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Abstract
As companies handle ever-growing stores of sensitive information, from proprietary research to customer 
data, the threat of unauthorized disclosure escalates. Traditional Data Loss Prevention (DLP) measures, 
relying on static content matching and signature-based detection, have proven inadequate in detecting 
transformed or obfuscated sensitive information, particularly in environments that embrace remote work, 
Bring Your Own Device (BYOD) policies, and third-party integrations. This paper surveys the limitations  
of such conventional DLP systems and examines novel detection methodologies, including graph-based 
semantic analysis, probabilistic bigraph models, and context-aware anomaly detection, each addressing 
distinct facets of modern data leakage scenarios. Furthermore, the paper reviews prevention strategies 
that  involve  multi-layered  defenses,  robust  encryption,  secure  file  systems,  and  dynamic  deception 
techniques to broaden the scope of adversarial deterrence.
A  primary  contribution  of  this  study  is  a  genetic-algorithm-driven  method  for  detecting  data  leaks. 
Experiments on real data-leak datasets show that the method matches or surpasses the performance of  
standard baselines,  including Naive Bayes and SVM, while  maintaining low computational  overhead. 
Future research should explore a dynamic ensemble in which the genetic algorithm assigns weights to 
multiple  detection  modules,  thereby  reducing  false  positives  and  keeping  pace  with  evolving  threat 
landscapes and corporate data practices. The paper concludes by underscoring the necessity of a multi-
layered,  continuously  evolving  DLP architecture,  arguing  that  only  through  integrated  and  adaptive 
solutions  can  enterprises  effectively  safeguard  their  critical  assets  in  an  increasingly  interconnected 
digital landscape.
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1. Introduction

In  today’s  interconnected  digital  landscape,  protecting  sensitive  corporate  data  has  become 
increasingly  critical.  Organizations  now  manage  enormous  volumes  of  both  structured  and 
unstructured data, ranging from emails and internal reports to intellectual property and customer 
records. This surge in data generation has not only heightened operational efficiencies but has also 
expanded the potential avenues for unauthorized data disclosure. Data leakage, whether through 
inadvertent  mistakes  by  insiders  or  deliberate  malicious  actions,  poses  severe  risks,  including 
significant financial  losses,  reputational  damage,  and non-compliance with stringent regulatory 
frameworks.
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Recent  research  highlights  that  traditional  security  mechanisms,  which  are  predominantly 
designed  to  defend  against  external  cyber  threats,  are  often  insufficient  when  it  comes  to 
monitoring internal data flows. Many conventional Data Loss Prevention (DLP) systems rely on 
static content matching or predetermined patterns, which can falter when sensitive data undergoes 
transformations  such  as  editing,  reformatting,  or  partial  redaction.  For  example,  one  study 
demonstrated  that  by  representing  documents  as  weighted  graphs,  it  is  possible  to  capture 
contextual sensitivity and detect modified data that would otherwise bypass standard detection 
methods [1].

In  parallel,  probabilistic  models  using  bigraph  representations  have  been  introduced  to 
statistically assess how sensitive data is distributed among various entities within an organization.  
These models underscore the importance of statistical analysis in tracking subtle changes in data 
flow that traditional  DLP techniques might miss [2].  A comprehensive review of existing DLP 
methodologies  further  points  out  that  approaches  such  as  watermarking  and  content 
fingerprinting, while useful in certain scenarios, often struggle with the complexity introduced by 
insider threats and the dynamic nature of modern data formats [3].

Moreover, as organizations embrace modern workplace practices like BYOD (Bring Your Own 
Device)  and remote work,  the security perimeter becomes increasingly porous.  Advanced DLP 
architectures are now required to monitor a heterogeneous mix of devices and endpoints without  
disrupting everyday operations [4]. Complementing these technical challenges, studies employing 
anomaly detection in relational databases have illustrated that monitoring the behavioral patterns 
of  applications can offer an effective second layer  of  defense,  further  reinforcing the need for 
integrated, multi-dimensional approaches to data leak prevention [5].

Another emerging perspective is the concept of contextual integrity, which shifts the focus from 
merely detecting static content to evaluating the appropriateness of information flows between 
entities. This approach considers the relationships between senders, recipients, and the underlying 
data attributes, offering a more nuanced method to differentiate between legitimate and suspicious 
data exchanges [6]. In environments where language complexity and document transformations 
present additional hurdles, techniques based on morphological analysis have also been explored,  
particularly for languages with intricate grammatical structures [7].

Beyond  software-centric  solutions,  research  into  physical  and  network-level  vulnerabilities, 
including electromagnetic leakage from hardware, emphasizes that comprehensive data protection 
requires  both  digital  and  physical  security  measures  [8].  Meanwhile,  broader  vulnerability 
assessments  and comparative analyses of  DLP systems reveal  that  an effective data protection  
strategy must combine technical innovations, such as big data analytics and machine learning [9], 
with  cost-effective,  low-intrusive  solutions  tailored  to  the  operational  realities  of  modern 
enterprises [10].

Recent advancements have also seen the integration of dynamic deception techniques, where 
the  system deliberately  alters  or  obfuscates  data  to  expand the  perceived attack  surface,  thus 
increasing the difficulty for attackers to extract genuine information. Such strategies complement 
conventional DLP mechanisms and provide an additional layer of resilience against both external 
and insider threats [11].

Finally,  secure file system architectures designed specifically to address insider threats have 
been proposed, aiming to offer transparent protection without impeding user productivity. These 
systems leverage virtual file system techniques and are evaluated based on their ability to encrypt  
and  monitor  data  flows  without  introducing  significant  overhead  [12].  Additionally,  tagging 
mechanisms that transform unstructured data into managed content repositories have emerged as 
a promising method to control information dissemination within an organization [13].

This paper aims to comprehensively survey the strengths and weaknesses of existing data leak 
detection and prevention strategies and then propose a novel method for data leak detection based 
on  genetic  algorithm  that  can  be  integrated  into  adaptive  framework  that  unifies  the  most 
promising techniques within an ensemble approach guided by genetic algorithms. By dynamically 
weighting  and  combining  modules,  including  morphological  analysis,  context-aware  anomaly 



detection,  time stamp-based classification,  and moving target  defenses,  organizations can more 
effectively handle the complex mix of modern threats without continuous manual tuning.

2. Understanding Data Leaks

Data leakage involves the unintended or unauthorized dissemination of confidential or sensitive 
information outside the boundaries of an organization. This phenomenon may result from both 
inadvertent mistakes by employees and deliberate actions by insiders or external adversaries. The 
concept encompasses a range of incidents, including simple errors like accidental file sharing and 
sophisticated cyberattacks that exploit system vulnerabilities [1].

Sensitive  information  within  organizations  can  be  categorized  into  different  states,  each 
presenting unique risks.  Data at Rest is  information stored on servers,  databases,  or  external 
storage devices. Breaches in this category often occur when unauthorized individuals gain physical 
or remote access to these storage systems [3]. Data in Motion,  which is  actively transmitted 
across networks via emails, file transfers, or cloud synchronization, is vulnerable to interception. 
Effective protection in this state typically relies on secure transmission protocols and encryption 
[9]. Data in Use is actively processed or accessed by applications or users. Leakage at this stage is 
frequently associated with insider threats or the exploitation of application-level vulnerabilities, 
which may not be adequately addressed by traditional perimeter-based security measures [5].

Various factors contribute to data leakage. Individuals within an organization, whether through 
negligence or malice, represent a significant threat. Studies show that a considerable percentage of 
breaches can be traced back to insiders who inadvertently expose sensitive information [14]. Many 
traditional DLP systems focus on static data patterns and keyword matching. These methods may 
fail when data is modified, for example, by reformatting or partial redaction, before it is exfiltrated.  
Advanced  detection  techniques  are  needed  to  accommodate  these  transformations  [1].  The 
increasing  use  of  cloud  services,  mobile  devices,  and  remote  work  arrangements  expands  the 
potential leakage points. This diversity creates challenges in monitoring data consistently across 
various platforms and endpoints [4].

The consequences of data leakage can lead to substantial direct costs, including regulatory fines,  
litigation expenses, and remediation costs, along with indirect losses resulting from operational 
disruptions and reduced market confidence [15]. Exposure of sensitive information can severely 
damage an organization’s reputation, leading to a loss of customer trust and competitive edge.  The 
detection and mitigation process can strain organizational resources, particularly when security 
systems generate excessive false positives that interfere with normal business operations [9].

3. Threat Landscape and Attack Vectors

Modern corporate networks face a dynamic and diverse threat landscape in which both internal  
and external actors exploit various vulnerabilities to cause data leakage. Insider threats remain one 
of the most challenging aspects of data security. These threats emerge when employees or trusted 
individuals,  either  through  carelessness  or  malicious  intent,  expose  or  intentionally  leak 
confidential data. Several studies emphasize that insiders are often responsible for a significant 
portion of data breaches due to their extensive access rights and familiarity with internal systems.  
For instance, research on data leakage detection has shown that traditional methods often struggle  
to accurately monitor insider behavior, especially when the leaked data is intentionally altered to 
evade  standard  controls  [3].  Additionally,  survey  results  on  machine  learning-based  DLP 
approaches indicate that insider actions, whether accidental or deliberate, require more adaptive 
detection techniques to effectively distinguish between normal operational patterns and suspicious 
behavior [14].



External adversaries continuously evolve their tactics to breach corporate defenses. Attackers 
exploit  vulnerabilities in network protocols,  unpatched software,  and misconfigured systems to 
gain unauthorized access [5]. In particular, ransomware and phishing campaigns have emerged as 
prevalent forms of external attacks. Advanced systems that monitor application behavior and data 
flow  anomalies  have  been  shown  to  detect  such  threats  with  higher  accuracy,  yet  the  rapid  
evolution  of  malware  strains  often  presents  new  challenges  that  traditional  signature-based 
methods cannot address [11].

Another emerging vector in the data leakage external threat landscape is the exploitation of 
botnet networks. Botnets, which consist of numerous compromised devices coordinated through a 
centralized  command-and-control  infrastructure,  are  increasingly  being  used  not  only  for 
distributed denial-of-service attacks but also for exfiltrating sensitive data. Botnets are organized in 
multiple tiers, with a command-and-control center directing intermediate control nodes and basic 
bot elements. This hierarchical structure enables attackers to remotely control a vast number of 
endpoints, aggregating small amounts of leaked data in a stealthy, distributed manner that can 
evade traditional data leakage prevention systems [16, 17]. The dynamic and decentralized nature 
of botnets makes it especially challenging for conventional security measures, which are typically 
designed to detect static or predictable data flows, to identify and mitigate such threats. As botnets 
continue to evolve, integrating specialized detection mechanisms that focus on identifying botnet 
behavior and its associated data exfiltration patterns becomes critical for robust corporate data 
security [18, 19].

In  today’s  interconnected  IT  environment,  organizations  increasingly  rely  on  third-party 
services, cloud platforms, and external vendors. This reliance creates additional vectors for data  
leakage, as vulnerabilities in supply chains or partner networks can serve as conduits for sensitive  
information to be exfiltrated. Research into BYOD policies and cloud-based DLP systems highlights 
that gaps in third-party security controls can lead to unmonitored data flows, making it imperative 
for enterprises to incorporate comprehensive risk assessments and stringent access controls across 
all  external  interfaces  [4].  Furthermore,  cost-effective  strategies  for  cloud  data  protection  are 
critical,  particularly for small  and medium-sized enterprises,  as  they face unique challenges in 
balancing security needs with limited resources [20].

A significant challenge in detecting data leaks arises from attackers deliberately transforming or 
obfuscating  data  to  evade  traditional  DLP  systems.  Techniques  such  as  content  modification, 
insertion of benign text, or even partial redaction are used to mask sensitive information. Emerging 
detection models, including adaptive graph-based methods and contextual integrity frameworks, 
address these challenges by focusing on the underlying semantics and relationships within the data 
rather  than  relying  solely  on  fixed  patterns  [21].  Such  methods  are  especially  effective  in 
environments where data undergoes frequent transformations during routine operations, ensuring 
that even altered data is subject to robust monitoring.

Beyond purely digital  threats,  physical  and side-channel  attacks also contribute to the data 
leakage landscape. These attacks exploit non-traditional vectors such as electromagnetic emissions 
or hardware vulnerabilities to capture information without directly breaching network security. 
Investigations  into  the  security  of  computer  systems  have  demonstrated  that  electromagnetic 
leakage  from  displays  and  peripheral  devices  can  inadvertently  expose  sensitive  information, 
underscoring the importance of considering physical security measures alongside digital defenses 
[22].

The diversity of attack vectors, including insider mishaps, external cyberattacks, supply chain 
breaches,  and  physical  side-channel  exploits,  underscores  the  complexity  of  the  modern  data 
leakage threat  landscape.  A successful  defense strategy requires  a  multi-layered approach that 
integrates behavioral analysis,  adaptive detection techniques, and comprehensive monitoring of 
both  digital  and  physical  environments.  By  understanding  the  interplay  of  these  factors, 
organizations  can design DLP solutions  that  are  both resilient  and responsive  to  the evolving 
nature of cyber threats [23].



4. Survey on Data Leak Detection

Detecting unauthorized disclosure of sensitive information in corporate environments requires a 
multifaceted approach. Modern detection techniques have evolved to address not only static data 
content  but  also  transformed  and  obfuscated  data,  user  behavior  anomalies,  and  contextual 
irregularities.

One line of research involves representing documents as weighted graphs to capture both the 
significance of key terms and their contextual relationships. In these approaches, documents are 
converted  into  graphs  where  nodes  represent  sensitive  keywords  and  edges  capture  their 
contextual  dependencies.  By  applying  an  adaptive  weighted  graph  walk  model,  systems  can 
effectively identify cases where data has been altered, for example through partial modifications or 
inserted noise,  to evade traditional detection methods [1].  In parallel,  probabilistic  models that 
leverage bigraph representations have been developed to statistically assess the likelihood of data 
leakage events by mapping the distribution of sensitive data among entities [2]. Both techniques 
focus  on  overcoming  the  limitations  of  fixed-pattern  matching  by  integrating  contextual  and 
statistical analysis into the detection process.

Another detection strategy centers on identifying deviations from established behavioral norms. 
Systems  employing  anomaly  detection  techniques  monitor  sequences  of  operations,  including 
database queries or file access patterns, and compare them against profiles of normal application 
behavior. For example, a detection system based on Hidden Markov Models (HMM) creates profiles 
from normal program traces, and deviations from these profiles may indicate data leakage attempts 
via application misuse [5]. This approach is especially useful for detecting subtle insider threats 
where an authorized user may perform atypical actions that could result in data leakage.

Detection  techniques  grounded  in  the  concept  of  contextual  integrity  focus  on  evaluating 
whether information flows adhere to the expected norms within a given environment. Instead of  
simply  scanning  for  sensitive  keywords,  these  methods  extract  semantic  flows  by  employing 
advanced  natural  language  processing  to  verify  that  data  exchange  patterns  comply  with 
organizational policies and privacy regulations. By comparing observed communication sequences 
against  a  set  of  declaratively  defined  privacy  rules,  these  systems  can  flag  potentially  non-
compliant data transfers that may signal a leakage [6].

Advanced machine learning techniques have been employed to enhance detection accuracy, 
particularly when data is unstructured or when it undergoes transformation. Methods based on 
morphological analysis decompose text into its constituent parts (e.g.,  roots,  stems, suffixes) to 
better  capture  the  semantic  content  even  when superficial  changes  are  made.  Combined  with 
classification  algorithms,  these  techniques  help  differentiate  between benign modifications  and 
genuine leakage of sensitive information [7]. Furthermore, surveys of machine learning approaches 
in  DLP  indicate  that  integrating  both  supervised  and  unsupervised  learning  models  can 
significantly improve detection precision while reducing false positives [24].

Some detection systems incorporate temporal information as an additional layer of analysis. For 
instance, time stamp-based methods involve clustering documents and assigning temporal labels 
during a learning phase.  During detection, if  the document’s time stamp falls  within a critical  
period (e.g., before a scheduled public release), the system assigns a higher risk score, potentially  
flagging it as confidential [15]. In a complementary approach, content tagging methods organize 
data into controlled repositories. By tagging data with predefined labels, organizations can more 
easily monitor and restrict  the flow of  sensitive information across  internal  networks,  thereby 
reducing the risk of inadvertent leakage [13].

Methods that integrate data transformation with moving target defense strategies dynamically 
alter  the appearance of  data,  making it  more difficult  for adversaries to identify and exfiltrate 
genuine information. In these systems, deceptive data is generated based on both historical user  
behavior and current operational context, thereby increasing the attack cost for adversaries while 
preserving data usability for legitimate purposes [11]. 



Static content matching and fixed-pattern detection, often falter when sensitive information is 
disguised through reformatting, morphological changes, or partial redactions. Even more adaptive 
models  that  leverage  anomaly  detection or  context-aware  analysis  still  struggle  to  handle  the 
heterogeneous mix of data flows brought by modern workforce practices and diverse endpoint 
devices. In large-scale corporate environments, high false-positive rates can overwhelm security 
teams, while purely signature-based systems prove ill-equipped against novel threats or insider  
misuse.  Table  1  is  summarizing  advantages  and shortcomings  of  selected  existing  detection 
methods.

Table 1
Comparison of data leak detection techniques

Method Strengths Weaknesses Type of Data Handled

Adaptive Graph 
Walk [1]

Detects  leaks  after 
heavy  text 
modification,  efficient 
on long documents

Graph-build  overhead, 
text only

Unstructured text

Probabilistic 
Bigraph [2]

Identifies  likely  leaker 
without watermarking, 
simple to audit

Accuracy  drops  with 
broad  sharing,  no 
collusion detection

Structured files or DB rows

AD-PROM HMM 
Anomaly Detector 

[5]

Very  low  false 
positives, light runtime 
impact

Needs  wide  training 
coverage, mimicry may 
evade

Application and DB 
behaviour

Contextual 
Integrity [6] 

Flags  semantic  policy 
breaches, supports rich 
GDPR-style norms

Rule  maintenance 
effort, NLP errors raise 
false alerts

Email and text messages

Timestamp-Based 
Sensitivity Scoring 

[15]

Protection  expires 
automatically  when 
data  is  no  longer 
sensitive,  accurate  on 
fully confidential files

Misses partial snippets, 
requires correct expiry

Time-sensitive documents

Content-Tag 
Repository Control 

[13]

Central  hub  simplifies 
auditing  and  uniform 
policy  enforcement, 
works  across  multiple 
channels  routed 
through the repository

Users  can  bypass  the 
repository, mis-tagging 
undermines protection

Any file stored or sent 
through the CMS

SVM Text Classifier 
[14]

High  precision  with 
moderate training data, 
fast  inference  once 
trained

Requires  labelled 
corpus,  vulnerable  to 
newly  obfuscated 
terms

Emails, documents, chats



Deep Autoencoder 
Anomaly Detection 

[14]

Detects  previously 
unseen  leak  patterns, 
works without labelled 
data

Computationally 
intensive,  benign 
anomalies  may trigger 
false flags

Network traffic, system 
logs, mixed telemetry

 

5. Data Leak Prevention Strategies

Preventing data leakage requires a proactive, multi-layered approach that combines robust policies, 
technical safeguards, and adaptive monitoring. A strong foundation for data protection begins with 
comprehensive  policies  that  define  what  constitutes  sensitive  data  and  set  clear  rules  for  its  
handling.  Organizations  should  implement  governance  frameworks  that  enforce  regulatory 
compliance,  including  adherence  to  GDPR  and  other  data  protection  laws,  and  ensure  that 
employees  are  well-trained  in  data  security  practices.  These  frameworks  are  essential  for 
establishing accountability and promoting a security-aware culture throughout the enterprise [16].

To mitigate consequences of possible data leak deploying strong encryption for data at rest, in 
transit, and in use is critical. Advanced encryption techniques, along with rigorous access control 
policies,  restrict  unauthorized users from accessing or extracting sensitive information.  Several 
studies highlight the importance of integrating these measures into corporate IT environments to  
both secure data and provide traceability in case of a breach [3]. Developing secure file systems 
that  incorporate  on-the-fly encryption and controlled access  can significantly  mitigate  internal 
leakage  risks.  By  creating  virtual  file  systems  that  mirror  actual  file  operations  and  enforce 
encryption/decryption during read and write operations, organizations can transparently protect 
data without hampering user productivity [12]. Some approaches classify data based on critical 
time  windows  by  assigning  temporal  labels  during  a  learning  phase  and  enforcing  access 
restrictions when documents fall within these sensitive periods. This strategy helps ensure that 
information remains confidential until it is meant to be released [15].

DLP solution can be grouped by deployment scheme as endpoint, network-wide or mixed [8]. 
Network  deployed  tools  continuously  monitor  data  flows  across  the  organization’s  network, 
identifying and blocking unauthorized transmission of  sensitive  information.  They can inspect  
content in real time and enforce policies that prevent leakage over unsecured channels [9]. At the 
device level,  endpoint  solutions that  monitor user activity are critical  for detecting anomalous 
actions that may signal insider threats. By comparing current user behavior against established 
baselines, these systems help detect and prevent data leakage before it occurs [14]. Mixed ones 
combine some of all attributes of both endpoint and network DLP tools.

Emerging prevention techniques leverage context and deception to add a proactive layer of  
defenses.  Rather  than  relying  solely  on  static  rules,  context-aware  strategies  assess  whether 
information flows adhere to predefined privacy norms. By analyzing the roles of data senders,  
recipients, and the nature of the data exchanged, these systems can dynamically enforce policies 
that  reflect  real-world  expectations,  reducing the  risk  of  unintentional  leakage [6].  To further 
complicate efforts by adversaries, some systems dynamically generate deceptive data. This method 
alters the appearance of sensitive data to create a larger, misleading attack surface. Such techniques 
not only increase the difficulty for attackers to isolate genuine information but also trigger alarms 
when deceptive elements are manipulated, providing early warnings of potential breaches [11].

The widespread adoption of cloud services and BYOD policies requires specialized strategies. As 
data migrates to cloud environments, integrated DLP systems that monitor both cloud storage and 
transmission  channels  become  vital.  Hybrid  strategies  that  combine  on-premise  controls  with 
cloud-based  monitoring  enable  organizations  to  maintain  visibility  over  data  regardless  of  its 
location,  while  ensuring  compliance  with  evolving  regulatory  demands  [16].  In  environments 
where employees use personal devices for work, DLP strategies must extend to managing these  



endpoints. Tailored solutions include enforcing secure access policies, monitoring data flows on 
mobile devices, and segregating personal from corporate data to reduce the risk of accidental leaks 
[4].

Another approach involves the use of content tagging and the formation of controlled content  
repositories. By assigning metadata or labels to sensitive data as soon as it is created or modified, 
organizations can track the movement of critical information across systems. This tagging allows 
for the automated application of security policies and facilitates quick identification of data that 
should not leave a secure repository [13]. Restricting data movement to specific, monitored portals 
or repositories minimizes the exposure of sensitive information. These systems act as gatekeepers, 
ensuring that data is only transferred through secure channels and only to authorized destinations.

6. Data Leak Detection Using Genetic Algorithm

DLP  systems  typically  classify  data  in  two  ways:  by  formal  attributes  (metadata  such  as  
“confidential” labels, document type, author, etc.) and by analyzing the actual content (file text, 
presence  of  specific  patterns,  keywords).  The  best  results  are  achieved  by  combining  both 
approaches, so the proposed method considers both file metadata and content to determine the 
information’s sensitivity level.

We propose a classification method built on a genetic algorithm [24, 25]. During the tuning 
(training) phase, the system receives as input a set of data examples  D={d1 ,…,dn} labeled as 
confidential  or  non-confidential,  y i∈{0,1}.  Each  document  in  the  input  data  array  can  be 

represented as a feature-presence vector:

x j=( x j1 , x j2 ,…, x jm ) , (1)

where  the  element  x ji∈{0 ;1} indicates  the  presence  or  absence  of  features  taken  from a 

predefined dictionary T={t1 ,…, tm}; each t j may correspond to a keyword, a metadata field, or a 
match to a specific pattern. The GA module gradually evolves a set of rules or a model capable of 
classifying new data, and the resulting classifier is integrated into the distributed DLP system as 
local agent [26]. It inspects the content of files,  messages, or other objects,  together with their 
attributes, in order to determine whether they contain confidential information.

Each chromosome in the genetic algorithm encodes a candidate solution to the classification 
problem:

C=[r1|r2|…|rk ] , (2)

where C  denotes a set of k  IF-THEN rules. Each rule is characterised by two subsequences: a 
positive template pq that requires certain features to be present and a negative template  nq that 

requires certain features to be absent.
A chromosome can therefore be written as:

rq={1 , if ( pq· x ≥1)∧(nq· x=0)
0

(3)

A document is classified as confidential if at least one rule is triggered:

ŷ (x)=maxq=1 , k rq . (4)

The chromosome is therefore represented as a bit sequence with total length L=2⋅k⋅m where 
k  is the number of rules and m is the size of the feature dictionary.

During evolution each chromosome is evaluated on the training set. The evaluation measures 
how well the encoded rules identify confidential data (true detections) and how well they avoid 



confusing ordinary data with confidential data (minimising false alarms). A fitness function that 
reflects overall classification accuracy is used to score every candidate model. For this purpose, the  
counts  of  true  positives  TP ,  false  positives  FP,  true negatives  TN,  and false  negatives  FN  are 
calculated:

T P=Σ [ ŷ (d )=1∧ y=1 ] ,
F P=Σ [ ŷ (d )=1∧ y=0 ] ,
F N=Σ [ ŷ (d )=0∧ y=1 ] ,
T N=Σ [ ŷ (d )=0∧ y=0 ] .

. (5)

The fitness function to be maximised is defined as a combination of the Precision P and Recall R 
metrics:

P= T P
T P+F P+ε

,

R= T P
T P+F N+ε

,

F= 2P R
P+R+ε

,

F i t (C )=α · F−β ·
L

Lma x

,

(6)

where  ε≪1 prevents division by zero, and  α=0.9 and  β=0.1 are penalty coefficients that 
control  the  influence  of  rule  length.  At  every  iteration  of  the  genetic  algorithm  the  fittest  
individuals are selected for reproduction using tournament selection [27]. After selection, each pair 
of parents is combined by single-point crossover. Let s∈{1 ,… , L−1} be a randomly chosen cut 
position; the offspring is

child=( parent1[1…s ] , parent2[s+1…L]) . (7)

To maintain population diversity  every bit  in  the chromosome is  inverted with probability 

pmut=
1
L

.  The  evolutionary  process  stops  when  either  the  predefined  maximum  number  of 

generations is  reached or the improvement over the last  ten generations falls  below tolerance 
δ≪1:

|Fitbestg – Fitbest
g−10|≤δ . (8)

The  proposed  method  derives  its  classification  rules  automatically  from real  data,  whereas 
conventional DLP systems usually depend on hand-crafted templates and static policies. This data-
driven process reduces reliance on domain experts and enables the system to adapt quickly when 
new formats or code words for sensitive information appear. The method produces an explicit set  
of  IF–THEN rules that security specialists  can read and verify,  avoiding the opacity typical  of 
black-box models such as many neural networks [28]. Because the logic is transparent, analysts can 
explain  why a  document  was  marked  confidential,  which  fosters  trust  and  simplifies  forensic 
investigations; when requirements change, the rules can be edited directly instead of retraining an 
entire model. 

Proposed method can be utilized in endpoint-based agent data leak detection through three 
main phases shown in Figure 1.



Figure 1: Data leak detection agent operation phases.

For Offline Training Phase given historical leak data (emails, documents, media files) as input 
following steps are executed:

1. Feature extraction (text patterns, metadata).
2. Rules sets population initialization.
3. Fitness evaluation.
4. Selection of new population based on fitness.
5. Crossover.
6. Mutation.

Steps 3-6 are repeated until equation (8) is satisfied. Result is evolved set of IF-THEN rules for 
classifying data as confidential or not that is used by Online Detection Phase.

For Online Detection Phase initial input is set of rules, execution phase consists of steps:

1. Data (document, email etc.) interaction identified.
2. Feature extraction for identified data similar to Offline Training Phase.
3. IF-THEN rules applied
4. Appropriate action performed (Allow, Block, Log etc.)

Continuous Learning phase generates new rules that reflect the most recent data landscape, so  
the classifier keeps pace with emerging document structures. By evaluating both textual features 



and metadata, the system gains a broader inspection context and lowers the likelihood of missing a 
leak. 

7. Experiments

We validate our method across  three real-world datasets  listed in Table 2  and compare its  
performance against established machine learning algorithms. Each dataset underwent extensive 
preprocessing to ensure consistent feature extraction and fair comparison across methods.

Table 2
Dataset characteristics

Dataset Documents Estimated Positive Class Domain

Enron Email 
Corpus [29]

500 000+ 15-25% Corporate Email

AI4Privacy 
PII-300k [30]

220 000+ 40-50% PII data

USA Government 
FOIA [31]

70 000+ 10-40% Goverment documents

The  preprocessing  pipeline  involved  dataset-specific  stages  to  ensure  high-quality  feature 
extraction for both genetic algorithm and baseline methods. For the Enron Email Corpus, email 
body text and metadata were extracted from raw files with headers parsed to separate content from 
routing information. Signatures, quoted replies, and forwarding chains were removed, followed by 
text normalization including lowercasing, contraction expansion,  and special  character removal 
while  preserving  meaningful  punctuation.  A  domain-specific  stop  word  list  retained  security-
relevant  terms  like  "confidential"  and  "restricted."  Email  addresses  were  tokenized  as 
EMAIL_TOKEN with internal/external  domain preservation,  while  attachments  were processed 
separately with filenames and extensions as additional features.

The AI4Privacy PII-300k dataset required custom regular expressions to detect and tokenize PII 
patterns including SSN (XXX-XX-XXXX), credit cards, phone numbers, and addresses. Each PII 
type  was  replaced  with  corresponding  tokens  (SSN_TOKEN,  CREDITCARD_TOKEN)  while 
preserving presence information. Special cases like partial redactions ("SSN: XXX-XX-1234") and 
age-revealing date  formats were handled,  with PII  density  features  calculating the ratio  of  PII  
tokens to total tokens per document.

For the Government FOIA dataset, classification markings (e.g., "CONFIDENTIAL//NOFORN") 
were extracted as separate features before text removal. Redacted sections ([REDACTED] or 'X'  
blocks) were replaced with REDACTION_TOKEN while counting redaction frequency and length. 
Paragraph structure was preserved due to section-specific classification levels, with page numbers, 
form numbers, and reference codes becoming metadata features.

TF-IDF  vectorization  used  dataset-specific  parameters:  Enron  (1,000  features,  0.001-0.95 
document  frequency),  AI4Privacy  (500  features),  and  FOIA  (750  features).  Metadata-derived 
features  included  sender-recipient  patterns  and  time  indicators  for  emails,  PII  co-occurrence 
statistics for privacy data, and classification/redaction patterns for government documents.

Data splitting employed stratified sampling to maintain class distribution across 80-20 train-test 
splits  with fixed random seeds for  reproducibility.  A validation set  (10% of  training data)  was 
created for baseline hyperparameter tuning, while the genetic algorithm used the full training set  



with fixed parameters. For temporal datasets (Enron and FOIA), we verified that random splitting 
avoided  temporal  leakage  and  ensured  documents  from  the  same  conversation  threads  or 
document families remained within the same split to prevent information leakage.

The genetic algorithm used a population of 100 individuals with maximum 200 generations and 
early stopping when fitness improvement over 20 consecutive generations fell below 0.001. The 
fitness function combined F₁-score with a rule length penalty (λ=0.01) to balance accuracy and 
interpretability. Tournament selection (size 3), single-point crossover (probability 0.7), and bit-flip 
mutation (probability 0.05 per gene) maintained diversity while preserving good solutions.

Five baseline methods were compared using standard parameters:  Multinomial  Naive Bayes 

with Laplace smoothing (α=1.0), SVM with RBF kernel (C=1.0 , γ= 1
nf e a t u r e s

), Decision Tree and 

Random Forest (100 estimators) both with maximum depth 10, and Logistic Regression with L2 
regularization (C = 1.0). All methods used identical preprocessed features and train-test splits.

Evaluation used macro-averaged F1-score as the primary metric to handle class imbalance, with 

precision and recall providing additional insight into false positive and false negative rates critical  
for security applications. For interpretable models, rule complexity was measured as the number of 
unique features in the final rule set. Training times were recorded on identical hardware (Apple M3 
Max, 36 GB RAM) to assess computational requirements.

Table 3 presents the F1-scores achieved by each method across all datasets, demonstrating the 

genetic algorithm's consistent high performance across diverse document types and classification 
challenges. The genetic algorithm achieved the highest average F1-score (0.877) across all datasets, 

demonstrating  robust  performance  in  diverse  document  classification  scenarios.  While  SVM 
slightly outperformed GA on the AI4Privacy dataset (0.921 vs 0.913), this dataset's relatively simple 
PII patterns favored SVM's ability to find optimal separating hyperplanes. GA showed superior 
performance on datasets with more complex decision boundaries, particularly the Enron corpus 
where subtle contextual patterns determine document sensitivity.

The genetic algorithm's evolved rules demonstrated clear domain-specific patterns that align 
with human understanding of document sensitivity. For the Enron Email dataset, the algorithm 
identified a core set of required features including "confidential" "internal", "restricted", "employee", 
and  "salary"  combined  with  forbidden  features  such  as  "public",  "press",  "announcement",  and 
"release".  This  rule effectively captures the intuitive notion that  documents discussing internal  
employee matters with confidentiality markers, but lacking public dissemination indicators, likely 
contain sensitive information.

On the AI4Privacy dataset, evolved rules centered on PII patterns, requiring presence of tokens 
like "ssn", "credit_card", "address", "phone", and "email" while forbidding synthetic data indicators 
such  as  "example",  "test",  "sample",  and  "demo".  This  demonstrates  the  algorithm's  ability  to 
distinguish real  PII  from training examples or documentation, a critical  capability for practical 
deployment.

Government FOIA document rules revealed hierarchical classification patterns, with required 
features including official  classification markings ("classified",  "secret",  "redacted",  "official_use") 
and  forbidden  features  representing  public  release  indicators  ("unclassified",  "public_release", 
"approved"). The algorithm successfully learned the bureaucratic language patterns that distinguish 
classified from publicly releasable government documents.

The  evolutionary process  showed consistent  convergence  within  100  generations  across  all  
datasets.  Enron  converged  at  generation  87  (F1-score  0.872),  AI4Privacy  reached  convergence 

fastest at generation 62 (F1-score 0.913) due to simpler pattern structure, and Government FOIA 

required  95  generations  (F1-score  0.847)  reflecting  diverse  terminology  across  agencies.  Early 

stopping prevented unnecessary computation and overfitting as fitness improvements plateaued 
upon discovering optimal feature combinations, with consistent convergence behavior suggesting 
robust algorithm design adapting naturally to different problem complexities.



Table 3
F1-Score Comparison Across Datasets

Method Enron Email AI4Privacy PII FOIA Average

GA (Ours) 0,872 0,913 0,847 0,877

Naive Bayes 0,823 0,887 0,792 0,834

Decision Tree 0,798 0,854 0,773 0,808

Random Forest 0,841 0,903 0,818 0,854

Logistic Reg. 0,834 0,895 0,809 0,846

SVM 0,856 0,921 0,831 0,869

The genetic algorithm demonstrated notable robustness to class imbalance, a critical property 
for security applications where sensitive documents typically comprise a minority class. At the 
most balanced ratio of 1:1.3 in the AI4Privacy dataset, SVM slightly outperformed GA with an F₁-
score of 0.921 versus 0.913. However, as imbalance increased to 1:3.2 and 1:4.5 in the Government  
FOIA and Enron datasets respectively, GA showed consistent advantages of approximately 0.016 in 
F₁-score over both SVM and Naive Bayes. This robustness stems from the fitness function's use of 
F₁-score, which inherently balances precision and recall, combined with the evolutionary search's 
ability to discover feature combinations that reliably identify minority class instances even when 
positive examples are scarce.

The interpretability comparison reveals fundamental differences between methods in terms of 
human comprehension and practical deployment. The GA approach produces rules using between 
15 and 35 features across different datasets, compared to decision trees requiring 45 to 89 features 
to achieve lower accuracy. Black-box methods like SVM, Neural Networks, and Naive Bayes utilize 
the entire feature space of over 1,000 features, making interpretation practically impossible without 
additional explanation techniques.  GA rules can be directly expressed in natural  language that 
security  analysts  understand,  such  as  "Document  is  sensitive  if  it  contains  'confidential'  and 
'internal' but not 'public' or 'press release'." This interpretability enables security teams to validate 
rules  against  organizational  policies,  adjust  them  based  on  domain  knowledge,  and  explain 
decisions to stakeholders or during audits.

The  experimental  results  validate  our  hypothesis  that  evolutionary  search  can  effectively 
explore the vast space of feature combinations to discover accurate yet interpretable classification 
rules. The genetic algorithm achieved the highest average F₁-score across diverse datasets while 
producing rules an order of magnitude simpler than decision trees. This demonstrates that the  
global search capability of evolutionary algorithms can identify compact feature sets that capture 
essential patterns for sensitive document detection. The method's consistent performance across 
datasets  with varying characteristics  indicates  robust  generalization.  Unlike black-box methods 
that may learn dataset-specific quirks, the evolved IF-THEN rules capture fundamental patterns 
that transfer well across domains.

The interpretability of evolved rules extends beyond mere feature counting. The rules express 
logical  relationships  that  align  with  human  intuition  about  document  sensitivity,  combining 
positive indicators with negative evidence in a natural way. This bi-directional reasoning mirrors  
how human analysts approach document classification, checking both for presence of sensitive 
markers and absence of  public dissemination indicators.  The compact rule sets can be directly 
implemented in existing security infrastructure without specialized machine learning frameworks, 
using simple pattern matching engines. Security analysts can inspect and understand the rules, 



building trust in automated decisions and enabling manual overrides when organizational policies 
change.

The method's high precision reduces false positive rates that plague many automated security 
systems,  preventing alert  fatigue among security teams.  Meanwhile,  competitive recall  ensures 
most sensitive documents are caught, with the interpretable rules helping analysts understand any 
misclassifications  and  refine  detection  patterns.  The  evolutionary  approach  also  supports 
incremental  improvement as new types of  sensitive documents emerge.  Rather than retraining 
from  scratch,  the  existing  rule  population  can  seed  a  new  evolutionary  run,  allowing  rapid 
adaptation to evolving threats while preserving proven detection patterns.

While  we evaluated on diverse  real-world datasets,  highly specialized document types may 
exhibit  different  characteristics.  Technical  documents  with  extensive  code  snippets  or 
mathematical  formulas  might  require  adapted  preprocessing.  However,  the  genetic  algorithm's 
flexibility to incorporate domain-specific features suggests it would adapt well to such scenarios.  
The selection of F₁-score as the primary metric appropriately balances the competing demands of 
precision and recall in security applications where both false positives and false negatives carry 
significant costs.

Our  comprehensive  experimental  evaluation  demonstrates  that  genetic  algorithm-based 
document  classification  successfully  achieves  its  dual  objectives  of  high  accuracy  and 
interpretability. Across three diverse datasets representing different sensitive document detection 
scenarios, the evolutionary approach discovered compact IF-THEN rules that achieved superior 
average performance while  using significantly  fewer features  than decision trees.  The method 
showed particular strength on challenging real-world datasets like Enron emails, where complex 
contextual patterns determine sensitivity. Its robustness to class imbalance and ability to produce 
human-understandable  rules  make  it  especially  suitable  for  security  applications  where  both 
performance  and  explainability  are  critical.  These  results  validate  evolutionary  search  as  an 
effective approach for exploring the combinatorial  space of features in document classification, 
finding globally optimal solutions that balance multiple objectives.  The success of  this method 
opens  possibilities  for  applying  evolutionary  techniques  to  other  security  tasks  requiring 
interpretable models, such as intrusion detection, fraud identification, and regulatory compliance 
monitoring.

8. Future Directions

Existing  data  leak  detection  and  prevention  solutions  exhibit  several  critical  shortcomings 
discussed in section 4. Attempts to integrate encryption, tagging, or behavioral analysis sometimes 
lack holistic coordination, leading to visibility gaps that sophisticated adversaries readily exploit [8, 
14].  Furthermore,  although  dynamic  deception  and  multi-layered  defense  can  reduce  false 
negatives, their efficacy depends heavily on precise calibration for each organization’s operational  
context, which can be labor-intensive to maintain.

Way to overcome these limitations is to take the most promising features of existing detection 
techniques:

 Comprehensive Policy Frameworks and Employee Training: Organizations should 
establish clear data handling policies and conduct regular training sessions to ensure that 
all employees understand the importance of data security. This practice forms the backbone 
of any effective Data Loss Prevention (DLP) strategy by aligning technical measures with 
organizational culture [16].

 Robust Encryption and Access Controls: Implementing end-to-end encryption for data 
at rest, in transit, and in use is critical. Coupled with strict access control mechanisms, these 



technical  safeguards  help  restrict  unauthorized  access  and  ensure  that  sensitive  data 
remains protected even if other layers of defense are breached [3].

 Context-Aware  Monitoring  and  Anomaly  Detection: Modern  DLP  systems  benefit 
from  integrating  behavioral  analytics  and  context-aware  detection  techniques.  By 
continuously  comparing  user  actions  against  established  baselines,  these  systems  can 
quickly  identify  deviations  that  may  indicate  insider  threats  or  other  anomalies.  This 
layered  approach  not  only  reduces  false  positives  but  also  provides  a  more  nuanced 
understanding of data movement within the network [5].

 Time Stamp and Content  Tagging Strategies: Employing  methods  that  incorporate 
temporal metadata and content tagging can significantly enhance data classification. By 
marking data with time-sensitive attributes and specific labels, organizations can automate 
policy enforcement and restrict  data exposure during critical  periods.  This is  especially 
useful in environments where the confidentiality status of data changes over time [13, 15].

 Layered Defense with Network and Endpoint Integration: Best practices recommend 
deploying a blend of network-wide monitoring alongside endpoint-specific controls. This 
ensures that even if data is accessed or modified at a local level, broader network policies 
and  real-time  monitoring  can  detect  and  mitigate  unauthorized  data  flows  [32,  33]. 
Employing  local  and  network-wide  hardware  based  security  modules  can  significantly 
speed up analysis and decrease operational costs [31].

 Dynamic  Deception  and  Moving  Target  Defense: Approaches  such  as  generating 
deceptive data or dynamically altering the data attack surface add a proactive dimension to 
DLP strategies. These methods complicate an attacker’s efforts by increasing uncertainty 
and raising the cost of data exfiltration, thereby acting as an additional safeguard against 
both internal and external threats [11, 17].

And unite them as modules into single adaptive framework guided by a genetic algorithm. ach 
detection module offers partial “scores” or indications of potential  leakage. These outputs then 
become  the  genetic  algorithm’s  raw  material.  The  system  starts  with  multiple  candidate 
configurations,  each  specifying  how  to  weight  or  combine  modules’  outputs  under  different 
network conditions, data types, and time constraints. Based on feedback from both real-time and 
historical data leak events, including false positives and missed detections, an evolutionary process  
evaluates  the  fitness  of  each  configuration,  eliminating  underperforming  combinations  and 
promoting or mutating more successful ones.

Over time, this iterative process hones in on configurations that maximize true positives and  
minimize false alarms, continually rebalancing priorities among modules. Such an ensemble not 
only  becomes  more  robust  against  varied  threats  but  also  circumvents  the  need  for  constant 
manual tuning, a known pain point in large-scale DLP deployments [8].

9. Conclusion

Effective  protection  against  data  leakage  demands  a  layered,  adaptive  strategy  that  integrates 
complementary detection and prevention techniques.  Experiments on three real-world datasets 
confirm that the proposed genetic-algorithm classifier delivers the highest average F₁-score while 
producing concise, human-readable rules. Because these rules explicitly combine textual cues and 
metadata,  analysts  can  readily  verify  decisions  and  refine  policies  without  retraining  opaque 
models. The method’s robustness to class imbalance and its modest computational overhead make 
it practical for large-scale corporate environments in which sensitive documents form only a small 
fraction of overall traffic.

Beyond a single classifier future work should be aimed at developing an ensemble architecture 
in which the genetic algorithm continually adjusts the weight of diverse modules such as anomaly 
detection, contextual integrity checks, time-aware sensitivity scoring and dynamic deception. By 



treating each module’s output as an input feature and evolving optimal weightings, the ensemble 
reduces false positives  and adapts  as new workflows,  devices  and cloud services emerge.  This  
evolutionary  coordination  also  lessens  the  manual  effort  that  traditionally  accompanies  rule 
maintenance in complex distributed systems.

Future  research  should  also  focus  on  extending  the  framework  to  additional  data  states,  
including encrypted streams and multimedia content, and on tightening resistance to adversarial 
transformations. Investigating hardware-level telemetry for corroborating evidence and integrating 
privacy-preserving  learning  techniques  will  further  enhance  resilience.  As  corporate  networks 
grow more heterogeneous and regulations more stringent, the genetic-algorithm-guided ensemble 
offers a promising foundation for DLP solutions that must remain accurate, transparent and agile.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] X. Huang, Y. Lu, D. Li and M. Ma, A Novel Mechanism for Fast Detection of Transformed Data 
Leakage, IEEE Access, vol. 6, 2018, pp. 35926-35936. doi:10.1109/ACCESS.2018.2851228.

[2] I. Gupta, A. Singh, A Probability based Model for Data Leakage Detection using Bigraph, in:  
Proceedings  of  the  2017  7th  International  Conference  on  Communication  and  Network 
Security (ICCNS '17). Association for Computing Machinery, New York, NY, USA, 2017, pp.1-5. 
doi:1-5. 10.1145/3163058.3163060.  

[3] K.  Gupta,  A.  Kush,  A  Review  on  Data  Leakage  Detection  for  Secure  Communication,  
NTERNATIONAL JOURNAL ENGINEERING AND APPLIED TECHNOLOGY (IJEAT), Vol. 7, 
2017, pp.153-159.

[4] S. E. Calias, B. Caoli, R. Padilla, J. Tum-en, K. C. Bacilio, I. Lyn, G.S. Guaki, The Impact of 
BYOD (Bring Your Own Device) On Network Security: A Literature Review, in: Southeast  
Asian Journal of Science and Technology, Vol. 9, 2024. 

[5] D. Fadolalkarim, E. Bertino, and A. Sallam, An Anomaly Detection System for the Protection 
of  Relational  Database  Systems  against  Data  Leakage  by  Application  Programs,  Purdue 
University,  in:  Proceedings  of  the  2020  IEEE  36th  International  Conference  on  Data 
Engineering (ICDE), Dallas, TX, USA, 2020, pp. 265-276. doi:10.1109/ICDE48307.2020.00030. 

[6] Y. Shvartzshnaider, Z. Pavlinovic, A. Balashankar, T. Wies, L. Subramanian, H. Nissenbaum, P. 
Mittal, VACCINE: Using Contextual Integrity For Data Leakage Detection, in: Proceedings of 
the The World Wide Web Conference (WWW '19). Association for Computing Machinery, 
New York, NY, USA, 2019. doi:10.1145/3308558.3313655. 

[7] M.  Hart,  P.  Manadhata,  R.  Johnson,  Text  Classification  for  Data  Loss  Prevention,  2011. 
doi:10.1007/978-3-642-22263-4_2. 

[8]  S.  Syarova,  S.  Toleva,  A.  Kirkov,  S.  Petkov,  K.  Traykov  ,  Data  Leakage  Prevention  and 
Detection  in Digital  Configurations:  А  Survey,  in:  Proceedings  of  the  15th  International 
Scientific and Practical Conference, Vol. 2, 2024. doi:10.17770/etr2024vol2.8045 

[9]  J.K. Periasamy, A.  Cindy  Catherine, R. Elamathi, S. Subhiksha, Data Leakage Vulnerability 
Assessment, in: Proceedings of the  2023 Intelligent Computing and Control for Engineering 
and Business Systems, 2023. doi:10.1109/ICCEBS58601.2023.10448949. 

[10] L. Cheng, F. Liu, D. D. Yao, Enterprise data breach: causes, challenges, prevention, and future 
directions, in: WIREs Data Mining Knowl Discov, 2017. doi:10.1002/widm.1211. 

[11] K. Chen, Q. Yang, J. Wang, D. Ma, L. Wang, and Z. Xu, What You See Is The Tip Of The  
Iceberg:  A  Novel  Technique  For  Data  Leakage  Prevention,  in:  Proceedings  of  the  27th 
International  Conference  on  Computer  Supported  Cooperative  Work  in  Design,  2024. 
doi:0.1109/CSCWD61410.2024.10580487. 



[12] I. Herrera Montano, I. de la Torre Díez, J. J. García Aranda, J. Ramos Diaz, S. Molina Cardín,  
and J. J. Guerrero López, Secure File Systems for the Development of a Data Leak Protection 
(DLP)  Tool  Against  Internal  Threats,  in:  Proceedings  of  the  17th  Iberian  Conference  on 
Information Systems and Technologies, 2022. doi:10.23919/CISTI54924.2022.9820170. 

[13] M. H. Matthee, Tagging Data to Prevent Data Leakage (Forming Content Repositories), 2016.  
doi:99.9999/woot07-S422. 

[14] G.  Agrawal,  S.  J.  Goyal,  Survey  on  Data  Leakage  Prevention  through  Machine  Learning 
Algorithms,  in:  Proceedings  of  the  2022  International  Mobile  and  Embedded  Technology 
Conference, 2022. doi:10.1109/MECON53876.2022.9752047

[15] S. Peneti, B. P. Rani, Data Leakage Prevention System with Time Stamp, in: Proceedings of the 
International  Conference  on  Information  Communication  and  Embedded  Systems,  2016. 
doi:10.1109/ICICES.2016.7518934

[16] O.  Savenko,  A.  Sachenko,  S.  Lysenko,  G.  Markowsky,  N.  Vasylkiv,  BOTNET DETECTION 
APPROACH  BASED  ON  THE  DISTRIBUTED  SYSTEMS,  in:  International  Journal  of 
Computing, Vol. 19(2),  2020, pp. 190-198. doi:10.47839/ijc.19.2.1761.

[17] S. Lysenko, O. Savenko, K. Bobrovnikova, DDoS Botnet Detection Technique Based on the Use 
of the Semi-Supervised Fuzzy c-Means Clustering, CEUR-WS, Vol.2104, 2018, pp. 688-695.

[18] S. Lysenko, O. Savenko, K. Bobrovnikova, A. Kryshchuk, B. Savenko. Information technology 
for  botnets  detection  based  on  their  behaviour  in  the  corporate  area  network, 
Communications in Computer and Information Science, Vol. 718, 2017, pp. 166–181. 

[19] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, K. Bobrovnikova. A Technique for the 
Botnet  Detection  Based  on  DNS-Traffic  Analysis. Communications  in  Computer  and 
Information Science. Vol. 522, 2015, pp.127-138.

[20] V. Valleru, COST-EFFECTIVE CLOUD DATA LOSS PREVENTION STRATEGIES FOR SMALL 
AND  MEDIUM-SIZED  ENTERPRISES,  International  Research  Journal  of  Engineering  and 
Technology, Vol. 11, Iss. 05, 2024.  

[21] S. D. Gupta, R. Kumar, waRLOCK: Countering Ransomware and Data Leak, in: Proceedings of 
the 2024 IEEE International Conference on Contemporary Computing and Communications, 
2024. doi:10.1109/INC460750.2024.10649292.

[22] A.  Kashtalian,  S.  Lysenko,  O.  Savenko,  A.  Nicheporuk,  T.  Sochor,  V.  Avsiyevych,  Multi-
computer  malware detection systems with metamorphic functionality,  Radioelectronic  and 
Computer Systems, 2024, pp. 152-175. doi:10.32620/reks.2024.1.13.

[23] M.  Alojo,  Innovative  Approaches  in  Data  Management  and  Cybersecurity:  Insights  from 
Recent Studies, World Journal of Advanced Research and Reviews, Vol. 23, Iss. 03, 2024, pp. 
2410–2425. doi:10.30574/wjarr.2024.23.3.2897.

[24] M. M. R. Mazumder,  C. Phillips,  PARTITIONING KNOWN ENVIRONMENTS FOR MULTI-
ROBOT  TASK  ALLOCATION  USING  GENETIC  ALGORITHMS,  International  Journal  of 
Computing, Vol. 19(3), 2020, pp. 480-490. doi:10.47839/ijc.19.3.1897

[25] P. Bykovyy, V. Kochan, A. Sachenko, G. Markowsky, Genetic Algorithm Implementation for 
Perimeter  Security  Systems  CAD,  in:   Proceedings  of  the  2007  4th  IEEE  Workshop  on 
Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 
Dortmund, Germany, 2007, pp. 634-638, doi: 10.1109/IDAACS.2007.4488498.

[26] S.  Obadan,  Z.  Wang,  A  MULTI-AGENT  APPROACH  TO  POMDPS  USING  OFF-POLICY 
REINFORCEMENT  LEARNING  AND  GENETIC  ALGORITHMS.  International  Journal  of 
Computing, Vol. 19(3), 2020, pp.377-386. doi:10.47839/ijc.19.3.1887

[27] P. Bykovyy, Y. Pigovsky, V. Kochan, A. Sachenko, G. Markowsky, S. Aksoy, Genetic algorithm 
implementation for distributed security systems optimization, in:   Proceedings of  the 2008 
IEEE International Conference on Computational Intelligence for Measurement Systems and 
Applications, 2008, pp. 120-124, doi:10.1109/CIMSA.2008.4595845.

[28] R. Lynnyk, V. Vysotska, Y. Matseliukh, Y. Burov, L. Demkiv, A. Zaverbnyj, A. Sachenko, I.  
Shylinska,  I.  Yevseyeva,  O.  Bihun,  DDOS Attacks Analysis Based on Machine Learning in 
Challenges of Global Changes, in: CEUR Workshop Proceedings (CEUR-WS.org) MoMLeT+DS 

https://doi.org/10.1109/CIMSA.2008.4595845.


2020 Modern Machine Learning Technologies and Data Science Workshop 2020, pp. 159-171. 
ISSN 1613-0073. 

[29] The  Enron  Email  Dataset.  URL:  https://www.kaggle.com/datasets/wcukierski/enron-email-
dataset.

[30] AI4Privacy PII-300k. URL: https://huggingface.co/datasets/ai4privacy/pii-masking-300k.
[31] Government FOIA. URL: https://www.foia.gov/foia-dataset-download.html.
[32] A. Sachenko, V. Kochan, V. Turchenko, Instrumentation for gathering data [DAQ systems], 

IEEE  Instrumentation  &  Measurement  Magazine,  Vol.  6,  2003,  pp.  34-40. 
doi:10.1109/MIM.2003.1238339.

[33] V. Hamolia, V. Melnyk , P. Zhezhnych, A. Shilinh,  INTRUSION DETECTION IN COMPUTER 
NETWORKS  USING  LATENT  SPACE  REPRESENTATION  AND  MACHINE  LEARNING. 
International Journal of Computing, Vol. 19(3), 2020, pp. 442-448. doi:10.47839/ijc.19.3.1893.

[34] O. Kehret, A. Walz, A. Sikora, INTEGRATION OF HARDWARE SECURITY MODULES INTO 
A DEEPLY EMBEDDED TLS STACK, International Journal of Computing, Vol. 15(1), 2016, pp. 
22-30. doi:10.47839/ijc.15.1.827

https://www.foia.gov/foia-dataset-download.html
https://huggingface.co/datasets/ai4privacy/pii-masking-300k
https://www.kaggle.com/datasets/wcukierski/enron-email-dataset
https://www.kaggle.com/datasets/wcukierski/enron-email-dataset

	1. Introduction
	2. Understanding Data Leaks
	3. Threat Landscape and Attack Vectors
	4. Survey on Data Leak Detection
	5. Data Leak Prevention Strategies
	6. Data Leak Detection Using Genetic Algorithm
	7. Experiments
	8. Future Directions
	9. Conclusion
	Declaration on Generative AI
	References

