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Abstract
The paper explores the application of the Determination-Based Correlation Coefficient (DBCC) for analyzing
dependencies between continuous and categorical features in classification tasks. While DBCC has previously
been validated in regression contexts, its suitability for classification problems remains underexplored. This study
evaluates DBCC across various dependency structures, including step, multi-class, and sigmoidal relationships,
demonstrating its robustness and effectivity. The findings suggest that DBCC provides a computationally efficient
and flexible alternative to traditional methods such as ANOVA, point-biserial correlation, and mutual information.
Additionally, classification performance metrics such as Accuracy, F1-score, and ROC-AUC are examined to
assess the practical implications of using Grid-Mean Algorithm in feature selection and model evaluation. Future
research directions include refining the methodology and extending its application to high-dimensional datasets.
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1. Introduction

Understanding the relationship between continuous and categorical features is a fundamental aspect
of many classification tasks in machine learning. While numerous techniques exist for dependency
analysis, their effectiveness varies based on data structure, underlying assumptions, and computational
efficiency. In our previous work, we introduced and analyzed the Determination-Based Correlation
Coefficient (DBCC) in the context of regression tasks, demonstrating its ability to capture complex
dependencies and maintain robust performance across diverse datasets [1]. However, classification
problems require different approaches, as feature relationships often exhibit step or sigmoidal patterns
that traditional correlation metrics struggle to interpret [2, 3, 4, 5, 6, 7]. Given these strengths, a natural
question arises: can DBCC also be applied to classification problems, where feature relationships often
exhibit stepwise or sigmoidal patterns that traditional correlation metrics struggle to interpret?

In this study, we explore the use of DBCC for assessing feature dependence in classification tasks,
aiming to provide a robust and interpretable alternative to existing methods. We evaluate DBCC on
synthetic datasets with stepwise, multi-class, and sigmoidal dependencies, comparing its performance
against established dependency measures. Additionally, we examine classification metrics such as
accuracy, F1-score, log loss, and ROC-AUC [8, 9, 10, 11, 12, 13] to assess how DBCC contributes to
feature selection and model evaluation.

Accurate dependency estimation is crucial for classification models. Recent studies have highlighted
the importance of effective dependency estimation in classification. Techniques such as ANOVA and
point-biserial correlation rely on distributional assumptions that limit their applicability in real-world
scenarios [14, 15, 16]. Additionally, mutual information (MI) provides a flexible alternative but often
requires careful parameter selection and exhibits higher computational complexity [17, 18]. The Akaike
Information Criterion (AIC) has been utilized in model selection but does not directly quantify feature
dependence [19, 20, 21, 22]. Given these limitations, exploring alternative approaches like DBCC is
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essential for improving classification model performance.

2. Materials

In our previous studies, we conducted an in-depth investigation of the Determination-Based Correlation
Coefficient (DBCC) and explored its application for predicting regression metrics based on data charac-
teristics. Our findings demonstrated that DBCC is highly effective at capturing nonlinear dependencies,
making it a powerful tool for assessing complex relationships within datasets. Given that classification
tasks frequently involve interactions between continuous and categorical features, which often follow
stepwise or sigmoidal patterns, we hypothesize that DBCC can also provide valuable insights in this
context. DBCC is calculated using the following formula:

𝜂2 = 1−
∑︀𝑛

𝑖=0 [𝑦𝑖 −𝑀𝑥(𝑦𝑖)]
2∑︀𝑛

𝑖=0 [𝑦𝑖 −𝑀(𝑦)]2

where 𝑀𝑥(𝑦𝑖) – is the mean value within the grid cell that contains 𝑥𝑖. This grid-based mean is defined
as follows: Let the interval [𝑎, 𝑏] be divided into 𝑁 equally sized subintervals of width ℎ = (𝑏− 𝑎)/𝑁 .
Then for each 𝑥𝑖 ∈ [𝑎, 𝑏], the grid is:

𝜔ℎ =

{︂
𝑀𝑥∈[𝑥𝑗 ,𝑥𝑗+1](𝑦), 𝑥𝑗 = 𝑎+ 𝑗ℎ, 𝑗 = 0, . . . , 𝑁, ℎ =

𝑏− 𝑎

𝑁

}︂
To rigorously assess the effectiveness of DBCC in classification tasks, we designed and executed a
series of controlled experiments using synthetic datasets. These experiments aimed to analyze how
well DBCC captures different types of dependencies between continuous and categorical features. Our
methodology consisted of the following key steps:

• Generating datasets with different types of dependencies between continuous and categorical
features.

• Computing the DBCC correlation coefficient and interpreting its results.
• Analyzing the outcomes and assessing the adequacy of DBCC in various scenarios.

We categorized dependencies into five primary types to ensure comprehensive testing:

• Step function.
• Twice-changing step function.
• No dependency.
• Multi-class categorical feature.
• Sigmoidal dependency with varying levels of noise.

Each synthetic dataset contained 10,000 data points, ensuring stable and statistically meaningful
estimates. To manage the discretization of continuous variables, we set the grid parameter to n =
100. This parameter controls the level of granularity in the approximation process: lower values
smooth out dependencies, whereas higher values increase noise and inconsistencies. Through extensive
testing, we determined that n = 100 provides an optimal balance between approximation accuracy and
computational efficiency.

Step Function. In the first experiment, the continuous variable was sampled from a normal dis-
tribution with a mean of 50 and a standard deviation of 15. The categorical variable was assigned a
value of 1 if the condition 𝑋 > 50 was met and 0 otherwise (see Figure 1). This dependency structure
is frequently observed in classification tasks where a clear threshold separates the classes.

The computed DBCC value was 0.975, indicating an almost perfect correspondence between the
continuous feature and the categorical label. The approximation accurately captured the underlying
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Figure 1: Illustration of Grid-based Algorithm approximation (left); DBCC under different noise levels for a
double step function(right)

dependency, though minor uncertainty was observed around the threshold due to the effects of grid-
based discretization.

Double Step Function. For the second experiment, we considered a more complex twice-changing
step function. In this scenario, the categorical feature changed its value at two distinct thresholds,
simulating real-world classification problems where decision boundaries are non-monotonic (see Figure
2).

The resulting DBCC value was 0.996, demonstrating DBCC’s ability to effectively capture non-
monotonic relationships. This result is particularly noteworthy, as many traditional correlation measures
struggle to detect such patterns.
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Figure 2: Illustration of Grid-based Algorithm approximation (left); DBCC under different noise levels for a step
function(right)

No dependency. To examine DBCC’s behavior when no dependency exists between the variables,
we generated independent random features (see Figure 3). As expected, DBCC returned a near-zero
correlation value of 0.009, correctly indicating the absence of a relationship. This outcome confirms that
DBCC does not falsely identify correlations where none exist, reinforcing its reliability as a statistical
measure.

Multiclass Categorical Feature. A distinguishing characteristic of DBCC is its capacity to handle
multi-class categorical variables. To test this capability, we constructed a dataset where the categorical
feature could assume three distinct values (see Figure 4). The analysis yielded a DBCC value of 0.984,
illustrating DBCC’s robustness in capturing relationships in multi-class classification settings.
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Figure 3: Illustration of Grid-based Algorithm approximation for a no dependency.
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Figure 4: Illustration of Grid-based Algorithm approximation (left); DBCC under different noise levels for a
multiclass categorical feature (right)

Sigmoidal Dependence.To simulate more intricate nonlinear dependencies, we introduced a sig-
moidal function:

𝑌 =
1

1 + 𝑒−
𝑋−50

𝜆

where 𝜆 controls the steepness of the transition between class labels. As 𝜆 increases, the function
becomes more gradual, introducing greater uncertainty and blurring class boundaries (see Figure 5).
Conversely, as 𝜆 approaches zero, the function approximates a power-law relationship.
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Figure 5: Illustration of Grid-based Algorithm approximation for a sigmoidal function.

Our results showed that as 𝜆 increased, the DBCC value decreased accordingly, reflecting the growing
ambiguity in classification. This behavior suggests that DBCC is sensitive to uncertainty in decision
boundaries and can serve as an effective diagnostic tool for evaluating the separability of classes in
noisy data.

DBCC results showed that as class boundaries became more blurred (higher 𝜆), the correlation
coefficient decreased, reflecting the growing uncertainty in classification.

The findings indicate that DBCC is an effective tool for assessing dependencies in classification tasks.
It demonstrates high accuracy even in cases of complex and nonlinear dependencies. In future research,
we plan to evaluate the effectiveness of this approach on real-world datasets.

Comparison with Other Methods. To provide a broader perspective, we compared DBCC with
widely used methods for analyzing dependencies between continuous and categorical variables. The
key characteristics and performance metrics of these methods are summarized in Table 1.

Our preliminary results suggest that DBCC offers a unique balance between sensitivity to nonlinear
patterns and robustness against noise, making it a valuable addition to the toolkit of data scientists
working with classification problems.

Table 1
Comparison of different correlation methods

Method Complexity Params. Distribution assumption Interpretability Output in [0, 1] Vector Input

ANOVA/MANOVA O(n) - Requires normal distribution High - +
Kruskal-Wallis test O(nlogn) - Same distribution in all groups High - -

Point-biserial correlation O(n) - Only two-category input Medium [-1;1] -
Mutual Information O(nlogn) Num. of bins No assumption Medium + +

Akaike Criterion O(n) + complexity of model Model Depends on model assumptions High [0, inf] +
DBCC O(n) Num. of bins Requires single-valued dependency High + +



DBCC has proven to be an effective option, combining low computational complexity with good
interpretability and the ability to handle multiclass categorical variables.

Key advantages of DBCC over other methods:

• Computation speed: Unlike MI, DBCC has linear computational complexity O(n), making it
suitable for large datasets.

• No strict distributional assumptions: Unlike ANOVA, DBCC does not require normality of
residuals or equal variances across groups.

• Support for multiclass categorical variables: Point-biserial correlation works only with
binary variables, whereas DBCC can analyze multiple categories.

• Interpretability: The DBCC coefficient takes values in the range [0, 1,] allowing for an easy
assessment of the strength of the relationship between variables.

Extending Grid-Mean Algorithm for Classification Metrics. In our other study, we explored
the application of a grid-based algorithm for the approximate computation of regression metrics. The
fundamental idea behind this approach was that by discretizing the continuous feature space into
grid intervals and computing mean values within each interval, we could efficiently approximate
regression-based evaluation metrics. Following the same logic, we propose extending this methodology
to classification metrics, leveraging the Grid-Mean Algorithm as a machine learning model capable of
estimating classification performance indicators.

Beyond correlation analysis, the grid-based structure of DBCC allows for the approximation of
classification metrics by utilizing the probability distribution of categorical labels within each grid
interval. Since each segment of the grid contains averaged feature values, it can serve as a foundation for
estimating the probability of categorical outcomes, thereby supporting class prediction. This capability
enables us to derive classification performance metrics directly from the grid without requiring an
explicit predictive model.

We considered four primary classification metrics that are widely used for evaluating model perfor-
mance:

• Accuracy – The proportion of correctly classified values relative to the total number of samples.
This is a fundamental metric that provides an overall measure of predictive performance.

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

• F1-Score – The harmonic mean of precision and recall, balancing the trade-off between false
positives and false negatives. It is particularly useful in cases with imbalanced class distributions.

F1-Score =
2 * Precision + Recall

Precision + Recall

Recall =
True Positive

True Positive + False Negative

Precision =
True Positive

True Positive + False Positive
• ROC-AUC – The area under the receiver operating characteristic curve, which quantifies a model’s

ability to distinguish between classes across various threshold settings.
• Log Loss – The average logarithmic loss of predicted probabilities, where lower values indicate a

better probabilistic prediction. This metric is particularly relevant for evaluating probabilistic
classifiers.

Log Loss = − 1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 ln(𝑝𝑖) + (1− 𝑦𝑖) ln(1− 𝑝𝑖)]

where – 𝑝𝑖 predicted probability of the i-point, and – 𝑦𝑖 label of this point.
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Figure 6: Comparison of true and estimated classification metrics values at different noise levels

To evaluate the effectiveness of this approach, we conducted experiments using a sigmoidal function
with varying 𝜆 values:

𝑌 =
1

1 + 𝑒−
𝑋−50

𝜆

where controls the level of noise in the data. Higher values of result in smoother transitions and
greater uncertainty near the decision boundary, while lower values produce sharper class separations.
This setup allows us to assess how well the Grid-Mean Algorithm can approximate classification metrics
under different levels of ambiguity in class labels.

For each experimental setting, we compared the actual and approximated values of classification
metrics, ensuring a comprehensive evaluation of this method’s accuracy. The results (see Figure 6),
demonstrate that the approximation error never exceeded 0.05 across all considered scenarios. This
level of accuracy indicates that the proposed approach provides a reliable and computationally efficient
means of estimating classification performance without the need for full-fledged model training.

Our findings indicate that DBCC is an effective tool for assessing dependencies in classification tasks.
It demonstrates high accuracy, even in cases of complex and nonlinear dependencies. Moreover, its
grid-based approach extends to approximate classification metric computation, making it a versatile
tool in data analysis.



3. Conclusions

This study demonstrates the effectiveness of the Determination-Based Correlation Coefficient (DBCC) in
evaluating dependencies between continuous and categorical features in classification tasks. Accurately
assessing such dependencies is essential for improving classification models, as it influences feature
selection, model interpretability, and predictive performance. Traditional methods often struggle to
capture complex relationships, making the development of more flexible and efficient dependency
measures a crucial research direction.

Through extensive experimentation on synthetic datasets, our results confirm that DBCC effectively
identifies various types of relationships, including stepwise, sigmoidal, and multi-class dependencies,
while also correctly recognizing the absence of correlation where applicable. The ability to handle
both simple and intricate dependency structures makes DBCC a valuable tool for feature evaluation.
Furthermore, compared to conventional approaches such as ANOVA, point-biserial correlation, and
mutual information, DBCC offers a favorable balance between computational efficiency, interpretability,
and adaptability to diverse data distributions.

Key Advantages of DBCC:

• Effective Handling of Nonlinear and Complex Dependencies: Unlike traditional methods that
often assume linearity or specific distributions, DBCC can capture intricate relationships without
imposing restrictive assumptions. This makes it particularly useful in real-world classification
tasks, where dependencies are rarely straightforward.

• Robustness Across Various Dependency Structures: DBCC performs well across different types
of relationships, including stepwise transitions, non-monotonic dependencies, and multi-class
interactions. This generalizability enhances its applicability in diverse classification scenarios.

• High Computational Efficiency: One of DBCC’s strengths is its ability to process large datasets
efficiently, making it scalable for applications involving extensive feature analysis. Unlike com-
putationally expensive techniques such as mutual information, DBCC provides a streamlined
approach that balances precision with speed.

Future Research Directions. To further enhance DBCC’s effectiveness, several avenues for future
research should be explored. One key area is refining the methodology to improve precision and robust-
ness across more diverse data structures. Advanced techniques for parameter tuning and optimization
could enhance its sensitivity in detecting subtle dependencies, ensuring more reliable results even in
challenging classification settings.

Another important direction is extending DBCC’s applicability to high-dimensional datasets, where
feature interactions become increasingly complex. Many real-world classification tasks involve nu-
merous variables, and a robust dependency measure must be capable of efficiently handling such
multi-feature relationships. Developing scalable implementations of DBCC that leverage parallel com-
puting and optimized algorithms could significantly enhance its usability in large-scale machine learning
workflows.

Moreover, integrating DBCC into automated feature selection frameworks could greatly benefit the
field by providing a systematic way to identify relevant features based on their dependency structures.
By incorporating DBCC into feature engineering pipelines, practitioners can streamline the process of
selecting informative variables, ultimately improving model performance while reducing computational
overhead.

Finally, exploring the potential of DBCC for approximate computation of classification metrics
presents an exciting opportunity. If DBCC can serve as a proxy for evaluating classification performance,
it could enable rapid model assessment without requiring extensive training and validation steps. Such
an approach would be particularly valuable in iterative machine learning workflows, where quick
feedback is essential for model optimization.

By addressing these research directions, DBCC can be further established as a powerful and versatile
tool for analyzing complex dependencies in modern data science, contributing to more effective and
interpretable classification models.
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