
Mathematical model of a decision support system for 
identification and correction of errors in Ukrainian texts 
based on machine learning⋆

Rostyslav Fedchuk∗,† and Victoria Vysotska†1 

Information Systems and Networks Department, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine 

Abstract
This research presents a mathematical  model for a decision support system aimed at  identifying and 
correcting errors in Ukrainian-language texts. The system combines two key components: error detection 
as token-level  multi-class classification and error correction as context-aware text generation.  Special  
attention is given to the structural and grammatical complexity of the Ukrainian language. Probabilistic 
models and machine learning techniques are used to classify errors and suggest corrections. The model  
accounts for dependencies between tokens and linguistic features specific to Ukrainian. Methods for text  
vectorization  are  mathematically  justified  based  on  morphological  and  syntactic  characteristics.  The 
correction module generates accurate replacements for erroneous tokens using contextual modeling. This 
approach enables high accuracy and adaptability in processing Ukrainian texts.  The proposed system 
provides a universal foundation for automated Ukrainian text editing.
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1. Introduction

In today's rapidly growing text content, the problem of automatic text verification and correction is 
becoming particularly urgent. For the English language, many studies have been conducted, and 
significant progress has been made in solving the GEC problem [1]. However, for the Ukrainian 
language, there is still a lack of sufficient qualitative research that would consider the peculiarities  
of the Ukrainian language, its morphological structure, dialect diversity, syntax multifacetedness, 
and context of dependencies. Errors in texts can be of different nature – spelling, grammatical,  
punctuation,  semantic,  etc.,  and  their  correction  becomes  necessary  to  improve  the  quality  of 
information, as well as to ensure its correct perception by users.

The main approach to solving the GEC problem includes two interrelated stages: identification 
of errors in the text and generation of corrections. Historically, traditional methods were used to 
solve these problems, but their effectiveness is significantly inferior to modern machine learning 
models.

Traditional GEC systems are typically built on a set of linguistic rules [2] formulated by experts  
and dictionary databases. Such systems check spelling, number, gender, or case agreement between 
words, and even basic punctuation. For example, they are excellent at detecting erroneous word 
forms  (“великий  книга”)  or  separate  spelling  of  particles  (“на  приклад”  →  “наприклад”).  
However, the complexity and multifacetedness of the grammatical dependencies of the Ukrainian 
language impose numerous limitations on such systems. They do not consider contexts in which 
rules often change their interpretation, for example, in colloquial or artistic language, where verbal 
abbreviations, non-standard constructions, or stylistic variations occur. In addition, creating and 
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maintaining  an  extensive  set  of  rules  for  such  systems  requires  significant  human  and  time 
resources. As a result, traditional systems demonstrate low performance in real-world conditions 
and have hardly adapted to new data and text styles.

More sophisticated systems based on statistical machine translation (SMT) were the next step in 
the development of the GEC problem and offered a more flexible approach to text correction. The  
basis of such models is the analysis of large corpora of texts, where for each sentence a correct and 
an incorrect version was known. Using statistical regularities, the models suggest the most likely 
correction for each erroneous fragment. Although this approach has some improvements compared 
to the previous one, it remained limited due to its dependence on the quality of the training corpus. 
In addition, SMT models do not sufficiently consider the global context of the text, which leads to 
many stylistic and grammatical errors in complex constructions. The modern era of solving the 
GEC problem includes the use of machine learning, which has significant advantages compared to 
traditional  approaches.  Machine  learning  models,  such  as  transformative  architectures,  can 
consider not only local,  but also global dependencies between words in the text.  They provide 
context analysis, which is critical for classification and generation tasks within the GEC problem. A 
classification approach is used to identify errors,  where each token of the text is analyzed and 
labeled  with  a  corresponding  label.  In  the  Ukrainian  language,  this  stage  faces  significant 
difficulties associated with morphological complexity, since most words can take on different forms 
depending on their case, number, or gender. Also, grammatical dependencies are often determined 
by the interaction of several tokens located at a considerable distance from each other in the text,  
such as when agreeing the subject and predicate in a complex sentence. The complexity of error  
classification is compounded by the polysemy of lexemes, where the meaning of a word changes 
depending on the semantic context.

Error correction, on the other hand, is a text generation task where the system has to predict 
the correct correction for each erroneous token or fragment of text. Here, the key is not only the  
accuracy of grammar, but also the coordination of the corrected text with a style that matches the 
context of the input text. Generative models, such as mT5 [3], have proven their high efficiency in 
solving this problem due to the contextual analysis of each token and the ability to work with 
multi-level  dependencies.  For  the  Ukrainian  language,  this  is  especially  important  due  to  the 
significant  semantic  load  of  dependencies  between  words  and  syntactic  variations,  which  can 
complicate the generation of corrections even for standard grammatical constructions. The use of 
machine  learning  methods  has  significant  advantages.  Models  built  on  such  architectures  are 
adaptive in working with real texts and can qualitatively consider the context. They are devoid of 
the strict limitations inherent in linguistic rules and can be trained on large data corpora, gradually  
improving  their  predictions.  Transformer  models,  such  as  BERT  for  identification  and  T5  for 
correction, allow combining both stages within a single system that can work with complex error 
cases. 

The purpose of the research is to develop a mathematical model of a decision support system for 
identifying and correcting errors in Ukrainian-language texts using machine learning methods. The 
main  tasks  are  to  formalize  the  processes  of  text  analysis,  build  a  model  that  considers  the 
morphological, syntactic and contextual specifics of the Ukrainian language, build DFD diagrams, 
as well as create algorithms for detecting errors and correcting them.

The object of the research is the processes of automatic identification and correction of errors in 
Ukrainian  texts,  considering  their  morphological  and  syntactic  complexity.  The  subject  of  the 
research is a mathematical model and machine learning algorithms that allow solving classification 
and generation problems for building an effective text processing system.

2. Statement of the problem

The problem of correcting errors in a text belongs to the category of GEC tasks, which include two 
main subtasks: error identification and error correction. 



Today, there are several reasons that complicate the solution of this problem for Ukrainian-
language  texts.  First,  most  traditional  automatic  text  checking  systems  are  designed  for  less 
complex languages from a grammatical point of view, such as English. The application of these 
systems to  the Ukrainian language turns out  to  be  ineffective,  since they do not  consider  the 
specifics of its grammar and syntax. For example, the variability of word forms (cases, numbers,  
genders,  declension)  complicates  the  task  of  identifying  erroneous  tokens.  In  addition,  the 
Ukrainian language has significant lexical-semantic dependencies that depend on the context. 

Another challenge is the variety of errors that can occur in texts. Spelling errors are relatively  
straightforward to process automatically, while grammatical, punctuation, and even stylistic errors 
require detailed analysis of the context and interactions between words within a sentence or even a 
paragraph.  For  example,  in  the  sentence  "Мама  купив  хліб,"  the  error  ("купив"  instead  of 
"купила")  requires modeling the agreement between the subject and the predicate.  Identifying 
such complex dependencies and creating mechanisms to correct them remains an open task. 

In addition, the task is complicated by the lack of large open corpora of training data for the 
Ukrainian language that would provide sufficient quality for training machine learning models. The 
dominance  of  English-language  content  in  the  field  of  NLP  creates  an  uneven distribution  of 
resources and methodologies, which requires adapting existing technologies to the specifics of the 
Ukrainian language. 

The GEC task is based on two key stages, which are performed sequentially: error identification 
and correction. The error identification stage is responsible for identifying erroneous tokens in the 
text and the type of error they contain. The work process at this stage includes the analysis of each 
token and an assessment of the probability of an error, considering the context of the surrounding  
words. 

To  successfully  solve  the  GEC  problem,  a  system  is  needed  that  is  able  to  integrate  the 
identification  and  correction  processes  into  a  single  model-oriented  approach  and  solve  the 
following challenges of the Ukrainian language: contextual ambiguity, morphological distribution 
(it  is  necessary to take into account  7  cases of  Ukrainian words,  their  number,  gender,  form),  
syntactic complexity, and the lack of training corpora in the Ukrainian language. 

3. Related works

Modern automatic text correction tools  have become an important tool  in overcoming various 
types of spelling, grammar, punctuation and stylistic errors. In this context, the most well-known 
and effective solutions are software applications and platforms integrated into word processors,  
online tools and machine learning systems. Grammarly [4] is one of the most popular tools for 
automatic  text  checking.  Unfortunately,  Grammarly  does  not  currently  support  the  Ukrainian 
language for checking grammar,  spelling or  stylistics.  The main functionality of  the service is  
focused on the English language. However, the company is actively working on the development of 
the  Ukrainian  language  in  the  field  of  computational  linguistics.  Grammarly  created  [5]  and 
published in the open access annotated GEC corpus of the Ukrainian language [6], which contains 
almost 34,000 sentences. This resource is intended for scientific and practical study of the language,  
as well as for training and evaluation of grammar correction programs. 

GPTTools.ai  [7]  is  a  Ukrainian  desktop  application  based  on  GPT-4  artificial  intelligence, 
designed to effectively work with texts in Ukrainian and more than 70 other languages. The tool  
provides the ability to generate texts, edit, correct stylistic, spelling and grammatical errors, as well  
as translate. A key feature is support for individual prompts – users can create their own templates  
to automate routine tasks. The program is suitable for students, scientists, copywriters and anyone 
who works with large amounts of text information, ensuring convenience and accuracy of data 
processing.  LanguageTool  [8],  which  supports  a  multilingual  format,  including  Ukrainian,  is 
currently one of the most functional tools for text verification. LanguageTool works based on rules 
and currently has 1219 rules [9]. This platform is available as an online tool, browser extension or 
desktop  application.  It  can  work  with  grammatical,  spelling  and  contextual  errors,  offering 



recommendations  for  their  correction.  LanguageTool  integration  is  possible  through  the 
LanguageTool API, which supports the Ukrainian language and is called NLP-uk [10]. Through this 
integration,  the user  gets  access  to  normalization,  tokenization,  lemmatization,  POS-tagging of 
texts, as well as tools for solving the problem of ambiguities in the Ukrainian language. 

The word processors  Microsoft Word and Google  Docs  also  have  a  text  proofing function, 
including basic support for the Ukrainian language. Microsoft Word allows you to correct spelling 
errors using dictionary databases and linguistic rules. Google Docs offers a similar basic proofing, 
but its functionality is less developed. For complex text analysis, these platforms can use additional  
integrations, such as LanguageTool. 

Among the specialized Ukrainian tools, OnlineCorrector [11] should be highlighted, which is 
focused on checking spelling, punctuation, and style in texts. This online tool allows you to upload 
texts for checking and receive a result with corrected errors. It pays special attention to working  
with texts of various formats, considering the specifics of the Ukrainian language. 

Modern machine learning models, particularly GECToR [12], open up new opportunities for 
automating text correction processes. This model is built on a transformative architecture and is 
available  for  adaptation  to  any  language,  including  Ukrainian.  GECToR  uses  an  attention 
mechanism to consider the context in text correction, which allows achieving high accuracy and 
efficiency. 

Today, platforms such as Hugging Face [13] are also available to developers, which offer pre-
trained models, including multilingual versions of BART, BERT, GPT, or T5. These platforms allow 
for the creation of customized solutions for GEC and other natural language processing tasks by 
adapting the models to the specifics of the language and style of the text. 

A great example of an interactive multilingual tool is modern GPT models, including ChatGPT, 
which can not only check and correct texts, but also adapt to complex stylistic features, considering 
the context of the text. These models can work with any type of text, providing both basic checking 
and context-based corrections. 

In [14], the study examines the effectiveness of using GPT-3.5 for grammatical error correction 
(GEC) in a multilingual context in various scenarios, including zero-shot learning, fine-tuning, and 
using the model to rank correction hypotheses generated by other models. The authors evaluate 
the  performance  of  GPT-3.5  through  automated  evaluation  methods,  such  as  grammaticality 
assessment using language models  (LM),  Scribendi  test,  and semantic  embedding analysis.  The 
results demonstrate that for English,  GPT-3.5 shows a high level of consistency in corrections,  
preserving the semantic integrity of the text,  due to which the model corrects errors well and  
generates smooth sentences. However, in other languages, including Ukrainian, Czech, German, 
Russian, and Spanish, GPT-3.5 often significantly modifies the source sentences, which sometimes 
leads to changes in their semantics and creates difficulties for evaluation. The main feature of this 
work is the detection of GPT-3.5's tendency to overcorrect, as well as the analysis of its limitations  
in  correcting  punctuation  errors,  tense  agreement,  syntactic  dependencies,  and  lexical 
compatibility. Despite the powerful capabilities of the model, the authors emphasize the problems 
of its adaptation for GEC tasks in a multilingual environment, especially for languages with a rich 
grammatical structure, such as Ukrainian. 

In [15],  the authors proposed a new approach to multilingual  grammatical  error  correction 
(GEC), which is based on the use of pre-trained machine translation models. A feature of their 
approach is the integration of neural machine translation methods into the GEC task, which made 
it possible to effectively adapt the models to work with texts in different languages, in particular  
low-resource ones. The authors managed to overcome the limitations of traditional GEC models by 
optimizing  pre-trained  transformers,  which  ensured  high  accuracy  of  correction,  context-
awareness, and naturalness of the corrected text. The main difference of their work is that they 
adapted  translation  models,  in  particular  transformers,  for  multilingual  correction,  while 
maintaining their universality and ability to scale to new language sets. This allows not only to 
correct errors with high accuracy, but also to effectively work with languages for which limited 
training resources are available. 



4. Mathematical model of a decision support system

The decision support system for identifying and correcting errors in Ukrainian-language texts is  
based on the use of natural language processing (NLP) and machine learning methods [16-24]. The 
main  goal  of  the  DSS  is  to  automatically  identify  errors  in  the  text,  correct  them or  provide  
recommendations for correction. The system consists of three main modules: an error identification 
module, an error correction module, and a machine learning module. This modular structure allows 
you to easily update the system, adapt it  to different tasks, and increase the accuracy of error 
recognition and correction. An important aspect is the ability to integrate additional components,  
such as lexical databases, semantic networks, and algorithms for increasing the accuracy of text 
analysis. 

The error identification module performs text analysis to detect incorrect words, grammatical, 
spelling, and stylistic errors. Its main tasks are: 

 Text segmentation – dividing the input text into individual sentences. 
 Stop word removal – removal of punctuation marks, as well as other language constructs 

that do not carry a semantic load and will only slow down the identification of errors. 
 Text tokenization – splitting the input text into individual words or phrases for further 

analysis. 
 Lemmatization,  stemming  and  morphological  analysis  –  determining  the  basic  form of 

words, their part of speech and grammatical characteristics. 
 Classification  of  words  into  correct  and  potentially  incorrect  –  application  of  machine 

learning methods to assess the correctness of words in the context of a sentence. 
 Contextual analysis – assessment of the probability of an error based on surrounding words 

(n-gram models, transformers, rules). 

Based on these stages, a list of potential errors is formed, which is transferred to the correction 
module.  After  identifying  errors,  the  system  should  offer  appropriate  corrections.  The  main 
functions  of  the  error  correction  module  are  as  follows:  generation  of  corrections,  contextual 
checking, ranking of correction options,  calculation of the model’s degree of confidence in the 
correction. 

Depending on the settings, the system can either automatically make corrections or prompt the 
user to choose the most appropriate option. In some cases, the option of interactive training by the  
user is possible. 

The  machine  learning  module  is  critical  for  system adaptation  and  improvement.  Its  main 
functions include model training, parameter updating, and feedback collection. 

In  the  process  of  building  a  mathematical  model  of  a  decision  support  system  (DSS)  for 
identifying  and  correcting  errors  in  Ukrainian-language  texts,  an  important  stage  is  the 
formalization of input and output parameters. This allows you to clearly determine what data the 
system processes and what results it should generate. 

The system receives text in various forms as input, which may contain spelling, grammatical,  
punctuation, and stylistic errors. The input data is formalized as follows: 

X={x1 , x2 ,…, xn }, (1)

where:  X  is the input text array consisting of n tokens (words, symbols, sentences);  xi is a 
separate token or word in the text. 

Additionally, auxiliary parameters can be used: text format (plain text, HTML, XML, JSON); 
language (the system is focused exclusively on the Ukrainian language), contextual metadata (text  
genre (scientific, journalistic, colloquial), style (formal/informal)). 

During  the  processing  process,  the  text  goes  through several  stages  of  analysis.  The  main 
intermediate parameters are linguistic features (POS tags  P(xi) morphological features  M (xi), 



syntactic dependencies  S (xi , x j)); probabilistic characteristics (estimated probability that a word 
contains an error in a given context, confidence model); candidates for corrections, error labels. 

The result  of  the system is  the corrected text  and correction quality metrics.  Formally,  the 
output data can be presented as a set: 

X̂={ x̂1 , x̂2 , ... , x̂n } (2)

where: X̂  – corrected text, x̂1 – corrected version of the word or token x̂i.
The input parameters include the corrected text, a list of errors found, and correction evaluation 

metrics, including accuracy, completeness, F1-measure, and confidence score. 
In the process of developing a decision support system for identifying and correcting errors in 

Ukrainian-language texts, it is important to consider several limitations that affect its functionality, 
as well as clearly define the performance criteria that allow assessing the quality of its work. These  
aspects are of decisive importance for building a reliable and accurate mathematical model. 

One of the key limitations is the linguistic specificity of the texts with which the system works.  
The Ukrainian language has a rich morphological structure, a significant number of grammatical  
rules,  and  numerous  exceptions,  which  complicates  the  process  of  automated  analysis.  An 
important  challenge  is  the  processing  of  polysemy –  cases  when  one  word  can  have  several 
meanings  depending  on  the  context.  In  addition,  the  system may  encounter  difficulties  when 
processing neologisms, professional vocabulary, or dialect features that are not always included in 
the training corpora. 

Technological constraints also play an important role in the system's performance. One critical 
aspect is the performance of the algorithms used to analyze and correct text. Some modern natural  
language processing models, such as neural network transformers, require significant computing 
resources, which can create problems when used in real time or on devices with limited computing 
power. In addition, the length of the text being analyzed can impose limitations on the system's  
performance,  since  large  fragments  must  be  divided  into  smaller  parts,  which  can  reduce  the 
accuracy of contextual analysis. 

Defining performance criteria is an important stage in assessing the quality of the system. The 
main indicator is the accuracy of error detection and correction, which is evaluated using metrics  
such as precision, recall, and F1-measure. High precision means that the system detects only those 
errors that are present in the text, while high completeness indicates the ability to recognize as  
many  errors  as  possible  without  omissions.  The  optimal  option  is  a  balance  between  these  
indicators, since an excessive number of detected errors without sufficient accuracy can lead to 
erroneous corrections. Formally, the correction criteria can be defined as: 

Accuracy= TP+TN
TP+TN+FP+FN

, 
(3)

Quality= TP
TP+FP+FN

, 
(4)

ErrorRate= FP
TP+FP

, 
(5)

Recall= TP
TP+FN

, 
(6)

F 1=2× Precision×Recall
Precision+Recall

, 
(7)

where TP is the number of correctly identified errors, TN is the number of correct corrections,  
FP is the number of incorrectly identified errors, FN is the number of missed errors. 



In addition to accuracy, an important criterion is the speed of the system. Text processing time 
should be minimal, especially in interactive applications where the user expects quick feedback. 
Performance can be measured by estimating the number of words or sentences that the system is  
able to process per second. Optimization of computational algorithms allows to reduce the load on 
the processor and memory, which is especially important for integrating the model into mobile 
applications or web services. 

T avg=
1
N∑

i=1

N

T i , 
(8)

where T i is the processing time of the i-th sentence, N  is the total number of sentences in the 
test corpus. 

Another important aspect is the resource consumption, which can be estimated using random 
access  memory (RAM)  and processor  time (CPU).  For  example,  the  average  resource  usage  is  
determined by the formula: 

Ravg=
1
N∑

i=1

N

Ri , 
(9)

where Ri  is the amount of memory used during processing the i-th text fragment.
Another important  aspect  is  the quality  of  the corrected text.  Even if  the system correctly 

identifies errors, its corrections must be relevant and correspond to the style and semantics of the 
original text. This parameter is assessed using metrics that compare the corrected text with the 
reference text, such as BLEU [17] or METEOR, as well as through manual assessment by experts or 
feedback from users.  Corrections should not  violate  the logic  or  content  of  the text,  which is 
especially critical for automated correction systems in professional areas, for example, in scientific 
articles or legal documents.

5. Mathematical model of the error identification in Ukrainian texts

Error identification in texts is one of the fundamental tasks of natural language processing (NLP),  
which is of particular importance for languages such as Ukrainian, which are characterized by high 
morphological complexity.  The identification task consists in identifying fragments of text that 
may contain spelling, grammatical, lexical-semantic or syntactic errors, as well as in determining 
the  type  of  these  errors.  This  is  a  key stage  in  automatic  text  correction systems,  where  the  
effectiveness of correction directly depends on the accuracy and quality of identification. 

Formally, the task can be formulated as follows. Let X =  {x1 , x2 ,…, xN }  be the input text 
presented as a sequence of tokens (where a token can be a word, symbol or sentence). The task 
consists in assigning to each xi a label y i , corresponding to a certain class of error from the set of 

classes  (C ) . A typical set of classes is C =  {c0 , c1 ,…,cK }, where  (c0 ) denotes "no error", and 

(c1 ,…,cK ) denote specific types of errors (e.g.,  spelling error,  grammatical  error,  punctuation 
error, etc.). 

The probability that a token ( xi ) belongs to a particular class (ck ) , is defined as: 

P( y i=ck∣xi , context )=f id (xi , context ) , (10)

where  f id is a recognition (identification) function that considers both the token  xi  and its 

context. The main task of the identification model is to learn to accurately evaluate the function f id 
which will be able to correctly determine the type of error or its absence. 



The Ukrainian language has several specific features that significantly complicate the effective 
identification of errors. First, this is morphological complexity, which consists in the richness of  
inflection forms. For example, adjectives, verbs or nouns can change in gender, number and case,  
which makes it  difficult to detect both spelling and grammatical errors.  Second, the contextual  
ambiguity of Ukrainian words, that is, words with the same spelling can have different meanings or 
functions depending on the context. For example, the word "пішли" can belong to the past tense  
verb form or act as a colloquial form to describe movement. Therefore, the identification system 
should  consider  not  only  the  local  analysis  of  the  token,  but  also  syntactic  and  semantic 
connections within the entire sentence. 

In addition, the variability of regional dialects, borrowings, as well as the use of colloquial and 
informal  constructions  characteristic  of  the  Ukrainian  language  complicates  identification.  For 
example, words like "шо" or abbreviations such as "всьо" are rarely found in formal texts but are  
actively used in informal speech. The consequence of such linguistic diversity is the need to adapt 
classification models to datasets that include examples of both standard language and colloquial 
forms. 

In addition, it is important to note that the identification of errors in texts is closely related to 
the processing of  different  types of  errors.  Spelling errors  can be easily detected using lexical  
dictionaries  (e.g.,  checking  for  unrecognized  words),  while  grammatical  or  punctuation  errors 
depend on the complex structural dependence between words in a sentence. 

Thus, the task of identifying errors in Ukrainian-language text appears as a multi-level problem 
that  requires  the  use  of  complex  mathematical  models  that  can  consider  both  contextual 
dependencies between words and features of morphology and syntax. The effectiveness of such 
models largely depends on the quality of machine learning, which is based on large corpora of texts 
with clearly annotated errors. Since the models used in this problem are mostly based on machine 
learning algorithms and deep neural networks, the text must be translated into a form that can be 
used by algorithms for calculation. To this end, the text is represented through mathematically 
formalized data that considers both the tokens themselves and their context. 

To work with modern deep learning methods, the text must be presented as multidimensional  
vectors, which are numerical representations of the text. The format of the input data stream is 
represented as: 

X={w1 ,w2 ,…,wN }, (11)

where w i is the vector representation of the token xi . 
Text  vectorization  involves  converting  words  or  tokens  into  multidimensional  numerical 

vectors – embeddings, which store semantic or contextual information about the words. Two main 
approaches  to  vectorization  are  used:  static  and  dynamic.  In  the  static  vector  representation 
approach, each word in the text has a constant vector that does not depend on its context. Methods 
such as Word2Vec or FastText represent words based on their occurrence in the text. For example, 
if the word xi is converted into a vector with dimension d , then the text matrix looks like this: 

W=[ w1w2⋮wN
] , 

(12)

where W ∈RN×d is a matrix of such representations 
For example, the FastText method considers subwords (n-gram structures) to model exceptions 

such as errors or unfamiliar tokens. 
Dynamic  contextual  vector  representations  are  a  more  modern  approach  that  consider  the 

context  in  which  a  word  is  used.  Popular  models  such  as  BERT,  XLM-RoBERTa,  or  mBERT 
generate such dynamic vectors, where for each token xi in the text, w i=f (xi , context ), where f is 



a transform model that takes into account the context within the entire sentence (or even the text).  
In this approach, the vector w i not only conveys the meaning of the word but also considers the 
dependencies between other tokens. This is critical for the problem of error identification, since 
some errors can only be identified within a broader context. 

To identify errors, it is not enough to analyze individual words or tokens. You also need to 
consider their position in the sentence and their relationship to neighboring elements. Context is  
modeled in the following ways: a sequence of tokens is processed by recurrent or transform neural  
networks that store information about previous and next tokens; the use of special mechanisms, 
such as the attention mechanism, which allows you to highlight significant parts of the text for a 
particular token. Mathematically, the context can be represented as a combination of tokens in a  
window of length m around the analyzed token xi:

context (xi)={xi−m ,…, xi−1 , xi+1 ,…, xi+m } (13)

where  m is the length of the context window. In transformer architectures, the length of the  
context  can  cover  the  entire  sentence  or  even  several  sentences.  Describing  the  identification 
problem  in  a  formalized  form,  it  is  possible  to  structure  the  input  data  in  the  form  of  two 
interconnected components: a matrix of word vectors and error labels. 

The matrix of word vectors W has the form W ∈R(N×d), where N  is the number of tokens in 
the  text,  and  d  is  the  dimension  of  the  vector  representations.  Error  labels  (ground  truth), 
represented in the form of a label vector Y={ y1 , y2 ,…, yN }, where each y i∈C={c0 , c1 ,…,cK } 
corresponds to an error class or its absence. 

The formalization of the input data should consider the specifics of the Ukrainian language, 
including  declension,  conjugation,  agreement  by  gender  and  number.  Ukrainian  texts  are 
characterized by abbreviations ("д/з") and regionalisms, which are also important to consider. It is 
also necessary to ensure adaptability to various variations of the Ukrainian language, which can be  
found in spoken and literary texts. 

In  the  process  of  building a  system for  identifying errors  in  Ukrainian-language  texts,  the 
central task is to develop a mathematical classification model capable of determining whether a 
text fragment (token or sentence) contains an error, and if so, classifying it by type. Since error  
classification is a multi-class classification problem, the mathematical model must determine the 
probability of each fragment belonging to a certain class ck . 

Identifying errors in text is a complex process that includes several stages of processing. The 
key task is to find those tokens or segments of text that may potentially contain errors (the so-
called candidates for correction), based on formal criteria, language rules and statistical features. 
The algorithm of the identification system consists of several mandatory stages: 

1. Pre-processing  of  text:  Normalization,  Tokenization,  lemmatization  (or  stemming). 
Normalization includes removing unnecessary spaces, tabs, special characters that can be 
noise; unifying the register to lowercase; expanding abbreviations. 

2. Analysis of the syntactic and morphological structure of the text. At this stage, the text is 
processed to isolate its grammatical and syntactic dependencies. For this, POS-tagging and 
Dependency Parsing are performed. A syntactic structure is created for the sentence that 
models the interdependencies between words. This allows you to detect types of syntactic 
errors, for example, incorrect agreement between the subject and the predicate. 

3. Creating  a  language  model  for  context  analysis.  After  syntactic  analysis,  the  text  is 
segmented  into  context  windows  that  allow  us  to  consider  neighboring  tokens  when 
identifying  errors.  Context  windows  are  defined  as  subsets  of  tokens: 
context (xi)={xi−m ,…, xi ,…, xi+m }, where m is the width of the window. For example, in 
the sentence "Мій котик завжди їсть морозиво" for the token "їсть" the context window 
with width  m=2 will be: [{"котик", "завжди", "їсть", "морозиво"}]. Context is critically 



important,  since  many errors  cannot  be  detected  without  considering grammatical  and 
semantic dependencies between words. 

4. Selecting candidate tokens for correction. At this stage, the system identifies tokens that 
may  potentially  contain  errors.  This  is  achieved  using  a  combination  of  rules,  lexical  
knowledge, and statistical features. Candidate tokens can be words, phrases, or symbols 
that satisfy one or more criteria that signal a possible error. The definition of such tokens is  
based  on  a  combined  approach  that  considers  both  linguistic  rules  and  the  results  of 
statistical data analysis: 

 Lexical analysis. A word is considered a candidate if it is not included in the dictionary 
of standard words of the Ukrainian language (for example, "пирог" → "пиріг"). The 
morpheme structure is also analyzed: incorrect suffixes or prefixes signal possible errors 
in the word, such as "зробить" → "зроблять". 

 Grammatical  agreement  analysis.  Incorrect  agreement  in  gender,  number,  or  case 
between words. For example: "У мене була дві книжки" → "було дві книжки". 

 Punctuation  analysis.  Violation  of  the  rules  for  constructing  complex  sentences  or 
missing/extra  punctuation  marks.  For  example:  "Прийшов додому і  почав  читати 
книгу" → "Прийшов додому, і почав читати книгу". 

 Statistical frequency. If a word or phrase is rarely found (or is absent altogether) in a 
corpus of standard texts, it becomes a candidate. 

 Contextual inconsistency. Tokens that do not match the context. This can be detected 
using pre-trained models, such as BERT, which predict whether a given word is typical  
in each context. 

5. Candidate filtering. After the initial selection of potential errors, the system filters candidate 
tokens to exclude false positive predictions. For example: removing technical terms from 
the candidates that are not in the dictionary due to their specificity or filtering variants that 
formally comply with language rules (certain rarely used constructions). This reduces the 
load on the next stage – the correction module, where only probable errors are processed. 

As a result of this algorithm, a subset of tokens that are candidates for correction is determined.  
They are  passed  to  the  next  level  of  analysis  system,  which  can make  a  specific  decision  on 
correction. 

To visualize the algorithm, a DFD diagram was used, which is a schematic tool for visualizing  
data flows in the system. DFD allows you to understand the main data flows in the system and 
helps to clearly and structurally present the error identification process. 

At DFD level 0, the system is represented as a single block that interacts with external entities.  
It shows that the user enters text into the system. The system returns the output: a list of tokens 
with error labels and error types. 

Figure 1: DFD level 0 diagram of the error identification module. 

Next, the data flow is detailed, this is the DFD level 1, where the system is divided into main  
functional blocks. 



Figure 2: DFD level 1 diagram for the error identification module.

DFD level 2 is an extended algorithm. This level displays all the operations that occur within 
each block. 

Figure 3: Level 2 DFD diagram of the “Text Preprocessing” block.

Figure 4: DFD diagram of level 2 of the block “Analysis of the text syntactic and morphological 
structure”.



Figure 5: Level 2 DFD diagram of the “Allocation of candidate tokens for correction” block.

6.  Mathematical model of the error correction in Ukrainian texts

Error correction in Ukrainian-language texts can be formulated as a text generation task, where the 
model  receives  text  with  errors  as  input,  analyzes  the  context,  determines  the  correct  option 
instead of the erroneous fragment, and returns the corrected text. 

Let the input text be given as a sequence of tokens X={x1 , x2 ,…, xN }and a sequence of labels 

Y={ y1 , y2 ,…, yN }, where xi is a separate token, and y i∈C={c0 , c1 ,…,cK } is the error type 

for  the  corresponding  token  xi :c0 -  "no  error",  {c0 , c1 ,…,cK }types  of  errors  (e.g.,  spelling, 
grammar,  punctuation).  The  correction  task  is  to  transform  the  text  X  into  the  text 

X̂={ x̂1 , x̂2 , ... , x̂n }, where  each  corrected  token  x̂i is  an  exact  representation  without  errors, 

correctly consistent with the context, or unchanged token if there is no error y i=c0.
The main goal of the model is to generate a text  x̂i,  which complies with the grammatical, 

stylistic and lexical rules of the Ukrainian language and is consistent with the context of the stored  
text fragment. 

From a  mathematical  point  of  view,  error  correction  for  each  token  xi in  the  text  can  be 

described as the task of finding the optimal candidate x̂i:

x̂i=argmax P
x i
'∈D

(xi
'∣xi , context ) , (14)

where: D is the dictionary set of all valid tokens for the Ukrainian language; P(xi
'∣xi , context )

is the conditional probability that the token xi
' is the correct correction of xi. For each token xi, the 

model  estimates  the probability of  different correction options for  xi
' , given the error  and the 

context around the token. The probability is modeled as follows:

P(xi
'∣xi , xi−1 , xi+1 ,…, xi−m , xi+m)=f cor (xi , context ) (15)

where context is all nearby tokens in a window of width 2m, and f cor is the correction function 
implemented by the text generation model.  Error correction requires considering semantic and 
grammatical  context.  Semantic  context  helps  to  consider  consistency  with  neighboring  words, 
while grammatical context ensures that a word agrees with gender, number, tense, case, etc. 

The  error  correction algorithm works  based on input  data  received from the  identification 
module, which has identified potentially erroneous tokens and classified them by error types. Error 
correction  consists  in  finding  optimal  replacements  for  erroneous  tokens  consistent  with  the 
context,  grammatical  rules,  and stylistic  features  of  the Ukrainian language,  and in forming a 
corrected text. 

Description of the error correction algorithm: 



1. Initialization of the data structure. This is the initial stage, at which the correction module 
must receive input tokens X and error labels Y, as well as create an empty list for corrected 

tokens: X̂=[ ] . 
2. Processing each token. At this stage, for each xi in the text X, the error label y i is checked. 

If y i=c0then x̂1=xi , and the token is added to the list X̂  without changes. If y i≠c0  ( the 
token is identified as erroneous) then the correction process is initiated according to the 
error type y i. 

3. Generation of  candidates  for  correction.  For  each erroneous  token  x̂i a  set  of  possible 

correction  options  D={d1 , d2 ,…,dM } is  determined  using  the  Ukrainian  dictionary, 
grammatical  analysis,  and  a  language  model.  The  generation  of  correct  text  can  be 
implemented using several approaches: Greedy Search, Beam Search, and Sampling with 
Temperature. The Greedy Search model sequentially selects the most probable option for 
each token, but this method does not always guarantee global optimality. During Beam 
Search, several most probable options are considered, from which the best one is selected 
based  on  a  global  assessment  of  the  context.  Sampling  with  Temperature  uses  the 
generation of  options adjusted by temperature parameters to increase the variability of 
corrections.  For  the  problem  of  generating  correct  text,  the  objective  function  of  the 
correction model  optimizes  the  probability  of  correct  corrected  text.  For  the  multilevel 
evaluation problem, the cross-entropy loss function is used: 

Loss=−∑
i=1

N

log (P( x̂i∣xi , context )) , 
(16)

To identify spelling errors, variants are generated that are as similar as possible to x̂i  using 
the Levenshtein distance comparison principle. For example, for the token "книга", the set  
of variants can be V = {{"книга"}, {"книги"}, {"книзі"}}. To identify grammatical errors in 
accordance with the rules of Ukrainian grammar, the system uses morphological analysis. 
This limits the list of candidates to words that match the required format. Language models, 
in turn, determine context-sensitive candidates using pre-trained models that consider the 
context of neighboring words when generating corrections. 

4. Candidate evaluation. For each candidate y i∈D , the system calculates the probability of 
matching the context. The evaluation is carried out using language models (BERT, GPT) or  
grammar rules. The models calculate which replacement y i is the best in the context of the 
entire sentence. In the sentence "Я люблю читати книгі", the probability P( {"книги" | "Я 
люблю читати"}) will be higher than for "книзі". The grammar rules calculate additional 
constraints on the choice of words. 

5. Choosing  the  best  candidate.  For  an  erroneous  token  xi,  the  candidate  v̊ j with  the 
maximum probability score is chosen: 

v̊ j=argmax P
v j∈D

(v j∣context ) , (17)

For "книгі", the value is  v̊ j = {" книги "}, since this is the most likely option in the given 
context. 

6. Correction of punctuation errors. If the error type y i indicates a punctuation violation, then 

instead of the token xi, the correct punctuation mark defined by the syntax rules is inserted. 
For the text "Не знаю як пояснити", the system will correct it to "Не знаю, як пояснити". 



7. Formation of the final text. After processing each token, the source text is formed. If the 

token was not changed, it is added to the final list X̂  in its original form. If the token was 

changed, the corrected version v̊ j is added to the list X̂ . 
8. Checking consistency. For the entire sentence, a final check of consistency between tokens 

is performed: checking the grammatical correctness of the agreement between the subject 
and the predicate, nouns and adjectives, verbs and their arguments; checking the semantic  
content correspondence of the entire construction. 

9. Returning the corrected text. The system returns the corrected text X̂ , and can also provide 
a list of changes made with an indication of the type of each error. 

To visualize the algorithm and processes of the error correction module in Ukrainian-language 
texts, DFD diagrams were constructed.

Figure 6: DFD diagram level 0 of the error correction module

Figure 7: Level 1 DFD diagram for the error correction module.

Example of the algorithm with the input text "Я люблю читати книгі й розкажу друзі про цю 
книгу.": 

Labels from the identification module: {{"Я":  no errors},  {"люблю": no errors},  {"читати"∶ no 
errors},  {"книгі"∶  spelling},  {"й"∶  no  errors},  {"розкажу"∶  no  errors},  {"друзі"∶  grammatical}, 
{"про"∶  no  errors},  {"цю"∶  no  errors},  {"книгу":  no  errors}  }.  Correction:  "книгі"  → "книги", 
"друзі" → "друзям". 

Corrected text: " Я люблю читати книги й розкажу друзям про цю книгу." 

7. Mathematical model of machine learning

The text in its original form is not suitable for processing by machine learning algorithms that  
work with numerical data. Therefore, the main task of this stage is to convert the text into a format 
that allows it to be used to build models that can learn effectively. Before starting the formation of 
vector representations of the text, the tokenization process is performed, which must consider the  
peculiarities of Ukrainian grammar, such as the processing of complex words, particles, and quotes. 



After tokenization, each token must be converted into a numerical format suitable for machine 
processing. Depending on the task and the methods used to process the text, each token can be  
represented in different formats: as a number in a dictionary corresponding to a specific token 
(integer  encoding),  as  a  multidimensional  representation  (One-Hot  Encoding),  or  as  a  word 
embeddings.  The  first  two  methods  do  not  scale  for  large  corpora  and  do  not  consider  the  
relationships between tokens, which makes them not the best option for selection. 

Word  embeddings  are  multidimensional  vectors  that  consider  semantic  and  syntactic 
relationships between words and are built based on statistical models. The most common methods 
are Word2Vec,  FastText,  and BERT. Word2Vec is  a  statistical  method for  constructing vectors 
through  training  on  text  corpora.  Vectors  of  similar  words  are  closer  to  each  other  in  a 
multidimensional space. For example: {"собака"} ≈ [0.2, 0.8, -0.3], {"вовк"} ≈ [0.1, 0.7, -0.4]. FastText 
is an extension of Word2Vec that considers sub-word elements (morphemes) within a token. This 
is important for the Ukrainian language due to its high morphological variability. BERT, in turn, 
generates contextual vectors that depend on the position of the word in the sentence. For example:  
"сльози" in the sentence "сльози на очах" will have a different vector than "сльози природи".

Each token xi from the text X can be represented as a vector W . The training sample represents 
the data on which the model will learn to recognize errors and suggest corrections. When working 
with Ukrainian-language texts, it is important to consider not only the general principles of data 
collection,  but  also  the  specifics  of  the  Ukrainian  language,  which  includes  rich  morphology, 
complex syntactic and grammatical structure, as well as the presence of regionalisms, borrowings 
and colloquial speech. 

The main tasks of this stage are: creating a representative corpus of texts covering different 
aspects  of  the  language:  formal,  colloquial  and  artistic  styles;  introducing artificial  errors  that 
simulate real types of errors in the text, or using corpora with errors marked manually; balancing 
the data to avoid the dominance of one type of error and ensure uniform training of the model;  
building a data structure that combines the original text, modified text with errors, error labels and 
the correct version of the text. 

To train the model, a corpus of texts containing marked language errors is required. Sources of 
such corpora: real texts, including student essays, scientific papers with errors, social networks, 
blogs, personal messages, online forums and annotated corpora, which are existing corpora for the 
Ukrainian language (UA GEC, GRAC [16] or similar), where the texts have already been annotated 
by experts for correction tasks. Error-free texts are also important for building the training sample. 
They are  used  to  introduce  artificial  errors  to  simulate  real  scenarios  and  train  the  model  to 
correctly "read" the context and identify non-problematic areas of the text. Here, the sources can be 
books,  formal documents,  news; Wikipedia and other open text databases;  works of  art  in the 
Ukrainian language. 

The training sample should represent a variety of error types.  The main categories include  
spelling (randomly added letters, replacing one letter with another, omission or excess of letters),  
grammatical (incorrect word agreement, conjugation or verb conjugation errors, incorrect word 
order),  punctuation,  lexical  and  contextual  errors.  The  question  of  increasing  the  size  of  the 
training sample often arises. To do this, you can use automatic error generation using rules or  
static algorithms, or ready-made language models (GPT, mT5) to generate texts with typical errors. 
For automatic error generation, you can use an algorithm for random error insertion, replacing 
letters based on the frequency of real errors (for example, "с" → "з"), deleting or adding characters  
to words,  omitting commas or adding unnecessary punctuation marks.  It  is  also often used to 
replace the correct case with a random one ("до школи" → "до школою") or randomly add words  
out of context ("Я граю в футбол." → "Я гамак в футбол."). 

To ensure high-quality training of the model, it is necessary to create a balanced sample, where  
each type of error should have enough examples and at the same time the ratio of incorrect texts to  
correct ones should not be excessively large (40% of incorrect texts to 60% of correct ones). To 
create a high-quality sample, the texts should be annotated manually. To do this, each error is  
marked with the appropriate type, the exact positions of the incorrect tokens are indicated, and the 



correct version of the text is added next to the errors. Result: each text will become an object of the 
format:  {"Я  іду  чтати  книгу."}  → {[1,  {"іду","grammatical  error","йду"}],  [2,  {"чтати","spelling 
error”,"читати" }]}. As a result, the corpus of texts is divided into three parts: a training sample for 
building the model (~70% of the data), a validation sample for checking the quality during training 
(~15% of the data), and a test sample for assessing accuracy on new, unknown texts for the model 
(~15% of the data). 

The process of training a machine learning model for the problem of error identification and 
correction includes setting up the model architecture, defining the objective function, optimizing 
the parameters, as well as checking and validating the obtained results. Model should maximize the 
probabilities of: 

P(Y∣X )=∏
i=1

N

P( y i∣x1 , x2 ,…, xN ) , 
(18)

P( X̂∣X ,Y )=∏
i=1

N

P( x̂i∣x1 , x2 ,…, xN , y1 , y2 ,…, yN ) , 
(19)

where P( x̂i∣X ,Y )is the probability of correcting the token xi,  P( y i∣X )is the probability that 

the token xibelongs to the class y i. Training involves the use of modern text processing methods 
based on neural  language  models.  For  the  problem of  error  identification and correction,  two 
architectures are most effective: recurrent neural networks (RNN, LSTM, GRU) and Transformer. 
Recurrent neural networks are used for the problem of sequence analysis. Their main advantage is 
that they preserve the context of previous tokens. For example, LSTM (Long Short-Term Memory)  
allows you to consider long-term dependencies between tokens:

ht=LSTM (x t , ht−1) , (20)

where ht is the hidden state at step t , which contains information about the current token and 
the previous ones. 

Transformer models such as BERT, XLM-RoBERTa or mT5 are the most effective for identifying 
and  correcting  errors  in  texts.  Thanks  to  the  attention  mechanism,  dependencies  between  all  
tokens in the text are considered, regardless of their positional distance. BERT is used for error  
identification, and mT5 or GPT can be used for error correction. 

The objective function determines how well the model recognizes errors and suggests correct  
corrections. For the error identification problem, the loss function is based on cross-entropy: 

Lossid=− 1
N
∑
i=1

N

∑
k=0

K

y(i , k ) log ⁡( ^y(i , k )) , 
(21)

where: y(i , k ) is the label of token xi belonging to class ck ; ^y(i , k ) – is the probability predicted by 

the model for this class. For the error correction problem, the loss function estimates the difference  
between the corrected text and the correct text

Losscor=− 1
N
∑
i=1

T

log ⁡(P( x̂i , X ,Y )) , 
(22)

where P( x̂i , X ,Y ) is calculated using the transformer model. The overall objective function of 
the model looks like this:

Loss=λ1⋅Lossid+ λ2⋅Losscor (23)

where λ1and λ2 are the weighting factors for balancing the tasks. 
The learning algorithm can be described as follows: 



1. Model initialization. At this stage, the model architecture is selected and hyperparameters 
are configured (number of layers, number of neurons, embedding size, etc.). 

2. Data preparation.  The texts  are  converted into vector  representations,  and the training 
sample is divided into three subsets: training, validation, and test (70% / 15% / 15%). 

3. The  learning  process.  Here,  tokens  from  the  sample  are  fed  to  the  model  input,  the 

predicted  error  classes  Ŷ  and  corrected  texts  X̂  are  calculated.  Next,  the  process  of 
calculating the loss value Loss takes place. At the finish of this stage, the model parameters  
are optimized using gradient descent algorithms (Adam or AdamW). 

4. Validation. After each epoch, the learning process is checked on validation data. The model  
is evaluated using the following metrics: Accuracy, Precision, Recall, F1-score, and BLEU to 
assess the quality of corrected texts. 

5. Testing. Model evaluation on the remaining test data to obtain final metrics. 

After training, the model becomes capable of accurately classifying text tokens by error type, 
offering high-quality corrections that are consistent with the context, and generating corrected text 
with minimal stylistic and grammatical violations.

8. Model fine-tuning

In  this  study,  the ‘facebook/mbart-large-50’  model  was  chosen for  the task of  automatic  error 
correction in Ukrainian-language texts. The choice of this transformer architecture is due to its 
multilingual nature,  which allows it  to work effectively with less resource-intensive languages, 
particularly Ukrainian. Due to pre-training on many parallel texts, MBART has a high potential for 
generating  grammatically  and  stylistically  correct  sentences  in  Seq2Seq  tasks.  In  addition,  the 
model performs well in other text transformation tasks, in particular paraphrasing and machine 
translation, which are close in nature to error correction. 

The UA-GEC corpus was used for training, which contains examples of sentences from typical 
errors in the Ukrainian language and their corrections. Data pre-processing was carried out using 
the  Stanza  library,  for  dividing  into  source  (input,  erroneous  sentences)  and  target  (corrected 
sentences), which corresponded to the Seq2Seq training format. 

The training was performed in the Kaggle environment with an available GPU and limited 
RAM. Considering the resource constraints, a compromise set of hyperparameters was selected: 
batch_size  = 4,  max_token_length = 64,  learning_rate  =  5e-5,  n_epochs = 6.  The training was 
performed in two stages:  first  3  epochs  with basic  settings,  and then additional  retraining for 
another 3 epochs with a lower learning rate. Initially, the training rate was 5e-5, which contributed 
to the rapid assimilation of the main patterns, while reducing the rate to 3e-5 in the later stages 
helped to avoid overtraining and allowed for more precise adjustment of the weights. 

Table 1
The hyperparameters for model training over iterations

Hyperparameter Iteration №1 Iteration №2

Epoch count 3 3Batch size 4 4

Maximum token length 64 64

Learning rate 5e-5 3e-5



As part of the quantitative analysis of the quality of the model for correcting errors in Ukrainian 
texts, several metrics were used that allow an objective assessment of the learning dynamics. In  
particular, the values of the text-level metrics sacreBLEU, BLEU, and METEOR were recorded, as  
well as the losses on the training and validation samples during three epochs of learning. 

The initial quality of the model, recorded in the first epoch, turned out to be expectedly low.  
The value of the BLEU metric was zero, sacreBLEU was only 0.004, and METEOR was 0.011. This 
indicates the almost complete inability of the model at the start to generate any corrections that at  
least partially coincided with the reference ones. Such a result is typical for transformer models  
until they begin to form meaningful correspondences between the input and target sequences. 

However, a significant breakthrough is observed already in the second epoch. The BLEU value 
increases sharply to 0.477, sacreBLEU to 47.76, and METEOR to 0.584. This indicates that the model 
has  begun  to  effectively  learn  the  dependencies  between  incorrect  and  correct  sentences, 
reproducing a significant part of the target responses either with an exact match or with a high 
degree of semantic similarity. It is also important to note the drop in the value of the loss function:  
the training loss decreased from 4.16 to 2.71, and the validation loss from 3.70 to 0.99, which is a  
good indicator that the learning is going in the right direction, and the model not only remembers  
but also generalizes the patterns. 

In the third epoch,  the positive dynamics remains:  BLEU reaches 0.659,  sacreBLEU – 65.92,  
METEOR – 0.687. At the same time, the losses are reduced even more significantly: the training 
loss drops to 0.43, the validation loss to 0.51. This indicates the stability of the learning process and 
the absence of signs of overtraining, which is especially important for the text correction task,  
where the generative ability of the model must be flexible, not highly specialized. 

Figure 8: Loss graph considering the BLUE and METEOR metrics. 

Starting from the fourth epoch, training continued at a slower learning rate – learning_rate was 
reduced from 5e-5 to 3e-5. This allowed the model to more accurately “finish” the already formed 
correspondences, but the quality gain was insignificant: BLEU increased to 0.662, METEOR – to  
0.692, and sacreBLEU – to 66.16. Such stability of metrics indicates that the model has reached a 
plateau  –  it  has  already  acquired  the  basic  regularities  and  now  only  slightly  refines  the 
predictions.  At the same time, the validation loss began to slowly increase (from 0.51 to 0.57), 
which may indicate the beginning of overtraining. Thus, reducing learning_rate made it possible to 
avoid sharp fluctuations, but did not provide a significant improvement – that is, the best results 
were at 3-4 epochs. 



Figure  9:  Loss graph and graph of BLUE and METEOR metrics after changing the learning rate 
parameter.

Summarizing these graphs, we can conclude that the chosen approach to training the model is  
effective. The high indicators of sacreBLEU and METEOR demonstrate not only lexical accuracy, 
but also stylistic adequacy of the generated variants. The rapid growth of metrics between the first  
and second epochs indicates that even in a short training time the model can master the basics of 
language correction. In general, this gives grounds for a confident forecast regarding the potential  
improvement of quality with further training, expansion of the training corpus, and enrichment of 
the types of language errors in the input examples.  The quality of the model was assessed by 
manual testing on a set of sentences with typically common errors that often occur in Ukrainian-
language texts. In total, dozens of sentences were tested, covering various types of language errors,  
including punctuation, spelling, lexical,  and morphological.  Analysis of the results allows us to 
draw conclusions about the current level of formed linguistic generalizations in the model, identify 
its strengths, and identify areas where there is a lack of linguistic competence.

 

 

 

 

 

 
	

Figure 10: Results of the model after training.

The  model  performed  best  in  correcting  punctuation  errors.  In  most  cases,  it  confidently 
recognized  and  corrected  the  absence  of  commas  in  complex  constructions.  For  example,  the 
sentence “Я бачив як вона грає на піанино” was successfully converted to “Я бачив, як вона 
грає на піанино” and in the sentence “Коли я приїхав у Львів мені сподобалось атмосфера” a 
comma was  added  after  the  subordinate  clause,  which  complies  with  the  norms  of  Ukrainian 



syntax. Similarly, in a sentence with direct speech, the model used the correct punctuation – “не 
хай так і буде сказав дмитро” was corrected to “Не хай так і буде, – сказав дмитро”, which 
demonstrates  the  model’s  understanding  of  the  specifics  of  direct  speech  and  its  intonation 
highlighting in writing, although the model did not provide quotation marks. 

However, the system only partially coped with spelling errors. Simple cases, such as misspelling 
a word with a space ("Близ ько") or using a lowercase service word at the beginning of a sentence,  
were successfully corrected. But in more complex situations, where correction requires a deeper 
analysis of the dictionary form, the system failed. For example, the word "ней мовірно" remained 
unchanged,  although  it  should  have  been  corrected  to  "неймовірно".  This  indicates  that  the 
current  version  of  the  model  does  not  always  have  a  sufficient  level  of  spelling  sensitivity,  
especially  in  cases  where  errors  do  not  have  clear  contextual  clues  and  require  checking  for  
compliance with the dictionary norm. 

A similar situation is observed with morphological errors. In the sentence " Коли я приїхав у  
Львів, мені сподобалось атмосфера" the model did not detect a conflict between the neuter verb 
and the feminine noun, leaving the erroneous form unchanged. This indicates an insufficient depth 
of coordination between grammatical categories in the processing of the input text. 

In rare cases, the model demonstrates the ability to perform syntactic transformations, changing 
the structure of a sentence from incorrect to grammatically correct. For example, the sentence “я 
тебе  звати”  was  transformed  into  “Я  тебе  зватиму”,  indicating  the  formation  of  a  basic 
understanding of predicative constructions and verb agreement. However, most examples of this 
type remain beyond the scope of  successful  correction,  and the transformational  ability of  the 
model currently appears limited. 

9. Conclusions

The  result  of  the  work  is  a  developed  mathematical  model  of  a  decision  support  system for 
identifying and correcting errors in Ukrainian-language texts, focused on the implementation of 
machine learning approaches. As a result of the research, a mathematical basis was formulated for 
solving  the  tasks  set,  including  the  formalization  of  the  data  flow,  the  placement  of  system 
components, and the presentation of texts in a form suitable for machine processing. 

The main mathematical structure of the system was highlighted, which consists of two key 
modules: for identifying and correcting errors. Both modules interact within the system, ensuring 
the  correct  processing of  the  text  sequence.  A separate  mathematical  model  was  built  for  the 
problem of identifying errors, which is based on a probabilistic approach. The main emphasis in 
modeling is  placed on preserving the context and considering dependencies between tokens to 
increase the accuracy of identification. A mathematical model was built that involves calculating 
the conditional probability of choosing the best candidate for correcting an erroneous token within 
a given text context. The approach to data preparation through text vectorization, formation of a  
training sample and organization of the model training process based on large text corpora was  
considered. The importance of building a representative corpus of training data, which includes 
texts  with  real  errors,  as  well  as  artificially  simulated  examples  of  errors  considering  their  
typological distribution, was emphasized. 

The model was trained on the UA_GEC corpus, which demonstrated encouraging results in 
correcting punctuation and basic spelling errors, especially within simple and clearly structured 
sentences.  At  the same time,  it  is  not  effective  enough in detecting lexical  and morphological 
errors,  and  still  poorly  copes  with  deeper  syntactic  rearrangements.  The  results  outline  clear 
directions for further improvement of  the system, namely,  expanding the training corpus with 
examples  with  morphological  and  lexical  errors,  as  well  as  introducing  additional  processing 
mechanisms that would compensate for the limited orthographic competence of the model. In the 
future, improving these aspects will allow creating a more reliable and comprehensive tool for 
automatic verification of Ukrainian-language texts. 



As a result, the developed mathematical model is a universal approach to processing Ukrainian 
texts,  which  allows  solving  the  problems  of  identifying  and  correcting  errors  within  a  single 
system. The determined formal aspects of the interaction between the components of the model 
create the basis for its effective training and further implementation in practical tasks. 
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