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Abstract
The paper presents a method for automated adaptive traffic light control in urban infrastructure using 
computer  vision technologies.  The proposed approach addresses  pressing issues  of  traffic congestion, 
delays, and limited accessibility resulting from increasing vehicle density in modern cities. A modular and  
scalable software system has been developed to detect vehicles in real time using the YOLOv11 deep 
learning model, process the data through decision-making logic implemented in .NET Core. WebSocket is 
used  for  real-time  communication  between  modules,  while  an  automatic  fallback  to  HTTP  ensures  
continuity  in  case  of  connection  loss.  A  React-based  web  interface  allows  for  system  monitoring,  
configuration management, and access to logs. A formal mathematical model is introduced to dynamically 
allocate  green  light  durations  based  on  real-time  vehicle  detection  and  configurable  traffic  density 
thresholds.  Unlike  traditional  fixed-cycle  systems  or  computationally  heavy  machine  learning 
frameworks, the proposed solution balances precision, modularity, and responsiveness. The approach also 
anticipates future enhancements,  including pedestrian detection for inclusive mobility and integration 
with smart city platforms. 
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1. Introduction

The rapid  growth in  the  number  of  vehicles  in  urban areas  leads  to  the  overloading  of  road 
infrastructure,  increased  traffic  congestion,  higher  levels  of  air  pollution,  and  delays  in  the 
movement of public transport and emergency services. These challenges drive the development 
and implementation of intelligent traffic management systems, particularly adaptive traffic lights 
capable of responding to real-time traffic conditions.

Modern approaches  to  dynamic traffic regulation increasingly  rely  on technologies  such as 
computer vision, deep learning, and real-time video stream processing. However, the deployment 
of  such  systems  often  requires  significant  computational  resources  (especially  GPUs),  large 
volumes of training data, and complex infrastructure, which can hinder scalability in environments  
with limited budgets and technical capabilities.

This paper proposes a modular architecture for an adaptive traffic light system integrating a 
YOLO-based  vehicle  detection  module,  a  WebSocket  communication  channel,  decision-making 
logic implemented on the .NET platform, and an administrative panel developed with React. The 
proposed approach combines  the  high object  detection  accuracy typical  of  deep convolutional 
neural networks with the flexibility of modern web development technologies, thereby minimizing 
resource requirements and facilitating system customization, extension, and scalability.

The designed system operates in real time, dynamically adjusting traffic light phases based on 
current  traffic density.  To address  broader urban mobility challenges,  future  developments  are 
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planned to  incorporate  pedestrian detection near  crosswalks,  enabling adaptive  adjustments  of 
traffic light phases. With the expansion of observation zones and further refinement of decision-
making  algorithms,  the  system  could  be  adapted  to  promote  inclusive  urban  environments, 
particularly to assist individuals with mobility impairments — a demographic that has significantly 
increased as a result of the full-scale war in Ukraine.  The integration of automated pedestrian  
detection  would  enhance  safety  and  contribute  to  reducing  physical  barriers  within  urban 
infrastructure.

The proposed study aims to automate the process of adaptive traffic light control within urban 
transport  environments  by employing computer  vision technologies,  enabling real-time vehicle 
detection.  The developed system is  designed to  enhance  traffic management  efficiency,  reduce 
congestion, and improve the throughput of intersections under dynamic regulation conditions.

The object of the study is the traffic light regulation process within urban infrastructure.
The subject of the study is the methods and tools for automated adaptive traffic light control 

based on computer vision technologies and software-hardware solutions.
The  main  objective  of  the  work  is  to  increase  the  efficiency  of  traffic  flow  management  by 
developing a model for automated traffic light regulation using computer vision technologies and 
modern real-time data processing tools.

2. Related Works

In contemporary scientific and engineering literature, intelligent traffic control systems utilizing 
computer vision and deep learning are actively studied. In particular,  the works [1–3] propose 
models  for  adaptive  traffic  light  control  based  on  the  prediction  of  traffic  flows  using  neural 
networks.

Deep reinforcement learning algorithms for optimizing traffic light cycles under varying traffic 
intensities are discussed in [4–6]. In contrast, studies [7, 8] focus on the application of computer 
vision for vehicle detection, which serves as the basis for decision-making regarding signal phase 
changes.  However,  such systems often require significant  computational  resources  and involve 
complex deployment procedures.

Solutions based on OpenCV and the processing of regions of interest (ROIs) are described in [9, 
10], where the authors emphasize the efficiency of real-time vehicle detection under constrained 
computational resources.

A distinct category of research [11, 12] addresses the theoretical aspects of adaptive traffic light 
control,  as well  as  hybrid approaches that combine classical  algorithms with machine learning 
methods.

Against this backdrop, the proposed study is particularly relevant as it focuses not only on the  
theoretical analysis of existing approaches but also on the practical integration of key components 
into a unified system. Specifically, the integration of YOLO as a vehicle detector, a WebSocket  
channel for real-time communication, control logic implemented on the .NET platform, and an 
administrative  interface developed with React  enables  the  creation of  an  adaptive system that 
operates with minimal latency, is scalable, and does not require complex retraining procedures.

Compared to systems based solely on complex machine learning models, the proposed solution 
demonstrates  a  balance  between  accuracy,  flexibility,  and  computational  efficiency,  making  it 
suitable for rapid pilot deployment in urban environments.

3. Materials and Methods

Inefficient traffic management based on fixed traffic light cycles often leads to traffic congestion, 
excessive fuel consumption, and increased emissions. The inability to adapt to fluctuations in traffic 
volume decreases the overall efficiency of the transport system. The solution to this issue is the 
implementation of intelligent traffic management systems, combining computer vision data with 
adaptive decision-making algorithms.



The  development  of  the  intelligent  dynamic  traffic  light  management  system  required  a 
comprehensive technical approach, which included a well-founded choice of system architecture, 
technologies, and implementation tools. The primary criteria for the selection of these components 
were stable real-time operation, scalability, deployability on available hardware, and ease of future 
maintenance.

A modular system architecture was designed to incorporate components for computer vision, 
traffic light  control  logic,  communication channels  between system modules,  an administrative 
interface, and a data storage system. Python was selected as the primary programming language 
for implementing the computer vision module due to its flexibility and compatibility with libraries  
such as OpenCV, NumPy, and Torch, as well as with modern image processing models, including 
Ultralytics YOLO. This made real-time video processing feasible even on embedded devices.

To support  the object  detection functionality,  the YOLOv11 family of  models  developed by 
Ultralytics was chosen due to its balance between inference speed and detection accuracy [13]. 
These  models  were  pretrained  on  the  COCO dataset  (Common Objects  in  Context),  a  widely 
adopted  benchmark in  computer  vision research.  A detailed  summary of  the  YOLOv11  model 
variants is provided in Table 1, while the key characteristics of the COCO dataset are presented in 
Table 2. 

Table 1
Comparison of YOLO11 Models on the COCO Dataset [13]

Model Image Size mAP (50–95) CPU ONNX 
(ms)

T4 TensorRT 
(ms)

Params (M) FLOPs (B)

YOLO11n 640 39.5 56.1 ± 0.8 1.5 ± 0.0 2.6 6.5

YOLO11s 640 47.0 90.0 ± 1.2 2.5 ± 0.0 9.4 21.5

YOLO11m 640 51.5 183.2 ± 2.0 4.7 ± 0.1 20.1 68.0

YOLO11l 640 53.4 238.6 ± 1.4 6.2 ± 0.1 25.3 86.9

YOLO11x 640 54.7 462.8 ± 6.7 11.3 ± 0.2 56.9 194.9

Table 2
COCO Dataset Characteristics [14]

Parameter Value

Total Images 330,000+

Annotated Images 200,000+

Object Categories 80

Annotations 1.5 million+

Types of Tasks Object Detection, Segmentation, Captioning

Common Classes Person, Car, Dog, Chair, etc.

Format JSON

License Creative Commons Attribution 4.0



A performance comparison of  YOLOv11 models in terms of  accuracy and inference time is  
illustrated in Figure 1.

Figure 1: Comparison of YOLOv11 model variants in terms of mean Average Precision (mAP) and 
inference time on the COCO dataset.

The server-side component of the system was developed using the .NET Core platform and C#, 
which  allows  for  efficient  event  processing,  adaptive  traffic light  control,  interaction  with  the 
MSSQL database, and API provision for the client-side. The administrative interface was built using 
React,  allowing  system  monitoring,  configuration  parameter  adjustments,  log  viewing,  and 
intersection status updates.

For real-time data exchange between the Python application and the server-side, WebSocket 
was  employed,  ensuring  stable  two-way  communication.  If  the  connection  is  lost,  the  system 
automatically switches to a backup HTTP channel to ensure continuous operation. The MSSQL 
relational database is used to store traffic light configurations, change histories, and action logs. 
Docker was utilized for containerization of system components, while Git was used for version 
control and collaborative development.

The  selected  technologies  complement  each  other  effectively,  ensuring  that  all  functional 
system requirements are met—from video data collection and event processing to adaptive traffic 
light control and administration. This approach ensures stable system operation even with limited 
hardware resources and provides a foundation for future scalability and integration with other city 
infrastructure systems.

To ensure real-time adaptive control of traffic lights, the system implements a calculation model 
that dynamically determines the duration of the green phase based on the detected number of 
vehicles. The underlying algorithm is described below.

The system determines the duration of the green phase for each traffic light based on a direct  
dependency model linked to the number of detected vehicles.

Using  real-time  computer  vision  data,  the  number  of  vehicles  N  approaching  from  each 
direction  is  calculated.  To  improve  detection  reliability,  a  confidence  threshold  c threshold is 
introduced, which defines the minimum confidence level required for an object to be considered a 
valid detection.

An object is recognized as a vehicle and counted only if the following condition is met:



cobject≥ c t h resh old , (1)
where  cobject is  the  model's  confidence  in  the  detection,  cthreshold is  the  predefined  confidence 

threshold (set to 0.7 in the current implementation).
Thus, the effective number of detected vehicles N is calculated as:

N=∑i=1

M
δ (ci≥cthreshold) ,

(2)

where M – the total number of detected objects in the frame, ci – the confidence value for the i-
th detection, δ(⋅) – the indicator function, equal to 1 if the condition is true and 0 otherwise.

The resulting number N is then utilized within the proposed model to calculate the adaptive 
green  phase  duration,  ensuring  consistency  with  the  system's  real-time  decision-making 
framework.

A sequence table (SequenceGreenTime) is configured by the system administrator, specifying 
recommended green phase durations  T for different ranges of vehicle counts  N.  This approach 
enables  the  consideration of  specific  characteristics  of  individual  intersections  and local  traffic 
patterns (for instance, by allocating additional time for accident-prone directions or transit routes).

If an exact match is found in the SequenceGreenTime(N) table, the predefined duration is used:

T=SeqeunceGreenTime(N ) , (3)
If  no exact  match exists,  the green phase duration is  calculated according to the following 

formula:

T=N×t per vehicle , (4)

where tper_vehicle represents the standard time allocated per vehicle.
The calculated value is then constrained within administrator-defined minimum and maximum 

bounds:

Tmin≤T ≤Tmax , (5)
where Tmin and Tmax are administrator-defined parameters set in the configuration settings.
The final green phase duration is thus determined as:

T=max ⁡(Tmin ,min ⁡(Tmax , SequenceGreenTime (N )∨N ×t per veh icle)) (6)

The  resulting  value  T is  transmitted  via  WebSocket  to  the  controlled  group  of  traffic  lights, 
updating their operating mode in real time.

4. Results

For the purpose of demonstrating the architecture of the developed system, two separate class 
diagrams  were  created:  one  for  the  server-side  module  built  on  the  .NET Core  platform,  and 
another  for  the  client-side  application  developed  in  Python,  responsible  for  implementing  the 
computer vision functionality. Figure 2 presents the Python-based diagram, as it provides a more 
concise and illustrative representation of the client-side application’s core functionality.



Figure 2: Class diagram of the client-side Python application for vehicle detection in the computer 
vision system.

At the core of the system’s functional logic lies the vehicle detection use case, which initiates  
the adaptive control of traffic light phases. This process defines the starting point for the real-time 
traffic analysis cycle.

Figure 3: Activity diagram for the "Vehicle Detection" use case.



The vehicle  detection process is  implemented at  the client-side application level,  where the 
incoming video stream from the camera is processed using the YOLO deep neural network. This  
network enables accurate and rapid identification of vehicles in video frames. The detection results 
are aggregated into a message containing the number of detected vehicles, the camera identifier,  
the timestamp, and other relevant parameters.  This message is  transmitted to the server via a  
WebSocket connection and is used for decision-making regarding traffic signal changes.

Thus, the vehicle detection event serves as the starting point for the operation of the entire 
intelligent  system:  it  ensures  the  acquisition  of  primary  data,  forms  the  basis  for  analytical  
decisions, and determines the efficiency of response to changes in traffic load.

For a comprehensive representation of the developed system's architecture and the interaction 
among  its  modules,  a  component  diagram  was  constructed.  The  diagram  depicts  the 
communication flows between the computer vision application, the backend server, the database, 
and  the  administrative  panel.  This  integrated  model  emphasizes  the  modular  structure  of  the 
system and its real-time data processing capabilities in the context of dynamic traffic light control. 

Figure 4 illustrates the overall system architecture, emphasizing the modular components and 
their communication flows.

Figure 4: Component diagram of the dynamic traffic light system architecture.



The functioning of the system was tested in a simulation environment using video data from 
surveillance cameras. The results confirmed the consistency of the algorithm and server-side logic.

To  assess  the  responsiveness  of  the  traffic  light  control  system,  an  experimental  delay 
measurement was conducted for two types of communication. In the HTTP-based architecture, the 
vehicle detector sends a request to the server over HTTP, which then relays a command to the 
traffic light  over  a  persistent  socket  connection.  In  the  socket-based  architecture,  the  detector  
communicates directly with the server via a socket, which then forwards the command through 
another  socket  to  the  traffic  light.  Measurements  were  taken  locally,  with  minimal  external 
network interference, in order to accurately capture the internal latency of each architecture.

The  results  demonstrate  that  the  HTTP-based  approach  exhibited  average  delays  typically 
ranging from 17 to 26 milliseconds after initial setup. These values are acceptable for a fallback 
communication channel in case the primary socket-based channel becomes unavailable. In contrast, 
the  socket-based  implementation  consistently  demonstrated  lower  and  more  stable  latency, 
typically between 16 and 20 milliseconds, which is preferable for real-time system responsiveness. 
These patterns are clearly illustrated in Figure 5. 

Figure 5: Latency measurements for two communication architectures used in traffic light control:  
HTTP-based and socket-based.

The table 3 summarizes the comparative characteristics of both communication models.

Table 3
Comparison of communication architectures in terms of latency

Architecture Average Delay Main Sources of Delay

HTTP Higher, variable Protocol overhead, possible new 
connections per request

Socket Low, stable Persistent  connection,  minimal 
protocol overhead



These findings confirm that while HTTP remains a viable backup option, the persistent socket 
connection substantially improves the system’s reaction time and ensures higher efficiency under 
normal operating conditions. 

5. Discussions

The adaptive traffic management system developed in this work is based on the application of 
computer vision technologies for real-time traffic situation assessment and dynamic adjustment of 
traffic light  phases.  This  approach enables  flexible and efficient  control  in contrast  to  classical 
methods.

Traditional  systems  like  SCATS  (Australia)  and  SCOOT  (UK)  use  magnetic  sensors  and 
predefined algorithms, but lack flexibility and require costly infrastructure. 

In parallel, modern open-source solutions are evolving, including projects such as SmartFlow, 
Byte-Blender, and Dacee-dee — all publicly available on GitHub.  These projects focus on affordable 
vehicle  detection  from  real-time  video  streams,  mainly  using  Python  and  YOLO  frameworks. 
However,  they  often  exhibit  limited  server-side  logic,  simplified  architectures,  and  lack  deep 
adaptability for managing extensive traffic networks.

In contrast, our system combines YOLO-based vision in Python, .NET Core decision logic, and 
WebSocket  communication  to  provide  reliable,  scalable  control.  Its  hybrid  architecture  allows 
modularity and future extensions like forecasting or Smart City integration. 

Despite  its  advantages,  the  chosen  architectural  approach  has  certain  technical  limitations. 
Since video processing and detection are handled by a separate Python application, the system 
depends on stable communication between Python and .NET components. In case of disconnection 
or errors, the .NET server may not receive real-time data for adaptive control.

WebSocket transmission requires robust handling of interruptions and reconnections, especially 
in unstable urban networks. Scaling to many cameras and lights may require server optimization to 
handle multiple connections.

Nonetheless,  these  disadvantages  are  outweighed  by  the  system’s  enhanced  stability, 
performance,  and  reliability—factors  that  are  crucial  for  deployment  in  real-world  urban 
environments.  The system demonstrates  a  high  level  of  engineering maturity,  allows modular 
component isolation,  and ensures the convenient integration of  new functionalities  via API or 
other standard interfaces.

This study advances the field of intelligent transportation systems by developing an adaptive 
traffic light control method that dynamically adjusts signal timings based on real-time computer 
vision analysis.  A hybrid distributed system architecture is  proposed,  integrating a lightweight 
YOLO-based vehicle detection module implemented in Python with a robust server-side decision-
making engine based on .NET Core technologies, ensuring efficient operation even with limited 
computational resources. The research formalizes a real-time prioritization model that calculates 
green phase durations dynamically, using confidence-filtered vehicle detections and administrator-
configurable  adaptation  ranges.  Furthermore,  a  resilient  communication  mechanism  was 
implemented  using  WebSocket  protocols  with  automatic  fallback  to  HTTP,  which  guarantees 
uninterrupted  data  transmission  under  unstable  network  conditions  typical  of  urban 
infrastructures.  The  modular  and  scalable  system  design  also  provides  flexibility  for  future 
extensions, such as pedestrian detection integration or Smart City platform interoperability. By 
combining  advanced  AI-based  detection  techniques  with  distributed  and  fault-tolerant  control 
logic, this work contributes a practical and scientifically grounded solution for the deployment of 
adaptive traffic light systems in real-world urban environments. 

Thus, the proposed system successfully combines the theoretical foundations of adaptive traffic 
management  with  efficient  engineering  implementation,  ensuring  its  competitiveness  among 
existing solutions. 



Conclusions

This paper proposes a scientifically grounded method for the automated adaptive control of traffic 
lights,  based on computer vision technologies and modern real-time data processing tools.  The 
developed system combines theoretical  approaches to  modeling traffic processes  with practical 
engineering  solutions  focused  on  operational  stability,  scalability,  and  integration  into  urban 
infrastructure.

The modular architecture of the system enables efficient processing of video streams for vehicle 
detection,  dynamic  adjustment  of  green  light  durations  based  on  current  traffic  density,  and 
continuous  communication  between  client-side  and  server-side  modules  via  the  WebSocket 
protocol.

In future development stages, the system may be enhanced with functionality for pedestrian 
recognition near crossings to improve inclusivity. This would allow the algorithm to be adapted to  
the needs of people with mobility impairments, for whom timely signal changes are crucial.

The results obtained lay the groundwork for deploying the system in real urban environments 
and further advancing intelligent transportation systems, considering Smart City principles and 
inclusive design. The developed solution demonstrates high potential for implementation under 
resource-constrained conditions, ensuring a balance between detection accuracy, processing speed, 
and technical reliability.
Thus,  the  research  makes  a  significant  contribution  to  the  development  of  intelligent 
transportation  systems,  laying  the  foundation  for  further  scientific  research  and  practical 
implementation of adaptive urban traffic management technologies.
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