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Abstract
An  innovative  method  for  the  helicopter  turboshaঃ  engines  gas  temperature  measuring  has  been
developed. It is based on a dynamic mathematical model with error compensation. The original nonlinear
temperature dependence described by the function is  linearly approximated by the Taylor expansion
method,  which allows taking into  account the system’s  dynamic  characteristics  through a  फ़rst-order
diढ़erential equation. To eliminate the model’s static and dynamic errors, a correction system with an
adaptive  PI  controller  has  been implemented,  whose parameters are  selected using a  neural  network
implementing online training. Simulation experiments conducted in the Matlab Simulink environment on
real य़ight test data for the TV3-117 engine demonstrated high accuracy of parameter identiफ़cation (up to
0.9975) and signiफ़cant improvement in the transient process’s dynamics in the model errors present in
the ± 3% range. The experimental results conफ़rm the proposed method's correctness and high eॠciency,
ensuring  the  system’s  stable  operation  in  real  time  and  demonstrating  the  prospects  for  further
development of intelligent control methods.
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1. Introduction and related works

1.1. Motivation

In  the  rapid  development  context  of  helicopter  aviation  and  increasing  requirements  for  the
helicopter  turboshaঃ  engines  (TE)  safety  and  eॠciency,  the  gas  temperature's  accurate
measurement is becoming critical to optimize the unit’s operation [1–3]. Traditional measurement
methods [4–6] are oঃen subject to errors, which can negatively aढ़ect the engines’ performance
characteristics and service life. In this regard, the intelligent gas temperature measurement method
with  model  error compensation  developing  relevance  is  due  to  the  need  to  integrate  modern
artiफ़cial intelligence technologies and self-correction algorithms that can ensure the system’s high
accuracy and adaptability in real time, which will ultimately improve the helicopter TE reliability
and safety.
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1.2. Related works

In modern research on the helicopter TE temperature conditions measuring, for example [7, 8],
classical methods based on the pyrometers, thermocouples, and optical sensors used are widely
used. These methods are oঃen combined with mathematical models describing thermal processes
in combustion chambers and gas य़ows. However, despite signiफ़cant progress in sensor technology
[9,  10] and modeling [11–13],  the  measurements accuracy remains limited due to the dynamic
changes inय़uence on engine operating conditions and the inevitable errors inherent in the models.

In recent years, there has been a trend towards integrating artiफ़cial intelligence and machine
learning methods to improve the accuracy and adaptability of measurement systems. Research in
this area is focused on the neural networks [14–17] and self-calibration algorithms [18, 19] used
that  allow real-time data  correction and compensation for  systematic  errors.  Such  approaches
demonstrate promising results, but they require signiफ़cant computing resources and large training
datasets,  which  complicates  their  practical  application  in  limited  response  time  conditions  in
aviation systems.

In addition to the above approaches, a number of researchers focus on the multi-sensor analysis
and data fusion methods integration to improve the temperature measurements accuracy. In [20–
22],  big  data  processing  algorithms  are  used  that  allow combining  information  from sensors’
diढ़erent types to minimize the noise and random errors impact. An integrated approach combining
physical models, statistical analysis, and artiफ़cial intelligence algorithms opens up new possibilities
for adaptive monitoring. However, their adaptation for real-time operation in helicopter TE re-
mains an unsolved problem requiring further research.

The  studies  [23,  24]  showed that  फ़ber  optic  sensors  provide  high  accuracy and  protection
against  electromagnetic  interference,  and  infrared  thermography  allows  for  contactless
measurements. At the same time, [25, 26] states that CFD modeling and experimental data form
accurate predictive models, and Kalman फ़lters eढ़ectively correct dynamic indicators, reducing the
noise impact. However, the these  method’s high cost and computational complexity make them
diॠcult to use in real time.

Despite the successes achieved, issues related to dynamic compensation of model errors remain
unresolved. Existing approaches [12, 16, 20] oঃen cannot adequately respond to sudden changes in
operating conditions,  which leads to the errors accumulating in temperature measurements.  In
addition, the models’ insuॠcient adaptability [7, 9, 21] and the sensor’s universal self-correction
algorithms [23, 25] lack of limits limit their application possibilities in helicopter TE real operating
conditions.

Thus,  there  is  a need to  develop a new intelligent  method for  measuring gas  temperature,
compensating for model errors in real time. This requires the य़exible adaptive systems integrating
traditional measurement methods [3, 4] with innovative artiफ़cial intelligence algorithms creation
[10,  14,  15,  27],  which  will  signiफ़cantly  improve  the  helicopter  TE  operating  parameters
monitoring reliability and accuracy. 

1.3. Goal and objectives

A goal of the paper is to provide measuring the helicopter TE gas temperature with compensating
the model errors in real time. To reach this goal we formulated the following objectives: (i)  to
develop the intelligent method of measuring gas temperature; (ii)  to create the neural network
controller for implementation of the developed method.



2. Materials and methods

2.1. Development of the intelligent method of measuring gas temperature with 
corrected model error

It is known [1, 4, 28, 29] that in general the gas temperature in front of the compressor turbine
model is represented as a function:

TG=f (nTC , nFT , PN ,T N ) , (1)

where nTC is the gas generator rotor speed (recorded on board the helicopter by the standard D-2M
sensor); nFT is the free turbine rotor speed (recorded on board the helicopter by the standard D-1M

sensor); PN=PN
0 ∙ σ rest ∙(1+M 2 ∙

γ−1
2 ) is the air pressure PN inhibited value at य़ight altitude h = h(t),

PN is the pressure at the ambient pressure sensor output (recorded on board the helicopter by the

standard DP-11 sensor); T N=T N
0 ∙(1+M 2 ∙

γ−1
2 ) is the air temperature T N

0  inhibited value at य़ight

altitude h = h(t),  PN
0  is the pressure at the ambient temperature sensor output (recorded on board

the helicopter by the standard TT-11 sensor);  σrest is the total pressure recovery coeॠcient in the
helicopter TE inlet air section,  M =  M(t) is the Mach number at य़ight altitude  h =  h(t),  γ is the
adiabatic index [29, 30].

This  model  does  not  take  into  account  the  static  error  inय़uence  in  calculating  the  gas
temperature on the on-board automated control system (ACS) time constant setting accuracy [31,
32], which leads to a deterioration in the transient processes quality in its operation. To analyze
small deviations around the operating point (nTC0,  nFT0,  PN0,  TN0) [33–35], function (1) is expanded
into a Taylor series:

TG≈TG 0+
∂ f
∂nTC

∙ (nTC−nTC 0)+
∂ f
∂nFT

∙ (nFT−nFT 0)+
∂ f
∂ PN

∙ (PN−PN 0)+
∂ f
∂T N

∙ (T N−T N 0) . (2)

The obtained approximation (2) of function (1) allows us to identify the model’s sensitivity to
changes in each parameter. To take into account dynamic eढ़ects, model (1) is presented as a फ़rst-
order diढ़erential equation:

τ ∙
d TG

dt
+TG=f (nTC , nFT , PN ,T N ) , (3)

where τ is the time constant characterizing the system’ inertia.
Since the quantities nTC, nFT, PN and TN are also subject to dynamic changes, we introduce their

dynamics’ equations:

τ nTC
∙
d nTC

dt
+nTC=nTC

meas , (4)

τ nFT
∙
d nFT

dt
+nFT=nFT

meas , (5)



τ PN
∙
d PN

dt
+PN=PN

meas , (6)

τT N
∙
d T N

dt
+T N=T N

meas , (7)

where  nTC
meas,  nFT

meas,  PN
meas,  T N

meas are the measured values, and τ nTC
,  τ nFT

,  τ PN
, and  τT N

 are the sensors’

time constants corresponding.
To  eliminate  the  static  error  inय़uence  in  measuring  gas  temperature,  compensation  is

introduced. Let  TG,ref be the temperature measured by a thermocouple (standard); then the model
error is deफ़ned as:

∆TG=TG,ref−TG . (8)

When switching to a new dynamic mode, the adjustment is carried out according to the rule:

T corr=TG+K ∙∆TG , (9)

where  K is the correction coeॠcient (at  steady state,  oঃen  K =  1).  In this case,  a condition is
introduced on the model’s change rate to ensure the transient processes stability:

|d TG

dt |≤ ε0 (10)

with a threshold ε0, which speciफ़es the maximum permissible change in temperature per unit time.
In addition, the error compensation dynamics are speciफ़ed through the integral action as:

I (t )=∫
t0

t

∆TG (ξ )dξ , (11)

and, at the same time, a PI controller is introduced [36–38]:

T corr=TG+K P ∙ ∆TG+K I ∙ I (t ) , (12)

where KP and KI are proportional and integral coeॠcients, respectively.
To improve accuracy, adaptive change of correction coeॠcient K is provided ac-cording to the

following law:

dK
dt

=α ∙∆TG−β ∙ K , (13)



where α and β are the adaptive scheme’ parameters, allowing it to “adapt” to changes in dynamics.
Taking into account all the eढ़ects considered, the फ़nal equation is presented as:

τ ∙
d TG

dt
+TG=A ∙nTC+B ∙nFT+C ∙PN ∙ σ rest ∙(1+M 2 ∙

γ−1
2 )+D∙T N ∙(1+M 2 ∙

γ−1
2 )+E , (14)

where A, B, C, D and E are empirical coeॠcients determined by system identiफ़cation.
In this case, the फ़nal temperature value, taking into account error compensation, is determined

as:

TG , final=TG+K ∙∆TG , (15)

or, taking into account the PI controller, as

TG , final=TG+K P ∙ ∆TG+K I ∙∫
t0

t

∆TG (ξ )dξ . (16)

2.2. Neural network controller development

The proposed controller’  general  structure  (Figure 1)  is  based on the corrected error,  which is
represented as:

∆TG (t )=TG ,ref (t )−TG (t ) , (17)

where TG,ref(t) is the reference temperature measured by the thermocouple, and TG(t) is the model
output (see (1) and (8)). In a classical PI controller, the output control action has the form:

uPI (t )=K P ∙ ∆TG+K I ∙∫
0

t

∆TG (τ )dτ . (18)



Figure 1: The proposed PI controller with neural network tuning. (author's development).

The proposed neural network PI controller extends this scheme by adaptively determining the
coeॠcients KP and KI based on a feature vector reय़ecting the entire system’s dynamics. To take into
account the model’ speciफ़c features, the input signals vector x(t) includes: the error’ current value

∆TG(t), the error’ derivative ∆ṪG (t )=
d ∆TG (t )

dt
, the gas generator and free turbine nTC(t) and nFT(t)

operating parameters, the aerodynamic parameters: the Mach number M(t), the pressure PN
0
(t ) and

the temperature T N
0
(t ) (or their “slowed down” versions PN and TN. In this case, the model’s change

rate is additionally taken into account, for example, the value  |d TG

dt |, limited according to (10).

Thus, the input vector x(t) is represented as:

x (t )=(∆TG (t ) ∆ṪG (t ) nTC (t ) nFT (t ) M (t ) PN (t ) T N (t ) |dTG

dt |), (19)

It is further assumed that a neural network with parameters  w deफ़nes the input vector  x(t)
nonlinear mapping into a coeॠcients [KP(t), KI(t)] pair:

K P (t )=φP (x (t ) ;wP) , K I (t )=φ I (x (t ) ;w I ) . (20)

In the simplest case, one can use a single-layer neural network with nonlinear activation, for
example, hyperbolic tangent (tanh). Then for each hidden neuron hj(t) (j = 1, …, Nh) we obtain:

h j (t )=tanh(∑
i=1

n

ωij ∙ x i (t )+b j), (21)

and the outputs are calculated as:

K P (t )=∑
j=1

N h

vP , j ∙ h j (t )+bP , K I (t )=∑
j=1

N h

v I , j ∙ h j (t )+b I . (22)
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For the controller parameters’ adaptive adjustment, the neural network is trained online using
error backpropagation [39, 40]. The objective function can be deफ़ned as the mean square error
between the reference and output temperatures:

J (t )=
1
2
∙ (TG ,ref (t )−TG , final (t ))

2
. (23)

The rules for updating the weights wP and wI are given by gradient descent:

∆wP=−η ∙
∂ J (t )
∂wP

, ∆wP=−η ∙
∂ J (t )
∂wP

, (24)

where η is the training rate. This approach allows the neural network to “train” from model errors
and adjust the controller coeॠcients in accordance with changes in the system dynamics.

Thus, the neural network adapts the PI controller coeॠcients depending on the system’s current
state.  The  original  model  features  (sensor  dynamics,  aerodynamic  parameters  inय़uence,  total
pressure recovery, limitation on the temperature change rate) are implemented due to:

1. The input vector x(t), which includes not only the control error, but also the parameters nTC,

nFT, M, PN, TN and |d TG

dt |.
2. The coeॠcients KP(t) and KI(t) adaptive selections, which change depending on the model’s

current  state,  which  allows  for  the  transient  processes’  correction  under  changing
operating mode conditions.

3. Training on real data. When integrating with measuring signals from thermocouples and
sensors, the neural network constantly adjusts its weights, which improves the ACS time
constant adjustment quality.

Thus, the neural network PI controller’s फ़nal control action is represented as:

TG , final (t )=TG (t )+φP (x (t ) ;wP) ∙ ∆TG (t )+φ I (x (t ) ;w I ) ∙∫
0

t

∆TG (τ )dτ . (25)

The developed neural network PI controller allows for the gas temperature’s adaptive control,
taking into account the model’s both static and dynamic features, as well  as limitations on the
transient processes speed. Thus, the developed neural network PI controller is integrated into the
original model, enhancing its features due to the coeॠcients’ adaptive selection, which allows for
achieving  higher  accuracy  and  stability  of  helicopter  TE  changing  dynamics  control  under
conditions.

3. Case study

To test the gas temperature measurement developed model with the model error compensation,
implemented using a PI  controller with neural  network tuning (see  Figure 1),  a  computational
experiment was conducted, which research object was the TV3-117 engine [10, 14, 15, 27, 37, 41],
which is the Mi-8MTV helicopter power plant part. According to the authors' team to the Ministry
of Internal Aढ़airs of Ukraine oॠcial request, within the research project “Theoretical and Applied
Aspects of the Development of the Aviation Sphere” framework, registered in Ukraine under state
number  0123U104884,  the  Mi-8MTV  helicopter  य़ight  test  data  (nTC,  nFT,  TG,  PN and  TN)  were



obtained, which were carried out at a य़ight altitude of 2500 meters above sea level for 320 seconds
with a sampling interval of 0.25 seconds. The data (nTC, nFT, TG, PN and TN at M = 0.7) obtained during
the Mi-8MTV helicopter य़ight tests using the onboard monitoring system were preprocessed with
the noise interference and anomalous values removal, aঃer which they were transformed into time
series is the parameters sequences ordered by time [42]. To ensure the time series comparability

with  the  parameters’  diढ़erent  scales,  z-normalization  x i=

xi−
1
N
∙∑
i=1

N

x i

√ 1
N
∙∑
i=1

N

(xi− 1
N
∙∑
i=1

N

x i)
2
 [43]  was

applied, which brings their values to a single range, setting the middle at zero and the standard
deviation equal to one. This made it possible to form a parameters nTC,  nFT,  TG, PN and TN training
dataset, which fragment is presented in Table 1.

Table 1
The training dataset fragment during the TV3-117 engine operation

Number nTC nFT TG PN TN

1 0.982 0.979 0.983 0.999 0.998

... ... ... ... ... ...

373 0.987 0.982 0.982 0.998 0.997

... ... ... ... ... ...

562 0.989 0.981 0.982 0.998 0.999

... ... ... ... ... ...

797 0.983 0.982 0.983 0.997 0.997

... ... ... ... ... ...

965 0.992 0.982 0.987 0.999 0.998

... ... ... ... ... ...

1280 0.983 0.983 0.981 0.999 0.999

As the research’ part, the training dataset’s homogeneity was assessed using the Fisher-Pearson
[44] and Fisher-Snedecor statistical tests [45], with a signiफ़cance level of  α = 0.01. This analysis
revealed that the Fisher-Pearson test values were 13.225 for nTC, 13.208 for nFT, 13.215 for TG, 13.295
for PN, 13.297 for TN, which is below the threshold value of 13.3. Similarly, the Fisher-Snedecor test
values were 1.124 for nTC, 1.123 for nFT, 1.115 for TG, 1.133 for PN, 1.134 for TN, which also does not
exceed the critical value of 1.139. These results conफ़rm both the training dataset homogeneity and
the parameters’ variances consistency under research. In addition, a cluster analysis was performed
using the k-means method [46, 47], which made it possible to identify 8 separate groups, thereby
conफ़rming  the  both  the  training  and  test  datasets  represent  the  population.  Note  that  these
datasets were formed by randomly splitting in a ratio of 67 to 33 %, which ensures objectivity and



balance in the data distribution.  Based on the obtained results, the dataset-amounts optimizing
process for sensor signals was carried out: the training dataset includes 1280 elements, the control
dataset includes 858 elements, and the test dataset includes 422 elements. Such optimization creates
a solid foundation for further research and timely prevention of engine failures during य़ight.

The research involved a  computational  experiment,  whose main objective  was to obtain the
transient process results of the developed PI controller with neural network tuning with the gas
temperature model error of ± 3 % and with the gas temperature model error correction of ± 3 %.
These deviations (± 3 %) of the gas temperature value were selected based on the modern helicopter
TE performance characteristics analysis, where this value is taken as the limit value during the
unit’s  normal  operation.  The permissible limit  of  ± 3% is  due to  the fact  that  it  is  with such
deviations  that  the  aerodynamic  and  thermodynamic  processes  stability  is  maintained,  which
ensures optimal engine operation and minimizes the excessive wear or emergency situations risk
[48–50].

To  conduct  a  computational  experiment  in  the  Matlab  Simulink  soঃware  environment,  an
integrated computational model was developed, including a helicopter TE dynamic model, a PI
controller  algorithm with neural  network tuning,  and a  module  for  compensating for  the  gas
temperature model error (Figure 2).

Figure  2:  Developed  integrated  computational  model  in  the  Matlab  Simulink  soঃware
environment. (author's development).

Figure 3 shows the gas temperature model transient processes with a gas temperature model
error of ± 3% (Figure 3 a, b) and with a gas temperature model error correction of ± 3% (Figure 3 c,
d), from which it  is  evident that the gas temperature model error has a negative eढ़ect on the
transient processes’ quality (curves 1 and 2 diढ़er in Figure 3 a, b). 

This diढ़erence is due to the fact that the gas temperature model (1), which may have an error, is
used to correct the thermocouple time constant. As soon as the gas temperature takes its constant
value in the steady-state operating mode (in Figure 3 a, the exit time is approximately 4.5 seconds),
the thermocouple time constant adjustment is switched oढ़ until the next transient process. The
model error ceases to aढ़ect the steady-state operating mode, since the thermocouple readings are
used without correction (in Figure 3, it is evident that curve 1 gradually transforms into curve 2
over a period of 1…2 seconds).

Curve 1 shows the transient response at the controller output implemented according to the
classical  self-adjusting  gas  temperature  controller  diagram.  Curve  2  illustrates  the  transient



response at  the  developed PI  controller  with neural  network adaptation output  (see  Figure 1).
Curve 3 represents the signal received from the thermocouple output. Thus, it can be concluded
that the additive error aढ़ects only the measuring device's dynamic operating mode. One of the
ways to eliminate this inaccuracy is to correct the gas temperature model error. It is evident from
Figure 3, c, d  that  the  gas  temperature  model  error  is  compensated,  and  when  applying  a
disturbance (the transient process noted at the 8th second), the model-corrected value is used. It is
obvious that the transient process's quality is not determined by the gas temperature model error.

Figure 4 shows the gas temperature model transient processes with an admitted error of ± 3%
when the temperature changes according to a sinusoidal law. It is clear that initially the 2% error
had a negative impact on the transient processes’ quality (curves 1 and 2 diढ़er). Then, at the 3.5
second mark, the model error is eliminated, and then the model signal without the error is applied
(curves 1 and 2 coincide).

a b

c d

Figure  3:  The  gas  temperature  model  modeling  results:  (a)  with  an  error  of  +  3%  without
correction of the gas temperature model; (b) with an error of –3% without correction of the gas
tempera-ture model; (c) with an error of +3% with correction of the gas temperature model; (d)
with an error of –3% with correction of the gas temperature model. (author's development).



Figure 4: Results of the gas temperature modeling transient processes with a model error of +3%
when the gas temperature changes according to a sinusoidal law. (author's development).

Figure 5 shows the signal at the developed PI controller output (see Figure 1) with single jumps
in gas temperature and the stabilization mode zone allocation in relation to the process shown in
Figure 3, c.

According to Figure 5,  when single jumps in the input  signal  (changes in gas temperature)
occur, a quick response is observed at the controller output. Aঃer each jump, the signal gradually
moves into the stabilization zone, where a new stable level is established. This zone reय़ects the
correction  mechanism’s  operation,  which,  thanks  to  the  coeॠcients  (KP and  KI)  adaptive
adjustment through the neural network, minimizes the model error consequences and allows the
system to return to a stable state. Comparison with the process without compensation (as can be
seen, for example, in Figure 3, from which the initial data are taken) shows that the neural network
adaptive PI controller implementation can signiफ़cantly reduce the model error impact. The signal
at  the  controller  output  becomes smoother,  which indicates  the gas  temperature measurement
dynamics and increased accuracy adjustment. Rapid adaptation to abrupt changes and the stable
mode’s subsequent establishment are important for maintaining optimal operating conditions for
helicopter TE.

Figure  5:  Diagram of the signal at the developed PI controller  output for single jumps in gas
temperature and allocation of the stabilization mode zone. (author's development).



The model  error value  (ε0)  choice  is  determined  using the free  turbine rotor  speed sensor.
Depending on the free turbine rotor speed  nFT,  the gas temperature model error in the current
operating mode is calculated from the model error dependence on the frequency diagram (Figure
6). The curve in Figure 6 is the model errors real values approximation based on [51–53].

Figure  6:  Diagram  of  the  model  error  on  free  turbine  rotor  speed  dependence.  (author's
development).

An example of the helicopter TE gas temperature model error determining the free turbine rotor
speed's certain value is presented based on the following data: 11300 rpm is the फ़rst cruising mode
(model  error value +1.48 %);  11500 rpm is  the  nominal  mode (model  error value +1.79 %).  To
calculate the error value between the फ़rst cruising and nominal operating modes, for example, at a
free turbine rotor speed of 11400 rpm, the following analytical expression is used:

ε0 (11400 )=( 1.79−1.48
11500−11300)∙ (11400−11300 )+1.48=1.635% . (26)

According to the obtained results, at 11300 rpm (the फ़rst cruising mode), the model error is
+1.48 %, and at 11500 rpm (nominal mode), it is +1.79 %. Linear interpolation for 11400 rpm yielded
an error value of 1.635 %, which indicates a uniform change in the error between the modes. These
results demonstrate the accurate model correction possibility depending on the free turbine rotor
speed.

4. Discussions

In this research, the helicopter TE gas temperature measuring method has been developed, which is
based on a dynamic model, where the initial temperature dependence is speciफ़ed by function (1)
and linearized through the Taylor expansion (2) with subsequent representation in the फ़rst-order
diढ़erential  equation  form  (3),  which  allows  taking  into  account  the  system’s  dynamics.  To



compensate for the static error, a correction term with the coeॠcient K (9) is used, and the integral
and proportional control (12) are supplemented by an adaptive change in the coeॠcient according
to the law (13). In addition, the neural net-work used for the PI controller coeॠcients dynamic
adjustment (20)–(22) ensures the method’s adaptation to changing operating conditions and high
measurement accuracy.

The obtained results demonstrate that the adaptive method for compensating for model errors
using  a  neural  network  implementation  to  adjust  the  PI  controller  coeॠcients  allows  for  a
signiफ़cant  increase  in  the  helicopter  TE  gas  temperature  measuring  accuracy  (parameter
identiफ़cation up to 0.9975), which is conफ़rmed by simulation experiments: in the model error of ±
3  %  presence,  the  out-put  signal  dynamics  is  signiफ़cantly  improved–a  rapid  recovery  aঃer
temperature jumps and the signal transition to the stability zone are observed (Figures 3–5), which
speciफ़es the method’s  eढ़ectiveness  in minimizing the model  errors impact and the automated
control system ensures reliable operation in real conditions. 

The  obtained  results  demonstrate  the  developed  method's  high  accuracy  and  adaptability;
however, a limited number of limitations require additional analysis. The developed measurement
model is based on a nonlinear dependence linear approximation (Taylor expansion), which can lead
to a decrease in the assessment correctness with abrupt changes in operating conditions or in the
strong disturbances event. The experimental validation was carried out under conditions close to
the normal operating mode (model error ± 3 %), which limits the extrapolating possibility of the
results to more extreme or unpredictable scenarios. The computational costs associated with the
neural  network  online  training  for  the  PI  controller  coeॠcients  adaptive  adjustment  require
optimization for real implementation in systems with limited resources.

Future research prospects  include  expanding the model  to  include more complex  nonlinear
eढ़ects and dynamic modes and adapting it to diढ़erent engine types and operating conditions [54].
Field testing to verify the system’s performance in real-world conditions is recommended, as is
research into the more advanced machine learning algorithms use [55] to improve adaptability and
reduce  computational  load.  An  important  area  for  future  work  is  the  multisensor  analysis
integration [56],  which will  improve error compensation algorithms and ensure the ACS more
stable operation.

5. Conclusions

The  helicopter  turboshaঃ  engine's  gas  temperature  measuring  innovative  method  has  been
developed,  which  is  based  on  a  dynamic  model  using  a  nonlinear  dependencies  linear
approximation  and  compensation  for  static  and  dynamic  model  errors  using  an  adaptive  PI
controller  with  a  neural  network.  The  applied  approach,  implemented  through (1)–(3)  for  the
system’s  dynamic  description,  (9)–(13)  for  error  correction,  and  (20)–(22)  for  the  coeॠcient’s
adaptive adjustment, allows achieving high accuracy of parameter identiफ़cation (up to 0.9975) and
ensures stable system behavior even in the model error's presence in the range of ± 3 %.

Simulation experiments conducted in the Matlab Simulink environment demonstrated that the
proposed method signiफ़cantly improves the transient processes dynamics: aঃer sharp temperature
jumps, a quick response and subsequent establishment of a stable mode are observed. Thus, the
developed method allows for the model errors to inय़uence eढ़ective compensation and adaptation
to  changing  operating  conditions,  which  is  an  important  factor  for  increasing  the  helicopter
turboshaঃ engine's reliability and safety.
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