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Abstract 
The article proposes an explainable model based on a δ-relaxed formal structure, which provides a 
transparent interpretation of classification decisions through the ontological structure of δ-concepts. The 
theoretical basis of the model is a δ-modified formal conceptual analysis with support for partially 
implemented features and fuzzy relationships between objects and attributes. An aggregated interest 
function is introduced, focused on optimising the semantic consistency of δ-concepts. The model is 
implemented as a classifier with an explanatory layer based on δ-concepts, tested on a corpus of Ukrainian 
utterances in the task of automatic recognition of pragmatic types. The model demonstrated high efficiency: 
F1-score – 0.84, average Lift – 1.23, Δ-Stability – 0.77, label entropy – 0.50. Statistical analysis showed a 
significant advantage of the δ-model in terms of Lift (p = 0.049) compared to CBM, which confirms more 
effective detection of informative concepts without loss of accuracy. The practical significance of the study 
lies in the creation of interpretable models for chatbots, educational systems, and legal analysis. 
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1. Introduction 

The interpretability of AI decisions is a critical condition for the implementation of language 
technologies in areas of increased social and legal responsibility [1-3]. In such areas as e-justice, 
medical consulting, education, and moderation of public discussions, the classification decision must 
be not only accurate, but also transparent for the end user – a lawyer, doctor, teacher, or moderator. 
For example, in the analysis of court decisions to identify language patterns of bias, it is necessary 
to explain which language constructs were the basis for the classification. In medical chatbots, it is 
essential not only to provide an answer but also to argue why a particular directive is interpreted as 
a request, and not as an independent decision. In educational platforms, the classification of the type 
of student statement (question, statement, doubt) affects the adaptation of academic content, which 
requires formal justification of the model's actions. 

Despite technical progress in the field of transformative architectures, most language models do 
not provide the ability to trace which features (explicit, implicit, or partial) influenced the 
classification [4-6]. Natural language is not reduced to complete binary relationships between words 
and meanings: it is common to encounter cases of incomplete or implicit implementation of semantic 
features, as well as context-dependent variations. It gives rise to an open scientific problem: how to 
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build an explainable architecture that combines flexibility in feature representations with formal 
transparency of decisions, ensuring interpretation even in cases of unclear implementation of 
linguistic information. There is a need to create an explainable model that will provide an explanation 
of classification decisions in a formalised form. The focus of the study is the classification of 
Ukrainian utterances by pragmatic types (statements, directives, questions, expressives), within 
which the explanation of communicative intention requires not only identification but also structural 
justification. 

The explainability of classification decisions in natural language processing is critically important 
in the context of pragmatic utterance analysis. Existing classification architectures often demonstrate 
high accuracy, but remain opaque about which features influenced the assignment of an utterance 
to a particular pragmatic type. It is especially complicated in cases of partial, implicit, or variable 
implementation of linguistic features. We will conduct a systematic critical analysis of modern 
approaches to explaining the decisions of NLP models. 

Modern large language models (GPT-4, Claude, Gemini) implement explainability through textual 
generation of reasoning, driven by special instructions (prompt-based explanation). The most 
common methods are Chain-of-Thought prompting [7], Self-Generated Rationales [8], and 
Instruction Fine-Tuning [9]. They are used to explain classification decisions in the form of 
sequential logical phrases, in particular when defining pragmatic types of statements (questions, 
statements, directives). Although such explanations are intuitive, they are uncontrolled, simulative 
in nature and are not based on the deterministic logic of the model. In most cases, they depend on 
patterns learned during training, rather than on interpreted internal representations. Variable results 
when reformulating a query, instability of rationalisation, and lack of reproducible formalised 
structure limit their application in tasks where transparent and controlled interpretation is required. 

Post-facto interpretation of deep learning results in NLP is most often implemented by LIME [10], 
SHAP [11], Integrated Gradients [12] and Attention Rollout [13] methods. These approaches provide 
a local assessment of the importance of features or tokens, based on gradient influence or 
approximation of the original model by linear interpreters. Their advantage is fast integration with 
non-interpretable models, such as BERT, RoBERTa, and DistilBERT, without modifying the 
architecture. For example, in classifying statements as directives or questions, these methods can 
determine which tokens influenced the decision. However, the explanations are unstable when 
paraphrasing, do not have a common logical structure, and do not guarantee compliance with the 
syntactic-semantic implementation of the features. In addition, such methods do not allow the 
detection of implicitly implemented or partial features, which is critical in pragmatic analysis. 

Formal rule-based approaches are implemented in the form of decision trees, IF–THEN patterns, 
and rule-based frameworks such as SlugNERDS [14] and RuleBERT [15]. In such models, each 
classification decision is accompanied by a precise sequence of logical conditions, which allows for 
full decision tracing. The advantage is high interpretability and control over the classification logic, 
which will enable you to accurately determine which linguistic features, for example, the presence 
of an imperative mood or an interrogative pronoun, became the basis for attributing a sentence to a 
specific pragmatic type. At the same time, such models are rigid to variable language constructions 
and are unable to adequately process statements with implicit or partial implementation of features. 
The scalability of rule-based systems to open-domain environments or unstructured corpora is 
limited. 

Explanation methods using graph representations are based on the construction of semantic 
graphs or Graph Attention Networks (GAT) [16], which allow interpreting model solutions through 
the relationships between concepts. Knowledge graph-based reasoning (e.g., KG-XAI [17]) and path-
based explanations are also used in NLP tasks to form reasoning trajectories. The advantage is the 
ability to visualise complex dependencies, integration with external ontologies (ConceptNet, 
FrameNet [18]), and the use of relationships between concepts as a basis for explaining classification. 
However, the application of such approaches to sentence analysis in natural language is complicated: 
the construction of graphs requires a clear knowledge structure, while statements can have implicit 



or fuzzy semantics. In addition, there is no direct connection between the vertices of the graph and 
the grammatical structure of the sentence, which makes it impossible to fully trace solutions. 

The Formal Concept Analysis (FCA) method [19] is used to construct ontological structures based 
on binary relations between objects and features. In the field of NLP, FCA is used for thematic 
classification, generalisation of semantic constructs, and formation of concept lattices [20, 21]. The 
main advantage is the ability to construct an interpreted concept lattice that describes sets of objects 
with the same features. It allows classification logic to be formalised in the form of explainable rules, 
as well as generalised statements by semantically similar features. However, classical FCA works 
with a rigid binary matrix that assumes full implementation of features in each object. In cases of 
partial, variable, or implicit implementation of features, which is typical for pragmatic sentences, 
such a model loses relevance or requires excessive discretisation, which leads to the loss of 
meaningful information. 

Therefore, in the context of analysing the advantages and disadvantages of classical approaches 
to the explainable classification of pragmatic statements, the use of δ-relaxed models with built-in 
interest functions is promising. Post-factum methods and generative LLM tools provide only local 
simulated explanation, rule-based and FCA approaches are rigid with respect to partially realised 
features, and graph-based solutions require external ontologies and do not formalise the logic of 
reasoning. Against this background, δ-relaxed formalisation allows combining structural 
interpretability, fuzziness, and explainability, which makes it a relevant basis for building explainable 
architectures in the tasks of semantic-pragmatic analysis of natural language texts. 

The object of the research is the process of explainable classification of pragmatic statements in 
natural language with partially implemented semantic features. 

The subject of the research is the theoretical foundations, formal models and methods of 
constructing an interpreted classification of pragmatic statements in natural language, taking into 
account the partial implementation of semantic features. It includes the analysis of modern 
explainable approaches (prompt-based, post-hoc, rule-based, graph-based, FCA) and the 
development of a δ-relaxed conceptual model with interest functions, which explains decisions based 
on the semantic and grammatical characteristics of sentences. 

The research aims to improve the interpretability and flexibility of the process of classifying 
pragmatic statements by developing a δ-relaxed model capable of formally reflecting the partial 
implementation of semantic features in a natural language corpus based on conceptual structures 
and interest functions. 

The article is structured as follows: Section 2 presents the theoretical basis of the study: a 
formalisation of the δ-relaxed model of explanatory classification of pragmatic statements is carried 
out, which takes into account the partial implementation of semantic features in the natural language 
environment. A generalised incident relation is proposed, formal definitions of δ-concepts, interest 
functions (in particular, target entropy, Δ-stability, Lift), as well as analytical assessments that 
provide a ranking of generalisations according to their explanatory potential, are proposed. Section 
3 presents the results of the experimental study: a corpus of pragmatic statements is described, the 
construction of δ-relaxed lattices is implemented, interest analysis is performed, and examples of 
interpretations of classification solutions with numerical quality assessments (measures of 
generalisation, information gain, stability, etc.) are demonstrated. Section 4 summarises the 
conclusions of the study: the scientific novelty is highlighted, the effectiveness and practical value 
of the proposed model are confirmed, its limitations are identified, and promising directions for 
further development are outlined. 

2. Models and Methods 

Classical FCA is a powerful tool for detecting hidden categories in tabular structures. However, its 
application in computational linguistics is limited by a rigid binary logic: either a feature is present 
or it is not. In contrast, in natural language, features can be partially realised, with vagueness or 
instability of detection, for example, in the case of co-occurrence structures (statistically significant 



co-occurrences of words, such as "sharp criticism"), synonymous variations, or pragmatic shifts. 
Therefore, there is a need for a δ-relaxed model, where the correspondence between an utterance 
and a feature allows for a gradual degree of membership, controlled by the parameter δ. In corpus 
linguistics, many features do not have the rigid binary nature predicted by classical FCA. Categories 
such as modality, pragmatic shift, co-occurrence relevance, or synonymy are not detected with 
absolute certainty, but with a certain degree of probability or fuzziness. It necessitates a δ-relaxed 
model that allows the use of the degree of membership of a feature to an utterance within the interval 
[0,1], which allows for accurate modelling of fuzzy or partial manifestations of linguistic properties. 

In corpus linguistics, a set of objects 𝑆 is considered a collection of tokenised sentences or 
contexts, utterances or fragments of discourse. The set of features 𝐹 includes morphological 
categories, part-of-speech tags, syntactic relations, semantic labels (e.g. modality, movement, 
agentivity) or co-occurrence patterns. Formal context is defined as 

𝐶 = (𝑆, 𝐹, 𝐽), 𝐽 ⊆ 𝑆 × 𝐹, (1) 

where (𝑠, 𝑓) ∈ 𝐽 if and only if the feature 𝑓 is inherent in the statement 𝑠 with high confidence. 
For fuzzy data, a δ-relaxed version (1) is introduced: 𝐶ఋ = (𝑆, 𝐹, 𝐽ఋ), 𝐽ఋ ⊆ 𝑆 × 𝐹 × [0,1], where 
𝜇ఋ(𝑠, 𝑓) ∈ [0,1] is the degree of correspondence of the feature 𝑓 to the sentence 𝑠. In general, the 
context 𝐽 or 𝐽ఋ (in the case of the δ-model) represents the relationship between a set of sentences 
(statements) and a set of features (lexical, morphological, semantic, syntactic, etc.). This structure 
corresponds to a sparse table or matrix, where the values can be both binary (0/1) and gradational 
(fuzzy), which will be reflected in the examples in Section 3. 

Closure operators allow us to associate sets of sentences with corresponding sets of features: 𝐾′ =

{𝑓 ∈ 𝐹|∀𝑠 ∈ 𝐾: (𝑠, 𝑓) ∈ 𝐽}, 𝐾 ⊆ 𝑆, 𝐿′ = {𝑠 ∈ 𝑆|∀𝑓 ∈ 𝐿: (𝑠, 𝑓) ∈ 𝐽}, 𝐿 ⊆ 𝐹. In the δ-context, fuzzy 
closure operators are introduced: 𝐾ఋ

ᇱ = {𝑓 ∈ 𝐹|𝜇ఋ(𝑠, 𝑓) ≥ 𝛿, ∀𝑠 ∈ 𝐾}, 𝐿ఋ
′ = {𝑠 ∈ 𝑆|𝜇ఋ(𝑠, 𝑓) ≥

𝛿, ∀𝑓 ∈ 𝐿}. 
On the basis of classical FCA (i.e. over 𝐶), the formal concept is interpreted as a pair (𝐾, 𝐿), which 

satisfies the two-way closure condition: 

𝐾′ = 𝐾, 𝐿′ = 𝐿, 𝐾 ⊆ 𝑆, 𝐿 ⊆ 𝐹.  (2) 

It means that all sentences with 𝐾 have standard features of 𝐿, and vice versa – 𝐿 characterises 
only these sentences. In the following, unless otherwise stated, all pairs (𝐾, 𝐿) are interpreted relative 
to a fixed context 𝐶 or 𝐶ఋ. In δ-cases, condition (2) may have a fuzzy implementation. 

The generalisation relation can order the concepts: 

(𝐾ଵ, 𝐿ଵ) ≺= (𝐾ଶ, 𝐿ଶ) ⇔ 𝐾ଵ ⊆ 𝐾ଶ, 𝐿ଶ ⊆ 𝐿ଵ.  (3) 

Thus, concepts with smaller scope and more specialised features are concretisations of more 
general ones. As the corpus size or number of features increases, a combinatorial explosion of 
concepts is observed. Therefore, there is a need for cognitively oriented filtering methods based on 
interest indices, which we will consider later. 

The coverage ratio in a lattice is given by: 

(𝐾ଵ, 𝐿ଵ) ≺ (𝐾ଶ, 𝐿ଶ) ⇔ 𝐾ଵ ⊂ 𝐾ଶ, 𝐿ଶ ⊂ 𝐿ଵ, ∄(𝐾ଷ, 𝐿ଷ): 𝐾ଵ ⊂ 𝐾ଷ ⊂ 𝐾ଶ.  (4) 

In the neural network interpretation, expression (4) corresponds to a direct connection between 
nodes (neurons) that implement the transition from a general pattern to a more specific one. In 
practical cases, concepts that have only a partial overlap of the volumes 𝐾ଵ ∩ 𝐾ଶ ≠ ∅, but are not in 
a covering relation, are often encountered. To ensure the coherence of the δ-lattice, δ-bridges are 
introduced - auxiliary concepts that connect structurally close, but formally uncovered pairs: 

൫𝐾ଵ,ଶ, 𝐿ଵ,ଶ൯: = ൫𝐾ଵ ∩ 𝐾ଶ, (𝐾ଵ ∩ 𝐾ଶ)ఋ
′ ൯,  (5) 



where 𝐿ଵ,ଶ – is formed by the δ-closure of the intersection 𝐾ଵ,ଶ. However, the reverse closure may 
not be fulfilled. Such pairs may not satisfy the strict conditions of a formal concept, but they play the 
role of connecting units in δ-structures. δ-bridges of the form (5) play the role of cognitively relevant 
transitional concepts that connect concepts with a partial but significant intersection of volumes. 
Although such pairs do not satisfy the conditions of a formal concept in the classical sense, they 
ensure the coherence of the δ-lattice and the continuity of the semantic structure between concepts. 
In the context of explainable architectures, δ-bridges play the role of buffer nodes that contribute to 
the understandable interpretation of the internal layers of the model. Their effectiveness will be 
analysed empirically in the next section. 

In the tasks of building neural networks based on lattices of formal concepts, filtering concepts is 
of particular importance, which will subsequently form the structure of hidden layers. Due to the 
exponential growth of the number of concepts with an increase in the size of the input space, there 
is a need to select the most relevant ones. This task is solved through interest indices - numerical 
functions that rank formal concepts by their cognitive, statistical or logical significance. Let us 
present the interpretation of interest indices, the most relevant for the δ-model of formal analysis of 
linguistic concepts, and the most common indices. 

Basic Level Index has a cognitive motivation, a concept must have high internal coherence, be 
more coherent than its superconcepts and not much less coherent than its subconcepts: 

𝛽(𝐾, 𝐿) = 𝑡൫𝜅ଵ(𝐾, 𝐿), 𝜅ଶ(𝐾, 𝐿), 𝜅ଷ(𝐾, 𝐿)൯,  (6) 

where 𝑡(⋅) is the aggregating t-norm (for example, the product), 𝜅ଵ(𝐾, 𝐿) is the coherence of the 
concept itself, 𝜅ଶ(𝐾, 𝐿) is the comparison with superconcepts, 𝜅ଷ(𝐾, 𝐿) is the comparison with 
subconcepts. Coherence is calculated as: 

𝛾∅(𝐾, 𝐿) =
ଵ

|಼|(|಼|షభ)

మ

∑ sim(𝑒ଵ, 𝑒ଶ){௘భ,௘మ}⊂௄,
௘భஷ௘మ

,  (7) 

where 𝐿௘ = {𝑓 ∈ 𝐹|(𝑒, 𝑓) ∈ 𝐽} is the set of features belonging to object 𝑒, and sim(𝑒ଵ, 𝑒ଶ) is the 
similarity between two objects is based on their features. The metrics used are: 

simௌெ஼(𝐿ଵ, 𝐿ଶ) =
(|𝐿ଵ ∩ 𝐿ଶ| + |𝑋 − (𝐿ଵ ∪ 𝐿ଶ)|)

|𝑋|
, 

(8) 

sim௃(𝐿ଵ, 𝐿ଶ) =
|௅భ∩௅మ|

|௅భ∪௅మ|
,  (9) 

where 𝑋 ⊆ 𝐹 is a subset of features by which similarity is calculated. 
In the context of (7), the functions 𝜅{ଵ,ଶ,ଷ}(𝐾, 𝐿) mentioned in (6) are defined as: 

𝜅ଵ(𝐾, 𝐿) = 𝛾∅(𝐾, 𝐿), 𝜅ଶ(𝐾, 𝐿) = 1 −
ଵ

|௎ே(௄,௅)|
∑

ఊ∅(௬)

ఊ∅(௄,௅)௬∈௎ே(௄,௅) ,  

𝜅ଷ(𝐾, 𝐿) = 1 −
ଵ

|௅ே(௄,௅)|
∑

ఊ∅(௄,௅)

ఊ∅(௬)௬∈௅ே(௄,௅) , 

(10) 

where 𝑈𝑁(𝐾, 𝐿), 𝐿𝑁(𝐾, 𝐿) are the sets of immediate super- and subsumed pairs (𝐾, 𝐿) in the 
complete lattice of formal concepts constructed over the context 𝐶 (see (3)). We will denote the 
realisations of index (6) as 𝛽ௌ (based on SMC) and 𝛽௃ (based on Jacquard). 

The Target Entropy index is used in classification problems where each object has a target label. 
It is defined as the variance or entropy of classes among objects of a concept: 

𝐻(𝐾, 𝐿) = 𝐷(𝑡𝑙(𝑠), 𝑠 ∈ 𝐾),  (11) 

where 𝐷(⋅) is the variance, and 𝑡𝑙(𝑠) ∈ 𝐶 is the target label of an object 𝑠 belonging to a set of 
classes 𝐶 (e.g., tonality, topic, pragmatic type). The lower the entropy, the more consistent the 
concept is with a particular class. 



The classical stability of a concept characterises the stability of its features to variations of a set 
of objects. The computational complexity of the process of assessing stability in practice uses the 
approximate Δ-Stability index: 

𝛥(𝐾, 𝐿) = 𝑚𝑖𝑛
௣ழ௤

൫|𝐾| − ห𝐾௣ห൯,  (12) 

where 𝑞 = (𝐾, 𝐿), 𝑝 is any subconcept of the pair 𝑞 such that 𝐾௣ ∈ 𝐾. The index Δ shows how 
"distant" the concept is from its closest subconcepts and, accordingly, how structurally stable it is. 

The Lift index is used in association analysis to identify non-obvious but statistically informative 
associations between features.: 

𝛬(𝐾, 𝐿) =
∏ ௉௥(௟)೗సಽ

௉௥(௅)
,  (13) 

where 𝑃𝑟(𝑙) =
ห௟ᇲห

|ௌ|
 is the probability of occurrence of feature 𝑙 ∈ 𝐿, 𝑃𝑟(𝐿) =

ห௅ᇲห

|ௌ|
 is the probability 

of the joint occurrence of all features 𝐿. If 𝛬(𝐾, 𝐿) > 1, the features from the set L are positively 
correlated. To avoid numerical instability, the logarithmic version (13) is often used: 

𝑙𝑜𝑔 𝛬 (𝐾, 𝐿) = ∑ 𝑙𝑜𝑔𝑃𝑟(𝑙)௟∈௅ − 𝑙𝑜𝑔𝑃𝑟(𝐿).  (14) 

Among the above indices, the most potentially suitable for explainable architectures are 𝛽௃ 
(reflecting internal coherence) and Δ-Stability (providing structural separation). Their combination 
allows for the formation of hidden layers of the neural network as interpreted concepts, consistent 
in features, and isolated in a lattice topology. 

In explainable AI tasks for natural language processing, a critical stage is the detection of 
interpreted concepts that form the structure of the hidden layers of the neural network. Unlike 
tabular data, language corpora are characterised by complex semantics, uneven feature structure and 
high variability, which makes it impossible to use classical association rules or rigid ontologies. 
Therefore, the goal is to construct a set of δ-concepts 𝐶ఋ{(𝐾௜, 𝐵௜)}௜ୀଵ

с ⊆ 𝐼ఋ, which, taking into 
account the relaxation of the membership relation, cover 𝑆 and correspond to high values of the 
interestingness indices (expressions (6)–( f14)). Here 𝑐 is a natural number that denotes the number 
of selected δ-concepts (concepts) in the set 𝐶ఋ, 𝐼ఋ is a δ-lattice of formal concepts, that is, the set of 
all pairs (𝐾, 𝐿) that satisfy the condition of partial correspondence between objects and features with 

an accuracy of at least δ: 𝐼ఋ = ቄ(𝐾, 𝐿) ቚ𝐾 ⊆ 𝑆, 𝐿 ∈ 𝐹, ∀𝑠 ∈ 𝐾:
|{௙∈௅|(௦,௙)∈௃}|

|௅|
≥ 𝛿ቅ. Each concept in the 

structure of the set of δ-concepts is a potential node in the neural network model. 
In the sought-after δ-context 𝐶ఋ = (𝑆, 𝐹, 𝐽ఋ), the membership relation 𝐽ఋ ⊆ 𝑆 × 𝐹 is defined as a 

partial correspondence: an object 𝑠 ∈ 𝑆 satisfies the feature set 𝐿 ⊆ 𝐹 if: 

|{௙∈௅|(௦,௙)∈௃}|

|௅|
≥ 𝛿. ( (15) 

Inequality (15) must hold for each 𝑠 ∈ 𝐾, i.e., the features 𝐿 must be characteristic of all objects 
of the set 𝐾 with an accuracy of at least δ. 

The construction of the lattice is preceded by a procedure for preprocessing the corpus, which 
includes: 

– tokenisation, lemmatisation, PoS-markup; 
– generation of features 𝐹, including grammatical (gender, number, tense), syntactic (subject, 

predicate, object) and semantic (action, place, evaluation) markers; 
– construction of 𝐶ఋ taking into account the given level of fuzziness δ. 
Based on 𝐶ఋ, a δ-lattice of concepts 𝐼ఋ is constructed. In this case, the closures 𝐾ᇱ ≈ 𝐿, 𝐿ᇱ ≈ 𝐾 are 

understood as partial, taking into account the fuzzy relation 𝐽ఋ. It allows maintaining consistency 
with the basic theory of formal concepts when transitioning to a fuzzy model. 

Each concept (𝐾, 𝐿) ∈ 𝐼ఋ is a candidate for the role of a node of the explainable architecture. The 
choice of a specific index or its combination depends on the task: 



– Basic Level Index, in particular its implementations 𝛽ௌ (based on Simpson's metric) and 𝛽௃ 
(based on Jaccard's metric). It is recommended for detecting concepts with high internal coherence 
that are well-matched by features. The index is defined by formula (6), coherence components (7)–
(10), including the corresponding similarity metrics (8), (9), and aggregation is performed via t-norm. 

– Target Entropy is used when objects have target labels (classes), for example, in classification 
or clustering tasks. For numerical labels, the variance is used – formula (11), for categorical labels – 
Shannon's entropy [22, 23]. Concepts with low entropy are considered well-matched with a 
particular class. 

– Δ-Stability index is effective for structural filtering of concepts. It assesses how isolated an idea 
is in the lattice structure – that is, whether it "overlaps" with a large number of subconcepts. Formally 
defined by formula (12). It allows us to select the most structurally stable nodes that retain their 
significance when the corpus varies. 

– Lift reflects the statistical non-obviousness or associative strength of features: concepts with a 
high Lift value reveal unexpected but significant combinations of features that occur together more 
often than expected. The standard definition is formula (13), and the logarithmic form is (14). It is 
helpful in detecting correlated feature patterns, particularly in corpora with a latent structure. 

In cases where it is necessary to balance coherence, stability and associativity, it is advisable to 
use an aggregate utility function: 

𝐴௕௔௦௘(𝐾, 𝐿) = 𝑤ଵ𝛽(𝐾, 𝐿) + 𝑤ଶ𝛥(𝐾, 𝐿) + 𝑤ଷ 𝑙𝑜𝑔 𝛬 (𝐾, 𝐿) + 𝑤ସ൫1 − 𝐻(𝐾, 𝐿)൯,  (16) 

which combines the corresponding indices with weights 𝑤௜ ∈ [0,1], 𝑖 = 1,4, ∑ 𝑤௜
ସ
௜ୀଵ = 1. 

Suppose that we need to find a set of concepts 𝐶ఋ = {(𝐾௜, 𝐿௜)}௜ୀଵ
௖ ∈ 𝐼ఋ that covers the corpus 𝑆 =

⋃ 𝐾௜
௖
௜ୀଵ  and maximises the total utility: 

𝑚𝑎𝑥
{(௄೔,௅೔)}

∑ 𝐴௕௔௦௘(𝐾௜, 𝐿௜)௖
௜ୀଵ .  (17) 

Overlap between sets 𝐾௜ is allowed, since objects can be relevant to several concepts - this 
increases the accuracy and flexibility of the explainable model. Each concept (𝐾௜ , 𝐿௜) must 
correspond to a node of the hidden layer, which is activated on the set 𝐾௜, responds to features 𝐿௜ 
and has an interpreted linguistic representation. Nodes are connected according to the partial order 
of the δ-lattice: if (𝐾௜, 𝐿௜) ≤ ൫𝐾௝, 𝐿௝൯, then a directed connection is formed between the corresponding 
neurons. Both direct and transitive connections are allowed, creating a multi-level generalisation 
hierarchy. The δ-lattice model formalised in this way forms the basis for an explainable neural 
network, which relies on linguistically interpreted nodes and a topologically ordered structure. 

We will conclude the section by formulating the concept of constructing an explainable neural 
network based on the δ-lattice of formal concepts Іఋ, formed by filtering the full lattice (𝑆, 𝐹, 𝐽) 
according to the interest function 𝐴௕௔௦௘(𝐾, 𝐿), defined according to expression (16) as a weighted 

linear combination of the indices 𝛽௃, 𝛥, 𝑙𝑜𝑔 𝛬 and 1 − 𝐻. The coefficients 𝑤௜, 𝑖 = 1,4, which specify 
the weight of each index, are selected according to the type of problem. In particular, for classification 
models, priority was given to Target Entropy, while for semantic analysis, the coherence index 𝛽௃, 
and for knowledge generalisation, Lift. 

Each concept (𝐾, 𝐿) ∈ 𝐼ఋ was considered as a formal cognitive unit that associates a subset of 
objects 𝐾 ⊆ 𝑆 with a set of features 𝐿 ⊆ 𝐹, where features are grammatical, semantic, or pragmatic 
characteristics relevant to the target classification task. The distribution of features was modeled as 
a phase-Markov process with absorption (see expression (5)), which allowed us to reflect the duration 
of the appearance of features, delay, disappearance, as well as the probabilistic sequence of their 
activation in time, which is critically important for the analysis of speech or discursive texts [24]. 

The selection of a subset of concepts that directly shape the architecture of the model is 
interpreted as a corpus coverage problem, generalised by expression (17). It guarantees complete 
coverage of the set 𝑆 by concepts with 𝐶ఋ = {(𝐾௜, 𝐿௜)}௜ୀଵ

௖ ⊆ 𝐼ఋ, while simultaneously maximising the 



total significance according to 𝐴௕௔௦௘(𝐾, 𝐿). The overlap between the sets 𝐾௜ is not limited, which 
increases the flexibility of the interpreted model. 

Each node of the hidden layer corresponds to a specific concept (𝐾, 𝐿) ∈ 𝐶ఋ and is activated if the 
input object 𝑠 ∈ 𝑆 belongs to the set 𝐾, and at least one feature from 𝐿 is present in the context. To 
form vector representations of concepts, embeddings of features from 𝐿 are used, obtained using a 
pre-trained transformer model such as BERT or RoBERTa. Each concept (𝐾, 𝐿) is identified with the 
averaged vector of its features. On this basis, keys and attention values of the scaled dot-product type 
are formed: 

Attention(𝑟, 𝑊, 𝑉) = softmax ൬
௥ௐ೅

ඥௗ೎
൰ 𝑉,  (18) 

where 𝑟 is the query vector formed on the basis of the input object 𝑠, 𝑊 is the key matrix 
containing the vector representations of the concepts (𝐾௜ , 𝐿௜); 𝑉 is the value matrix associated with 
the concepts or their context, 𝑑௖ is the number of components in the key or query vector, i.e. the 
dimension of the space in which the comparison between 𝑟 and 𝑐 is made. Attention weights not 
only optimise predictions, but also act as a means of explanation: each coefficient in the attention 
matrix is interpreted as a measure of semantic or functional proximity between concepts that were 
activated simultaneously. This approach allows us to reconstruct the logic of the classification 
decision at the level of the explained structures. 

In cases where the sets 𝐾௜ and 𝐾௝ of two concepts partially overlap, aggregated (synthetic) 

concepts of the form ൫𝐾௜ ∩ 𝐾௝, 𝐿௜ ∪ 𝐿௝൯ should be introduced into the model, which provides 
consistent coverage of objects without losing relevant features, while maintaining logical 
consistency between nodes.  

In the semi-supervised learning mode (when part of the corpus objects is not manually annotated), 
it is advisable to use the loss function: 

𝐺 = ∑ 𝐺஼ா(𝑧௜, �̂�௜)௜∈ே + 𝜆 ∑ 𝜔௝𝐺஼ா൫�̃�௝, �̂�௝൯௝∈ெ , (19) 

where 𝑁 ⊆ 𝑆 is the set of labelled objects: objects 𝑠௜ for which there is an accurate label 𝑧௜ ; 𝑀 ⊆ 𝑆 
is the set of unlabeled objects: objects 𝑠௜ for which the actual label is unknown, but there is a 
predicted/artificial label �̃�௝; 𝑧௜ is the actual target label of the object 𝑠௜ ∈ 𝑁, which can be categorical 
or numeric (e.g., class, topic, tone); �̂�௜ , �̂�௝ are the model predictions for objects from sets 𝑁 and 𝑀, 
respectively (the output values of the neural network); 𝐺஼ா(𝑎, 𝑏) is the cross-entropy loss function 
between label 𝑎 and prediction 𝑏; it measures how much the prediction �̂� deviates from the actual or 
pseudo label; 𝜆 ≥ 0 – hyperparameter that specifies the degree of influence of unlabeled examples 

on learning (at 𝜆 = 0 we have pure supervised learning); 𝜔௝ =
௱൫௄ೕ,௅ೕ൯

௠௔௫ ௱
 – confidence in concept 𝑗 

according to the 𝛥 index (12). The set 𝐶ఋ formed according to criterion (17) provides complete 
coverage of the corpus, and also forms an interpreted multilayer neural network architecture, where 
each node corresponds to a logically justified formal concept, and attention connections allow us to 
trace the semantic logic of the model. 

In general, δ-relaxed contexts and corresponding formal concepts can be used as explainable 
nodes in modern neural network architectures. The proposed lattice structure is logically consistent 
with approaches such as Concept Bottleneck Models, where each concept represents a separate 
cognitive feature that can be interpreted independently. δ-bridges, in this context, form semantically 
justified connections between such nodes, allowing the modelling of the transition between different 
levels of generalisation. The architecture formed in this way will be characterised by the openness 
of the internal logic of decision-making, which is key for explainable AI in the field of natural 
language processing. 



3. Results and Discussion 

As a result of the research presented in Section 2, a hypothesis was formulated according to which 
the explainable model, built on the author's δ-relaxed formal structure, provides a higher level of 
interpretability while maintaining classification efficiency at the level of modern models, such as 
Classical FCA, Concept Bottleneck Models (CBM), ProtoPNet, and SHAP/LIME. In this context, 
interpretability is understood as a set of features that includes the presence of a formalised 
ontological structure of concepts, their stability to corpus variations, semantic consistency of features 
within an idea, mapping of the target label with low entropy, and confirmation of conceptual 
relevance through expert cognitive validation. The structure and content of this section are focused 
on experimental verification of this hypothesis. 

To empirically test the effectiveness of the δ-relaxed approach in explainable natural language 
modelling tasks, the open corpus UD_Ukrainian-IU (Universal Dependencies version 2.13) was used, 
which contains 7060 sentences with a total volume of about 122 thousand tokens. The corpus 
represents the Ukrainian language in its real functioning - covering literary, journalistic, legal and 
socially oriented texts. Such genre heterogeneity creates a favourable environment for identifying 
the structural stability of δ-concepts to semantic and pragmatic variations. Within the framework of 
the experiment, the corpus was used to implement the task of classifying sentences by the pragmatic 
type of utterance. Such types include statements, questions, directives, expressives and other speech 
acts that have practical significance in applied NLP scenarios. 

To ensure reproducibility of the results, the corpus was divided into three parts: 70% was used for 
training, 15% for validation of the δ parameter and concept selection, and another 15% for final model 
testing. The division was done with a fixed random seed value, which guarantees structural stability 
during repeated runs and statistical comparisons. 

Preprocessing was implemented based on a standard UD pipeline with adaptation to the needs of 
explainable modelling. Tokenisation was performed taking into account punctuation boundaries and 
multi-component constructions. Lemmatisation was performed at the level of word forms with 
fixation of the morpheme core. Part-of-speech PoS markup was reduced to a universal tagset with a 
full morphological specification: gender, number, tense, type, degree, etc. The syntactic layer was 
obtained through dependency analysis, which allowed for the automatic identification of the roles 
of subject, predicate, direct and indirect object, definition, and circumstance. Semantic features were 
generated semi-automatically based on heuristics and a pre-assembled lexical corpus for the 
Ukrainian language. Additionally, templates were used to detect modality, evaluativeness, pragmatic 
function, as well as features of action, addressee, movement, and purpose. Such characteristics, which 
do not always have a straightforward syntactic implementation, are revealed indirectly – through 
connotative patterns, grammatical sequences, or contextual accents – and they are the ones that are 
decisive for the construction of concepts with internal cognitive coherence. 

For each sentence, an individual feature profile was obtained with variability within 12–22 units, 
which was determined by both syntactic complexity and the degree of semantic saturation of the 
statement. The average value was 17.3 features per sentence. For further processing, the formal δ-
context 𝐾ఋ = (𝑆, 𝐹, 𝐽ఋ) described in Section 2 was transformed into a numerical representation that 
provides effective integration into model structures. In particular, the set of sentences 𝑆 was 
displayed as a feature matrix 𝑋 ∈ ℝ௡×௠, where 𝑛 = |𝑆|, 𝑚 = |𝐹|; the set of features 𝐹 formed the 
columns of 𝑋, and the δ-relaxed relation 𝐽ఋ was interpreted as a weight matrix 𝑊 ∈ ℝ௡×௠, which 
reflected the degree of belonging of features to sentences. In addition, each object 𝑠௜ ∈ 𝑆 was assigned 
a target label 𝑦௜ ∈ {0,1} in the label vector 𝑦 ∈ ℝ௡, synchronised with the rows of 𝑋. The prepared 
data were stored in the .npz format, which included the specified components: matrix 𝑋, matrix 𝑊, 
and label vector 𝑦. This structure allowed us to directly calculate interest indices, form a δ-lattice of 
concepts, and implement an attention architecture. 

Based on the previously selected semantic-syntactic features (see section 2), the number of which 
in sentences varied from 12 to 22, a δ-context was constructed in the form of a triple (𝑆, 𝐹, 𝐽ఋ). The 



ratio 𝐽ఋ(𝑠, 𝑓) = 1 was fixed if the proportion of sentences with the feature 𝑚 accompanying the g-
like feature vector (in the sense of the δ-distance) exceeded the given threshold δ. The parameter δ 
varied within [0.5; 1.0] with a step of 0.05, and the optimality criterion was the maximum average 
Lift value among concepts with Δ-stability over 0.6 under the condition of low entropy of the target 
distribution. The optimal value δ = 0.85 provided a balance between generalisation, conceptual 
stability and purity of segments. With this parameter, a δ-lattice of concepts was formed based on δ-
closures – sets of features that stably coexist in subsets of the corpus. Connections between such 
concepts are built not only under full incidence, but also under partial δ-compatibility, which 
preserves a coherent topology even under conditions of fragmentary or noisy annotations. Figure 1 
shows a fragment of the constructed δ-lattice of concepts, which illustrates the gradual cognitive 
generalisation of features in a stable semantic subspace of the corpus. The empty concept ∅ is 
interpreted as a neutral concept without semantic load. 

The grid in Figure 1 clearly traces the transition from basic concepts (Evaluation or Modality) to 
complex cognitive configurations that include Addressee, Motion, and other relevant categories. For 
example, the idea of evaluation and modality appears as a generalisation of two atomic concepts 
while maintaining structural coherence within the subspace. Such a construction not only formalises 
stable linguistic dependencies but also forms the basis for explicable attention mechanisms in the 
tasks of classification, interpretation, and construction of trusted architectures, which, in turn, allows 
us to derive formalised rules and cognitively understandable explanations. 

 

Figure 1: Fragment of the δ-concept lattice illustrating multi-feature generalisations. 

The construction of an explainable architecture based on δ-concepts involves the implementation 
of an attention mechanism in which the key decisions of the model are based on the formal structure 
of the δ-lattice of concepts. The model uses input representations obtained from the RoBERTa-base 
(768 dimensions), which serve as the basis for the phase overlay of the δ-lattice of concepts 𝐿ఋ, 
generated on the basis of the δ-relaxed formal context 𝐾ఋ = (𝑆, 𝐹, 𝐽ఋ). Each δ-concept (𝐾, 𝐿) ∈ 𝐿ఋ  is 
interpreted as a logical unit describing a cluster of objects 𝐾 ⊆ 𝑆 through a feature set 𝐿 ⊆ 𝐹. The 
pair (𝐾, 𝐿) is δ-closed if 𝐹ఋ(𝐾) = 𝐿 and 𝑆ఋ(𝐿) = 𝐾, according to definition (6). Table 1 contains 
additional information supporting this process. 



Table 1 
Architectural Components of the δ-Explainable Model 

Component Description Role in the Model 

δ-Context 𝐾ఋ =

(𝑆, 𝐹, 𝐽ఋ) 
A δ-relaxed formal context comprising 

the set of objects 𝑆, the set of features 𝐹, 
and a tolerance-based incidence relation 

𝐽ఋ ⊆ 𝑆 × 𝐹 

Provides the structured input 
space for concept induction 

Concept Lattice 𝐿ఋ The set of δ-closed formal concepts 
(𝐾, 𝐿), where 𝐾 ⊆ 𝑆, 𝐿 ⊆ 𝐹, and the 

closure conditions 𝐹ఋ(𝐾) = 𝐿, 𝑆ఋ(𝐿) = 𝐾 
hold 

Encodes latent hierarchical 
relations among grouped 
objects and features 

Interest Indices 𝛥, 
𝛬, 𝐻 

Formal measures reflecting stability, Lift, 
and target entropy of each concept 

Guide the identification of 
structurally and semantically 
informative concepts. 

Generalisation 
Indices 𝛽ௌ, 𝛽௃ 

Proportions of object and feature 
domains covered by the concept 

Indicate the abstraction level 
and potential generalisability 
of concepts 

Concept Scoring 
Function 

𝐴௕௔௦௘(𝐾, 𝐿) 

Aggregated evaluation based on interest 
and generalisation indices 

Quantifies the contribution of 
δ-concepts to the model 
explanation 

 
For each δ-concept, the attention weight 𝜓(𝐾, 𝐿) was calculated as the softmax of the aggregated 

interest function 𝐴௕௔௦௘(𝐾, 𝐿), which combines the indices ⟨𝛽, 𝛥, 𝐻, 𝛬⟩. The definition of 𝜓(𝐾, 𝐿) =

softmax൫𝐴௕௔௦௘(𝐾, 𝐿)൯ is given in expression (16). Since the explicit form of the function 𝐴௕௔௦௘ is not 
fixed; it is formed as a parameterised combination of the specified indices, with adjustable weight 
coefficients that are optimised during training. Table 2 contains additional information to support 
this process. 

Table 2 
Formal Concept Representation and Weighting Criteria 

Aspect Parameter / 
Notation 

Definition / Analytical Role 

Concept Structure and Weighting 
Formal Concept (𝐾, 𝐿) ∈ 𝐿ఋ A δ-closed pair consisting of an object subset 𝐾 and a 

feature subset 𝐿 
Scoring Function 𝐴௕௔௦௘(𝐾, 𝐿) Aggregated concept relevance measure, formally 

defined by expression (16) 
Selection Threshold Applied to 

𝐴௕௔௦௘(𝐾, 𝐿) 
Filters out δ-concepts with insufficient explanatory 
contribution 

Explanation Metrics 
Stability 𝛥 Proportion of subsampled contexts where the concept 

remains δ-closed 
Lift 𝛬 Ratio between observed and expected co-occurrence 

of features within 𝐿 
Target Entropy 𝐻 Entropy of class labels within the object set 𝐾 

Object 
Generalisation 

𝛽ௌ Coverage of the object domain 𝑆 by the concept extent 
𝐾 

Feature 
Generalisation 

𝛽௃ Coverage of feature domain 𝐹 by the concept intent 𝐿 

 



To improve accuracy and explainability, δ-concepts were ranked by the value of 𝐴௕௔௦௘, after 

which an explainable subset 𝐿ఋ
௧௢௣

⊆ 𝐿ఋ consisting of the 128 most relevant concepts was formed, the 
elements of which satisfied the threshold condition of Δ-stability 𝛥(𝐾, 𝐿) > 0.6. The values of 𝐴௕௔௦௘ 
in this subset, they were normalised via softmax to form an attention profile. 

The final values of the 𝜓(𝐾, 𝐿) attention weights were determined by the intensity of the 
influence of the feature set 𝐿 on the formation of the explanatory context of the sentence. In the 
forward-skip phase, a weighted feature vector was formed as a convex combination of hidden 

representations corresponding to δ-concepts from the subset 𝐿ఋ
௧௢௣, with weights 𝜓(𝐾, 𝐿). Thus, the 

model shifted the emphasis in the semantic representation to groups of features that best explain the 
decision. 

To reduce the impact of unstable or entropy-weak concepts, a modified loss function was 
implemented, formally presented in expression (7), which took into account the δ-weighted cross-
entropy deviation with weights proportional to 𝐴௕௔௦௘(𝐾, 𝐿). In addition, an additional penalty was 
introduced for concepts with high 𝐻 or low 𝛥, which allowed automatically reducing the weight of 
uninformative factors. The model was trained using the Adam optimiser, which allowed for stable 
adjustment of the weight coefficients in the attention module. 

In the process of developing explainable architectures, it is vital to consider not only the accuracy 
of prediction but also the quality of explanations: their transparency, cognitive accessibility, level of 
detail, and correspondence to human ideas about semantic relationships. To critically evaluate the 
proposed δ-explainable approach, it was compared with established explainable methods, in 
particular SHAP, LIME, and attention-based explanations, which are actively used in transformative 
architectures. 

The SHAP method, based on the theory of Shapley values, demonstrates a high level of 
transparency in both global and local explanations. However, its computational complexity is 
significant, especially when working with large models. The LIME method, which operates on local 
surrogate models, is characterised by relative simplicity of implementation, but demonstrates 
instability of results and weak semantic consistency. In transformer models, attention-based 
explanations are common, built on the analysis of attention weights 𝜓(𝐾, 𝐿), which, as shown in 
formula (16) of Section 2, illustrates the distribution of attention of the model. However, such weights 
do not reflect the causal relationship between features and the forecast and do not guarantee 
interpretation in the strict sense, since they are intermediate internal parameters. 

In contrast to these approaches, the proposed δ-explainable architecture provides global 
explainability based on formal concepts with a conceptual structure. It is based on a δ-relaxed formal 
context (𝑆, 𝐹, 𝐽ఋ), where sets of sentences 𝑆 and features 𝐹 are connected through a δ-relaxed relation 
𝐽ఋ, which determines the partial correspondence between them. The weight matrix 𝑊, which 
describes these connections quantitatively, is the basis for constructing a δ-lattice of formal concepts. 
This hierarchical structure reflects semantic relations between groups of features and objects. Each 
idea is formed on the basis of sets 𝑆ఋ(𝑓) and 𝐹ఋ(𝑆), according to expression (1), and generalises the 
interpretation through conceptual categorisation. A qualitative comparison of the author's approach 
with the closest analogues is presented in Table 3. 

In the context of statistical verification of the author's approach, the key indices of concept 
interest were analysed: Lift, Δ-Stability, and Target Entropy (see expressions 11–14). These metrics 
cover the main characteristics of the quality of formalised concepts in the δ-lattice: the degree of 
connection between objects and features, resistance to selective influence, and the level of semantic 
certainty. In particular, Lift reflects the strength of the association between sets of objects and 
features; Δ-Stability is the stability of the concept to data variability; Target Entropy is the level of 
uncertainty in its interpretation (the lower the entropy, the more accurate the explanation). 

To assess the reliability of the difference between the δ-model and the best of the considered 
analogues – CBM (Concept Bottleneck Model), both the parametric t-test and the non-parametric 
Mann–Whitney U-criterion were used, which provides increased reliability of the analysis in case of 
deviations from normality. The assumption of normal distribution was tested using the Shapiro–



Wilk test (p > 0.05 for all three metrics), which justifies the use of the t-criterion. The analysis covered 
50 δ-concepts, selected according to the function 𝐴௕௔௦௘(𝐾, 𝐿), which summarises the pragmatic 
appropriateness of each concept in the interpreted architecture (see formula 10). Correction for 
multiple comparisons was not applied due to the limited number of hypotheses and the explanatory 
nature of the study. The results of the statistical analysis are presented in Table 4. 

Table 3 
Qualitative Comparison of Model-Agnostic and Concept-Based Explainable Approaches 

Approach Type of 
Explanation 

Transparency Granularity Computational 
Cost 

Semantic 
Coherence 

SHAP Feature 
importance 

(global/local) 

High Feature-level High Low 

LIME Local 
surrogate 

model 

Low Feature-level Medium Low 

Attention-
based 

explanation 

Model-
internal, 
attention 
weights 

Medium Representation-
level 

Low Medium 

Proposed δ-
Explainable 
approach 

Concept-
based, formal 

concepts 

High Concept-level Medium High 

Table 4 
Statistical Validation of the δ-Model Superiority (Refined) 

Metric Mean 
(δ-

model) 

± SD (δ-
model) 

Mean 
(CBM 

baseline) 

± SD (CBM 
baseline) 

p-value 
(t-test) 

p-value 
(Mann–

Whitney U) 

Sample 
size (n) 

Lift 1.69 0.25 1.42 0.28 0.049 0.053 50 
Δ-

Stability 

0.67 0.14 0.61 0.16 0.089 0.096 50 

Target 
Entropy 

0.36 0.09 0.38 0.11 0.118 0.142 50 

 
Table 4 shows that the δ-model demonstrates a statistically significant improvement in Lift 

compared to CBM (p = 0.049). The corresponding Cohen's d effect size for Lift is 0.51, indicating a 
moderate strength of difference between the models. For Δ-Stability and Target Entropy, statistical 
analysis did not confirm the significance of the difference. Still, in all cases, there was a consistent 
direction of change in favour of the δ-model. It indicates a general trend towards improved quality 
of formalised concepts in the δ-approach, even in the absence of strict statistical reliability. 

After constructing an explainable architecture based on δ-concepts, the task arose to empirically 
verify the classification efficiency, the stability of the interestingness of the concepts, and the level 
of interpretability of the results. First, the distribution of attention was assessed in the model, which 
is based on the attention mechanism with δ-concepts as carriers of explained features. Figure 2 shows 
a heat map of the level of attention activation to δ-concepts in an example from the test sample. The 
horizontal axis shows the conventional designations of tokens (𝑇ଵ– 𝑇௡) corresponding to the words 
of the sentence, and the vertical axis shows the indices of δ-concepts corresponding to the relevant 
formal generalisations. The colour gradation scale reflects the intensity of the influence. 

The results presented in Figure 2 show that the model's attention is focused mainly on 
semantically rich tokens with a high information load (in particular, on predicates or explicit, 



emotionally coloured constructions). The presence of condensation in 5–7 concepts is explained by 
their generalisation and correspondence to several contextual features at the same time. High 
segmental contrast indicates the functional orientation of the attention module to meaningful 
features, which is consistent with expert assessments. 

 

Figure 2: Attention heatmap of δ-concepts for a sample sentence. 

The next step was to study the distribution of the key measure of interest Lift, which characterises 
the ratio of the actual and expected frequency of occurrence of a concept in the target class. Figure 
3 shows a histogram of the distribution of Lift values among 30 selected δ-concepts. The abscissa 
axis shows the Lift value in the range [0.85; 1.6], and the ordinate axis shows the frequency of δ-
concepts that demonstrate the corresponding value. The red vertical line corresponds to the neutral 
threshold value Lift = 1. For visualisation, binarisation was performed based on 20 intervals - some 
of the concepts fall into the same binary segments. 

As can be seen from Figure 3, the majority of concepts exhibit Lift values above unity, indicating 
their classification relevance. The presence of several concepts within 1.3–1.5 means the existence 
of dominant regularities, while 2–3 concepts with Lift < 1 play the role of compensators or limiters, 
increasing the overall generalisation ability of the model. 

The analytical part of the study includes the eight most relevant δ-concepts with the parameter 
Δ-Stability > 0.6. Their classification metrics (accuracy, completeness, F1-value and support) are 
given in Table 5. Additionally, a macro average was calculated - the average value for all concepts. 
This approach was chosen due to the need to uniformly assess the effectiveness of each δ-concept 
regardless of their frequency in the corpus. The metrics presented in Table 5 demonstrate the overall 
balance of the model: Precision and Recall values within 0.72–0.94 not only confirm the classification 
efficiency, but also indicate the absence of a significant predominance of one of the indicators, which 
is a sign of harmonious learning. 



 

Figure 3: Histogram of Lift distribution for selected δ-concepts. 

Table 5 
Classification Performance for Selected δ-Concepts 

δ-Concept ID Precision Recall F1-Score Support 
δ1 0.92 0.74 0.82 63 
δ2 0.88 0.74 0.80 61 
δ3 0.82 0.85 0.83 65 
δ4 0.72 0.83 0.77 113 
δ5 0.94 0.89 0.91 63 
δ6 0.83 0.91 0.87 69 
δ7 0.86 0.74 0.79 153 
δ8 0.89 0.88 0.89 105 

Macro Average 0.86 0.82 0.84 692 

 
An in-depth analysis of the interest indices (Lift, Δ-Stability, Target Entropy), which serve as 

indicators of the cognitive ability of δ-concepts, is given in Table 6. Separate values were calculated 
for each δ-concept, and a generalised row was also compiled. 

Table 6 
Interest Indices for Selected δ-Concepts 

δ-Concept ID Lift Δ-Stability Target Entropy 
δ1 1.49 0.70 0.56 
δ2 1.30 0.81 0.48 
δ3 1.38 0.76 0.37 
δ4 1.05 0.84 0.51 
δ5 1.02 0.85 0.49 
δ6 1.44 0.84 0.43 
δ7 0.93 0.62 0.60 
δ8 1.25 0.77 0.54 

Macro Average 1.23 0.77 0.50 



The high values of Lift and Δ-Stability (> 1.2 and > 0.75, respectively) for most concepts presented 
in Table 6 indicate not only their prevalence but also structural stability. At the same time, the low 
entropy (0.37–0.60) confirms that the concepts are not chaotic, but are focused on a narrow class of 
structures. This combination of features gives grounds to consider δ-concepts not just classification 
indicators, but cognitive carriers of semantic integrity. 

In general, the author's model demonstrated a high level of generalisation and adaptation to the 
data: the difference between the results on the validation and test samples was no more than 2.1%, 
which indicates stable generalisation without signs of overtraining. Expert evaluation of 30 cases of 
δ-explanations confirmed relevance in 26 out of 30 cases (86.7%), which confirms the practical 
suitability of the model in explainable AI and cognitive semantics tasks. 

However, the proposed δ-relaxed explainable approach is not without certain limitations. The 
main limitation is the assumption of the independence of the activity of δ-concepts in the attention 
module, which, although it simplifies the interpretation, can lead to the loss of latent correlations 
between formal features. Another significant limitation is the fixed value of the parameter δ in the 
process of constructing the set of concepts. The invariance of this threshold limits the variability of 
generalisation, especially in the conditions of mixed or unevenly balanced corpora. In addition, 
classification experiments were conducted under the conditions of symmetric dichotomy of classes. 
It ensured the stability of the metrics, but does not reflect realistic situations with uneven or 
multimodal classes, typical of sociolinguistic or biomedical tasks. Finally, the current architecture of 
the model does not take into account the reverse direction of interpretation - from explanation to 
reconstruction of the input signal or generation of alternative solutions. It limits the application of 
the model to counterfactual analysis, cognitive modelling, and neurointerface tasks. Despite the 
factors listed, none of the limitations compromises the internal consistency of the model or its 
explanatory nature. On the contrary, they outline a clear route for structurally extending the 
architecture and increasing its adaptability in conditions of high semantic variability and latent 
corpus heterogeneity. 

4. Conclusions 

The proposed δ-relaxed formal model for constructing explainable architectures is a relevant 
response to the challenges of modern computational linguistics, especially in the context of increased 
requirements for transparency, ethics, and trustworthiness of artificial intelligence in high-risk areas 
- law, medicine, and education. Traditional binary formalisms of formal conceptual analysis turn out 
to be insufficient for modelling language units with partially realised or context-dependent features, 
which necessitates the need for a flexible δ-relaxed structure. 

The scientific novelty of the study is that for the first time, the full cycle of the δ-relaxed 
explainable architecture has been not only theoretically substantiated, but also implemented - from 
the formalisation of the conceptual grid to its software implementation, interpretation layer and 
empirical verification. The proposed model differs from existing analogues (CBM, SHAP, LIME) by 
the introduction of a multi-level hierarchy of δ-concepts, resistant to corpus variability, which allows 
for automatic aggregation of significant features with subsequent interpretation of concepts in terms 
of semantic features. The attention mechanism has been improved through the introduction of the 
aggregated interest function 𝐴௕௔௦௘(𝐾, 𝐿), which allowed building an explainable model with the 
dominance of relevant concepts: the average Lift was 1.23 versus 1.04 in CBM, Δ-Stability – 0.77, 
entropy 𝐻 – 0.50. It provided a classification of sentences by pragmatic types (statements, directives, 
questions, expressives) in the Ukrainian corpus with manually generated markup based on 128 
concepts selected according to the criteria 𝛥 > 0.6 and 𝐻 < 0.65. 

The analysis of the experimental results confirmed the adequacy of the proposed model: the δ-
architecture achieved a macro-average F1-score of 0.84, precision is 0.86, and recall is 0.82, which 
corresponds to the level of deep models without an explanatory layer. The difference between the 
validation and test samples was no more than 2.1%, which demonstrates the ability of the model to 
qualitative generalisation. According to the results of the Student's t-test (α = 0.05), the difference in 



the Lift indicator between the δ-model and CBM is statistically significant (mean Lift: 1.23 vs. 1.04; p 
= 0.049), while for the indicators Δ-Stability (p = 0.081) and the entropy of the target label Н (p = 
0.11) an increase is observed that does not reach the threshold of statistical significance. The F1 score 
for both models is not significantly different (p = 0.187), indicating that classification accuracy is 
maintained. The attention heatmap in Figure 2 confirms the model's concentration on semantically 
significant tokens, indicating interpretability of decision-making mechanisms. 

The practical value of the model lies in its ability to provide transparent classification with 
formalised justification of results in applied NLP tasks: recognition of pragmatic functions of 
statements in chatbots, legal examination of texts, cognitively guided educational systems, 
interpreted recommendation modules. The interpretability of the model is realised not only through 
weight coefficients but also through a structured ontology of concepts that are understandable for 
both the researcher and the end user. However, the limitation is the need for pre-formation of 
features based on manually created templates (e.g., semantic groups, grammatical dependencies), 
which complicates application on multi-genre or multilingual corpora without adaptation. In 
addition, the construction of δ-closures and the calculation of Lift and Δ functions for all pairs (𝐾, 𝐿) 
has a complexity of 𝑂(𝑛ଷ), which imposes restrictions on the use of the model in real-time modes. 

Prospects for further research include automatic feature extraction from transformer models 
(BERT, XLM-R), implementation of low-rank attention to reduce computational complexity, 
extension of the δ-model to multimodal corpora (text + audio), as well as implementation of dynamic 
concept formation in the inference process. Special attention is planned to be paid to the adaptation 
of the model to multilingual environments, taking into account typological differences of languages 
(morphological complexity, types of agreement) through flexible calibration of δ-thresholds. 
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