delay.

In the time domain, convolution is described by the expression:

y (t )=∫
−∞

∞

h (τ ) ∙TC (t−τ )d τ . (21)

Thus, the developed neural network with an attention mechanism and an adaptive Kalman फ़lter
(see Figure 1) is trained in real time [36], minimizing the total functional:

L=∑
k
(~TG [k ]−TG

true [k ])
2
+γ ∙∑

k
‖K k−K k−1‖

2
, (22)

with a regularizer for smooth changes in Kalman coeॠcients.



Backpropagation takes a step along the gradient [36, 37]:

θ←θ−η ∙
∂ L
∂θ

, 
∂ L
∂θ

=∑
k

2 ∙ (
~TG [k ]−TG [k ]) ∙

∂~TG [k ]

∂θ
+2 ∙ γ ∙ (K k−K k−1) ∙

∂ K k

∂θ
. (23)

In practical implementation, all parameters (Wi, Ui, bi, τ, ω0, adaptive covariances Qk, Rk, etc.) are
selected based on historical data of experimental changes in helicopter TE parameters.

3.3. The developed model so࣓ware implementation

The developed model is implemented in the Matlab Simulink R2014b soঃware environment (Figure
2), where the input signal  TС[k] and the additional parameters uk vector are fed to the subsystem
“Thermocouple dynamic model,” implemented by the MATLAB Function block with the equation

TC [k+1 ]=TC [k ]+∆ t ∙(−1
τ

∙ (TC [k ]−TG [k ])). Normalized data in the sequence form are fed to the

LSTM cell implemented by the MATLAB Function block with the corresponding equations (13),
and then to the attention mechanism, also implemented by the MATLAB Function block with
equation (14), which forms a T̂G [k ] estimate according to (16). The obtained estimate, together with

the state vector sk=[TC [k ] , ṪC [k ] ]
T
 is fed to the Adaptive Kalman Filter subsystem, implemented as

a  series-connected  Discrete  State-Space,  MATLAB  Function,  and  Kalman  Filter  blocks,  which
outputs the puriफ़ed value TG [k ]. Then the signal TG [k ] is फ़ltered by frequency content through the
Digital Filter Design and BandPass Filter blocks, and the फ़nal signal Tout[k] is output to Scope.

Figure 2: The developed model scheme soঃware implementation in the Matlab Simulink R2014b
soঃware environment. (author's development).

4. Case study

4.1. The initial data analysis and pre-processing

In the computational experiment for the helicopter TE's thermal dynamics modeling in the nominal
operating  mode,  the  TV3-117 engine  [8,  9,  11,  19,  24,  35,  36]  gas  temperature in front  of  the
compressor turbine TG(t) real measurement number was used. The measurements were carried out
on board the serial Mi-8MTV helicopter using a standard sensor, which is a set of 14 dual chrome-
alumel thermocouples of the T-102 type [8, 9, 11, 19, 24, 35, 36]. The tests were carried out at a
2500-meter altitude above sea level under standard atmospheric conditions (air temperature ≈ 268
K, pressure ≈ 74 kPa). The signals were recorded with a Δt = 0.25 seconds periodicity (sampling
frequency  4  Hz)  for  320  seconds,  which  yielded  1280  readings  in  the  फ़nal  sample.  The
thermocouple signals were preprocessed by the onboard controller. A two-stage algorithm was
used to फ़lter out noise: smoothing with a sliding window of average length 11 readings (Savitzky–
Golay,  third-order  polynomial  [38])  and  removing  outliers  according  to  the  “±3σ”  principle,
followed  by  the  gaps  linear  interpolation.  When  correcting  for  systematic  errors,  the
thermocouples calibration characteristic (error ≤ 1.5 K) and a correction for य़ow velocity (up to 20



m/s) were taken into account. Aঃer cleaning and checking for homogeneity (Shapiro–Wilk and
Durbin–Watson  [39]  tests),  the  time  series  was  reduced  to  a  single  scale  using  classical  z-
normalization:

z (TG)i=

TGmeas

(i)
−

1
N
∙∑
i=1

N

TGmeas

(i)

1
N
∙∑
i=1

N

(TGmeas

(i)
−

1
N
∙∑
i=1

N

TGmeas

(i) )
2
, (24)

where N = 4 · 320 = 1280.
According to the data in Figure 3, the gas temperature in front of the turbine maximum absolute

temperature reached 1140 K in the exposure approximately 130...160 seconds interval; aঃer that, a
smooth decline to 1090 K is observed by the record end. The resulting normalized series  z(t) was
then used  in  adaptive  algorithms for  estimating  the  heat  transfer  model  and  for  constructing
correlation function parameters with the engine output parameters.

Figure 3: The gas temperature in front of the compressor turbine initial signal diagram, recorded
on board the helicopter by a standard sensor. (author's development).

To form the training dataset, the gas temperature in front of the compressor turbine normalized
values were used. This dataset fragment is presented in Table 1. The tests conducted conफ़rmed that
the dataset complies with the Fisher-Pearson  [40, 41]  and Fisher-Snedecor  [42, 43] homogeneity
criteria, and these tests detailed results are recorded in Table 2.

It is noted that the signiफ़cance level  α = 0.01 was adopted in the research, since such a strict
threshold allows us to signiफ़cantly reduce the error फ़rst type probability (the null hypothesis false
rejection) and thereby increase the obtained conclusion’s reliability regarding the training dataset
homogeneity.  When analyzing  the  helicopter  TE's  gas  temperature,  the  statistically signiफ़cant
eढ़ect  of  incorrect  recognition  could  lead  to  erroneous  engineering  solutions  and  emergency
operating modes, so the stricter criterion choice is justiफ़ed by the need for strict safety control and
the results reliability. The  α = 0.01 use provides suॠcient tests of statistical power with a 1280
readings  data  amount,  which  makes  the  conclusions  about  the  gas  temperature  time  series
behavior justiफ़ed.



Table 1
The training dataset fragment

Number Gas temperature normalized value

1 0.986

... ...

256 0.983

... ...

512 0.990

... ...

768 0.985

... ...

1024 0.984

... ...

1280 0.991

Table 2
The training dataset homogeneity assessing results

Criterion Calculated
value

Critical
value

Decision

Fisher-Pearson 9.112 9.2 The training dataset is homogeneous since
the  Fisher-Pearson  and  Fisher-Snedecor
criteria calculated values are less than the
critical values.

Fisher-Snedecor 1.128 1.139

To  assess  the  training  dataset's  (see  Table  1)  representativeness,  the  k-means  clustering
algorithm [44, 45] was used. The original data were randomly divided in a 2:1 ratio, yielding 67 %
(858 objects) for training and 33 % (422 objects) for validation. When analyzing the training part
using the k-means  method,  the  cluster  number  was  फ़xed in  advance  at  eight,  which made it
possible to identify eight stable groups (classes I…VIII) and, thus, conफ़rm the training and test
subdatasets  similar  internal  structure  (Figure  4).  It  is  noted  that  the clustering  quality  can  be
assessed, for example, through the squared distances intracluster sum:

W k=∑
i=1

k

∑
x j∈ C i

‖x j−μi‖
2
, (25)



where Ci is the i-th cluster,  μi is its center. The clusters optimal number was chosen from the
“elbow” [46] on the diagram of Wk versus k.

Thus, from the total training dataset of 1280 normalized gas temperature values, 858 (67 %) were
deफ़ned as the main training subdataset, and 422 (33 %) as the test subdataset.

a

b

Figure 4: Cluster analysis results: (a) is the training subdataset; (b) is the test subdataset. (author's
development).

4.2. The computational experiment results

The computational  experiment's  main result  is  the gas temperature in front of the compressor
turbine signal resulting diagram (Figure 5), obtained using the developed model (see Figures 2 and
3).As can be seen from Figure 5, the resulting model reproduces the gas temperature dynamics
reference curve's key characteristics: a smooth rise from the initial 1105 K to peak values of about
1140 K in the 120...160 seconds range,  followed by a uniform decrease to about 1090 K by 310
seconds,  while  the य़uctuation amplitude  and  the  oscillation frequency composition practically
coincide with the original experimental data. Deviations for each reading do not exceed 2...3 K, and
not only the general trajectory preservation but also small peaks and troughs indicate that the



model  adequately  takes  into  account  the  main  heat  exchange  and  dynamic  processes  in  the
thermogasdynamic य़ow, which indicates high accuracy and low modeling error (Figure 6).

Figure  5: The  gas  temperature  signal  in  front  of  the  compressor  turbine  resulting  diagram.
(author's development).

Figure 6: The gas temperature signal in front of the compressor turbine simulation error resulting
diagram. (author's development).

Figure  6  shows  that  the  approximated  temperature  from  the  “reference”  gas  temperature
absolute deviations at most moments do not exceed ±1 K and are concentrated in a narrow range
near zero, which indicates a small shear system. Single bursts up to +3…+3.5 K are observed around
120 seconds and at the experiment's end, and the maximum negative emissions up to –3…–4.5 K
areapproximately at 180 and 250 seconds and are probably associated with transient phenomena
and abrupt changes in heat exchange. Time intervals from 50 to 100 seconds and from 200 to 240



seconds  are  characterized  by  higher-frequency  but  small-scale  oscillations  (±1…2  K),  which
indicates the य़ow dynamic य़uctuations adequately account. The average error value is close to
zero, and rare large emissions are easily compensated for by the model's local reफ़nement.

Figure 7 shows the linear term (n = 1) contribution diagram, which is the value a1 · (TC(t) − T0)
time diagram, illustrating the proportional component and its dynamics over the entire ΔT range.

Figure 7: The linear term (n = 1) contribution diagram. (author's development).

Figure 7 shows the parameter a1 · (TС(t) −  T0) evolution, which characterizes the thermocouple
output signal relative contribution dependence on the temperature increment ΔT Taylor expansion
approximation linear term, experimental recording over 320 seconds. In the initial phase (0…100
seconds), a steady increase in the parameter  a1 · (TС(t) −  T0) is observed from negative values  to
about +25 K peak, which corresponds to an increase in ΔT in the warm-up mode and the linear
response predominance  at  small  deviations  from the operating  point.  In  the  100…150  seconds
region, the linear term drops sharply to negative values contribution (about –8…–12K), reय़ecting
the transition to stronger nonlinear eढ़ects and the quadratic inय़uence and higher orders when
approaching the maximum gas temperature. In about 150 seconds, there is an instantaneous jump
in the parameter a1 · (TС(t) − T0), probably associated with the engine operating mode restructuring
or switching the फ़ltering scheme in the Simulink model,  aঃer  which,  in the 150…320 seconds
interval, the contribution of the linear term steadily decreases to –30…–35 K, which indicates the
nonlinear corrections dominance and the error accumulation at large temperature deviations from
the base point. During the entire experiment,  a1 · (TС(t) −  T0) (± 2…3 K) small य़uctuations reय़ect
य़ow pulsations and residual noise, eढ़ectively smoothed by the Kalman फ़lter.

Figure 8 shows the parameter a1 · (TС(t) −  T0) evolution, which characterizes the thermocouple
output signal relative contribution dependence on the temperature increment ΔT Taylor expansion
approximation linear term, experimental recording over 320 seconds.



Figure 8: The quadratic term (n = 2) contribution diagram. (author's development).

Figure 8 shows that the approximation a2 · (TC(t) − T0)2 changes quadratic term contribution in a
wide range from 0 to 1000 K2 depending on the operating mode: in the initial heating phase (0…50
seconds) with small temperature increments, the quadratic contribution is almost absent, then in
the 50…90 seconds range it quickly increases to ~600 K2, reय़ecting the increase in nonlinearity
during  the  transition  to  moderate  ΔT. Upon  reaching  stabilization  (90…140  seconds),  it  again
decreases to zero, to a 550 K2 peak at about 160 seconds during the second short-term accelerated
acceleration (probably associated with a change in the compressor load). During the फ़nal intensive
run  (200…300  seconds),  the  quadratic  contribution  steadily  increases,  reaching  about  950  K2

maximum before the experiment end, which indicates that with large temperature diढ़erences, it is
the  ΔT second  power  that  becomes  the  approximation  error  dominant  source.  Small-scale
य़uctuations (±20 K2) correspond to residual य़ow pulsations and sensor noise.

Figure  9  shows  the  residual  term  R2(t)  diagram,  which  is  the  residual  term  R2(t)  estimate
showing where and when the higher terms become noticeable.

In  Figure  9,  the  second-order  Taylor  series  R2(t)  residual  term,  proportional  to  the  gas
temperature increment ΔT3 cube, demonstrates a clear dependence on the heat य़ux dynamics: in
intervals relative to the steady-state regime (approximately 0…40 seconds, 100…150 seconds, 180…
240 seconds), the  R2 value remains close to zero, which indicates the फ़rst two expansion terms
dominance and the high-order nonlinear eढ़ects negligibility. During transient processes (peaks in
the 50…80 seconds region, a sharp jump around 160 seconds, and the most pronounced rise in the
260…300  seconds  range),  the  R2 value  increases  to  2…3  ·  104 K3,  indicating  the  cubic  term's
signiफ़cant contribution and the need to take into account higher orders with rapid temperature
variability.  The  obtained  results  are  fully  consistent  with  the  conclusions  about  the  adaptive
thermocouple model self-tuning, where in transient modes the model should adjust the फ़lter and
neural network parameters to compensate for the signal nonlinear and dynamic distortions.

Figure 10 shows the adaptive Kalman coeॠcient evolution diagram, which is the parameter Kk

time diagram for the aim of analyzing the फ़lter adjustment to changes in noise and model during
helicopter य़ight.



Figure 9: The second-order Taylor series residual term dynamics diagram. (author's development).

Figure 10: Adaptive Kalman coeॠcient evolution diagram. (author's development).

In Figure 10, the adaptive Kalman coeॠcients evolution, it is evident that in the initial phase
(0…≈150 seconds) and with relatively smooth temperature changes,  both gain components,  the

temperature  K k
t  (solid  curve)  and  the  derivative  K k

d (dash-dotted  curve),  य़uctuate  in  an
approximately 0.1…0.15 narrow range,  which provides a  compromise between the trust  in  the
model and the sensor signal. With a sharp transition at about 150…160 seconds, both coeॠcients
tend to zero, which corresponds to a sharp increase in the residuals and a decrease in the noisy
measurements inय़uence on the adaptive estimate Rk according to (19).



Figure 11 shows the diढ़erence diagram in gas temperature approximations for  N and  N + 1.
Figure 11 illustrates how much adding each subsequent term in the series improves (or does not)
the model accuracy.

Figure  11: The diढ़erence diagram in gas temperature approximations at  N and  N + 1. (author's
development).

The  presented  diagram  of  the  diढ़erence  in  the  फ़rst  (N =  1)  and  second  (N =  2)  order
approximation error squares (Figure 11) shows that the quadratic term inclusion in the Taylor
expansion provides the greatest gain precisely at the sharp transient process moments, when ΔT
reaches  comparatively  large values:  the  diढ़erence peaks  up  to  900…1000 K2 fall  on  the  rapid
increase and decrease intervals in temperature (approximately 50…80 seconds, 140…155 seconds,
and 260…305 seconds). At the same time, in the smooth change phases (0…30 seconds, 110…130
seconds, 180…200 seconds), the second-order advantage tends to zero (< 50 K2). This is completely
consistent with the quadratic term η2 relative contribution estimate from (8)–(9): At |ΔT| > 1 K, its
inय़uence increases sharply, and for small deviations, the linear term turns out to be suॠcient for
an accurate approximation.

4.3. The results obtained the quality evaluation

To evaluate the developed model with an LSTM network, an attention mechanism, and an adaptive
Kalman फ़lter (Figure 1) eॠciency, used to the helicopter TE gas temperature sensor thermocouple
model, two key indicators were selected: the eॠciency coeॠcient and the quality coeॠcient [47,
48]. The eॠciency coeॠcient (Keॄ) shows how quickly and adequately the network adapts to errors
in the optimization process and is calculated as the change ratio in the loss function at the current
iteration to the change in the network parameters in the same iteration. The quality coeॠcient
(Kquality) evaluates the approximation accuracy and the model convergence stability, calculated as
the decrease ratio in the loss function at the current step to the previous iterations total losses.
These indicators provide the LSTM network eॠciency comprehensive assessment, facilitating its
training characteristics objective analysis and the gas temperature sensor signals approximation
accuracy. The eॠciency and quality coeॠcients are calculated as [47, 48]:



K eff=
|E (θk )−E (θk−1)|

‖θk−θk−1‖
, K quality=

E (θk−1)−E (θk )

E (θ0)−E (θk−1)
, (26)

where E(θ0) is the loss function initial value, E(θk) is the loss function value at the current iteration,
E(θk–1) is the loss function value at the previous iteration,  and ‖θk–1 –  θk‖  is  the LSTM network
parameters change rate at the current iteration.

Table 3 presents a comparative analysis of the helicopter TE gas temperature in front of the
compressor turbine sensor signals approximating eॠciency using the developed model with an
LSTM network, an attention mechanism, and an adaptive Kalman फ़lter, as well as the recurrent
neural networks and other traditional architectures adapted to similar problems [8, 9, 11, 19, 24, 35,
36, 47]: a traditional LSTM network [49, 50], a traditional GRU network [51], and a traditional RNN
network [52].

Table 3
The helicopter TE gas temperature in front of the compressor turbine sensor signals approximation
eॠciency evaluation comparative analysis results

The recurrent
neural network

architecture

In the noise absence With the white noise addition with
zero mathematical expectation and σ =

0.25

Eॠciency
coeॠcient (Keॄ)

ইuality coeॠcient
(Kquality)

Eॠciency
coeॠcient (Keॄ)

ইuality coeॠcient
(Kquality)

Developed model
with LSTM

network, attention
mechanism and
adaptive Kalman

फ़lter

0.991 0.989 0.982 0.980

Traditional LSTM
network [49, 50]

0.982 0.977 0.965 0.961

Traditional GRU
network [51]

0.965 0.960 0.944 0.938

Traditional RNN
network [52]

0.943 0.938 0.929 0.921

Comparative analysis (Table 3) showed that the developed model with LSTM network, attention
mechanism, and adaptive Kalman फ़lter outperforms traditional recurrent network architectures in
both metrics  both in  the noise absence (Keࡰ =  0.991;  Kquality =  0.989)  and with the white  noise
addition (σ = 0.25) (Ke0.982 = ࡰ; Kquality = 0.980). In turn, the traditional LSTM network demonstrated
slightly lower values (without noise:  Ke0.982 = ࡰ;  Kquality = 0.977; with noise:  Ke0.965 = ࡰ;  Kquality =
0.961), followed by the GRU network (Ke0.965 = ࡰ, Kquality = 0.960 and Ke0.944 = ࡰ, Kquality = 0.938) and
a  simple  RNN network (Keࡰ =  0.943,  Kquality =  0.938 and  Keࡰ =  0.929,  Kquality =  0.921).  Thus,  the
proposed architecture provides faster  adaptation to errors and more stable convergence in the
helicopter TE gas temperature signals approximating.

At the developed model with an LSTM network, attention mechanism, and adaptive Kalman
फ़lter (Figure 1), eढ़ectiveness is evaluated in the next stage. The traditional metrics of accuracy,



precision, recall, and F1-score values are compared with the traditional LSTM network [49, 50], the
traditional  GRU  network  [51],  and  the  traditional  RNN  network  [52],  which  are  determined
according to the expressions:

A ccuracy=
TP+TN

TP+TN+FP+FN
, P reci sion=

TP
TP+FP

, R ecall=
TP

TP+F N
,

F 1=2 ∙
P reci sion ∙ R ecall
P reci sion+R ecall

,
(27)

where  T P=|i : y i=1∩ ŷi=1| corresponds to the number of cases when the algorithm correctly

identiफ़ed  the  anomaly  in  the  thermocouple  signal  (i.e.,  the  real  temperature  deviation  was
detected); T N=|i : y i=0∩ ŷ i=0| corresponds to the number of moments when the model correctly
recognized  the  signal  as  normal  (there  is  no  anomaly  and  the  model  did  not  detect  it);
F P=|i : y i=0∩ ŷ i=1| reय़ects  the false  alarms number,  when in  the  real  anomaly absence  the

model  erroneously  signaled  a  failure;  F N=|i : yi=1∩ ŷ i=0| shows  the  missed  errors  number,
when the real temperature deviation remained undetected by the model.

Table 4
The helicopter TE gas temperature in front of the compressor turbine sensor signals approximation
eॠciency evaluation comparative analysis results

The recurrent neural network architecture Accuracy Precision Recall F1-score

Developed model with LSTM network,
attention mechanism and adaptive Kalman

फ़lter

0.993 0.988 0.986 0.987

Traditional LSTM network [49, 50] 0.983 0.972 0.971 0.972

Traditional GRU network [51] 0.980 0.969 0.965 0.967

Traditional RNN network [52] 0.954 0.950 0.951 0.951

The results of the comparative analysis (Table 4) show that the proposed model based on the
LSTM network with an attention mechanism and an adaptive Kalman फ़lter provides the highest
performance among the considered architectures: accuracy = 0.993, precision = 0.988, recall = 0.986,
and F1-score = 0.987. The classical LSTM network is characterized by lower metric values (0.983;
0.972; 0.971; 0.972, respectively), followed by the GRU network (0.980; 0.969; 0.965; 0.967) and the
simple RNN network (0.954; 0.950; 0.951; 0.951). These results demonstrate the developed model's
excellent ability to accurately classify normal and abnormal thermocouple signals, minimizing both
false alarms and missed real deviations.

5. Discussions

The research describes the thermocouple representation as  a single-loop heat-capacity element
with heat capacity C and thermal resistance R, which is formalized by diढ़erential equation (1) and
its  discretization by the explicit  Euler  scheme in  formulas  (2)–(3).  To take  into  account  small
temperature deviations around the operating point T0, the f(TC) dependence local approximation is
introduced by expansion in a Taylor series (4)–(5), where the linear (6) and quadratic (8) terms



relative contributions are analyzed, and for order n ≥ 3 terms, an estimate is given through ηn (10)
and the residual term RN (11) upper limit. 

The  proposed  approach  is  implemented  by  a  recurrent  neural  network  with  attention
mechanisms and a Kalman फ़lter by modifying the LSTM architecture (Figure 1), which takes the
vector xk (12) as input, where uk are additional engine parameters. The hidden and cell states are
updated using the classic LSTM formulas (13), aঃer which the attention mechanism calculates the
weights using formula (14) and forms an “enriched” hidden state (15), which is used to predict the
gas temperature in the (16) form. The resulting estimate is then passed to the adaptive Kalman
फ़lter, which performs the prediction step according to expression (17) and correction according to
formula (18), where the noise variance estimate is adapted recurrently through the residuals (19).
To suppress out-of-band noise in the signal, a bandpass फ़lter with a transfer function (20) and a
convolution in the form (21) is used, and the model's फ़nal tuning is performed by minimizing the
total functional with regularization according to the Kalman coeॠcients smoothness (22).

A computational  experiment  performed using  the discrete  thermocouple  model  (3)  and the
adaptive  Kalman  फ़lter  (17)–(18)  prediction  and  correction  steps  showed  (Figure  5)  that  the
developed model accurately reproduces the gas temperature in front of the compressor turbine
reference dynamics: a smooth increase from 1105 K to ~1140 K in the 120…160 second interval and
a subsequent decrease to ~1090 K by 310 seconds, with instantaneous deviations between the real
and simulated signals not exceeding 2…3 K. The simulation errors diagram (Figure 6) demonstrates
that the absolute errors at most points are within ±1 K, and rare spikes up to +3…+3.5 K and –3…–
4.5 K (at about 120, 180, and 250 seconds) are due to transient phenomena, indicating the numerical
solution's high accuracy and low bias.

The eॠciency and quality coeॠcients used for the LSTM network with an attention mechanism
and a Kalman फ़lter adaptability and convergence comprehensive assessment are substantiated, and
then speciफ़c results of the comparative analysis are presented. Table 3 shows the  Keࡰ and  Kquality

values, where the developed model signiफ़cantly outperforms the classical LSTM, GRU, and RNN
architectures both without noise and with the white  noise  σ =  0.25 addition.  Table 4 presents
traditional  classiफ़cation  metrics  (accuracy,  precision,  recall,  and  F1  score),  conफ़rming  the
developed model's high accuracy (accuracy = 0.993; precision = 0.988; recall = 0.986; F1 score =
0.987).

Table  5  presents  the  developed  model's  main  limitations  and  corresponding  directions  for
further research.

Table 5
The helicopter TE gas temperature in front of the compressor turbine sensor signals approximation
eॠciency evaluation comparative analysis results

Number Limitation Description Prospects for further research

1 Computational
complexity

The LSTM network with attention
and  adaptive  Kalman  फ़lter  high
load  makes  implementation  on
onboard computers diॠcult.

The  lightweight  architectures
(ghost  networks  [53],  weight
quantization  [54])  development
and  hardware-accelerated
solutions.

2 Training
dataset

limitation

The  representative  data  lack  for
extreme  conditions  (transients,
extreme temperatures).

The  transfer  learning  [55]  and
synthetic  data  generation  [56]
methods  application.  The
continuous  online  learning
organization.

3 Sensitivity to Accuracy  decreases  due  to  the The  sensor  failure  detection  [57]



sensor
degradation

thermocouples  aging  or  partial
failure.

and  signal  reconstruction
mechanisms  integration  (hybrid
neuro-फ़lter schemes).

4 Assumption of
small deviations
in Taylor series

Truncating  the  approximation
series  to  a  low  order  (N =  2…3)
may not take into account strong
nonlinearities.

The adaptive choice approximation
order research and non-regularized
expansions  implementation  [58,
59] for extreme ΔT.

5 Instability
under extreme

weather
conditions

The  model's  resistance  to  sudden
pressure  changes,  vibration  and
humidity  changes  has  not  been
suॠciently tested.

Conducting  फ़eld  tests  [60]  in
various  climatic  zones  and
adapting  फ़lters  to  the  external
disturbance dynamics.

6. Conclusions

The developed dynamic thermocouple model, based on the heat balance equation discretization and
supplemented by an LSTM network with an attention mechanism and an adaptive Kalman फ़lter,
demonstrated the ability to take into account  in detail  the  main heat  exchange processes  in a
thermogasdynamic  य़ow.  The  model  eढ़ectively  integrates  a  Taylor  series  expansion  nonlinear
approximation with recurrent learning,  providing the temperature deviations adequate estimate
even at small ∆T and cleaning the signal from out-of-band noise before feeding it to the Kalman
फ़lter. 

In the computational experiment, the reconstructed gas temperature in front of the compressor
turbine signal almost completely coincided with the reference curve: an increase from 1105 to
~1140 K in 120...160 seconds and a decrease to ~1090 K by 310 seconds, while the deviations for
each reading did not exceed 2...3 K and the absolute modeling error was kept within ±1 K.

To  objectively  evaluate  the  proposed  architecture's  adaptivity  and  accuracy,  two  integral
indicators were introduced: the eॠciency coeॠcient (Keॄ) and the quality coeॠcient (Kquality), and
their comparative analysis with traditional RNN architectures was performed. It is shown that the
developed LSTM network with an attention mechanism and an adaptive Kalman फ़lter outperforms
classical LSTM, GRU, and RNN in both metrics both in a clean signal (Ke0.991 = ࡰ;  Kquality = 0.989)
and when adding white noise σ = 0.25 (Ke0.982 = ࡰ; Kquality = 0.980).

The results comparison based on the Accuracy, Precision, Recall and F1-score metrics conफ़rmed
the  developed  model  leading  position:  the  0.993;  0.988;  0.986;  0.987  values,  respectively,  are
signiफ़cantly ahead of traditional LSTM (0.983; 0.972; 0.971; 0.972), GRU (0.980; 0.969; 0.965; 0.967)
and RNN (0.954; 0.950; 0.951; 0.951).
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